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Abstract.  Analyzed here is a Cliquet put option (ratchet put option) defined as a resettable strike put 

with a payout triggered by the reference asset falling below a specified fraction of its value at a prior 

look-back date.  The hedging strategy that minimizes P&L volatility over discrete hedging intervals is 

assessed.  Examples are provided for an asset exhibiting jumpy returns (kurtosis > 3) and temporal 

correlation between the squared residual returns.  The limited liquidity of the asset limits the discrete 

hedging frequency.  Each of the realities of discrete hedging intervals and fat-tailed asset return 

distributions render the attempted replication imperfect.  A residual risk dependent premium is added to 

the average cost of attempted replication (i.e., average hedging cost) based on a target expected return on 

risk capital.  By comparing the P&L distribution of a derivative seller-hedger with that of a delta-one 

trader holding a long position in the underlying asset, relative-value based bounds on pricing of vanilla 

options and Cliquets are presented. 
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______________________________________________________________________________ 

1. Introduction 

The P&L of a seller and hedger of a Cliquet contract on an asset with limited liquidity and with 

jumpy returns is analyzed here.  The hedge ratio that minimizes P&L volatility, the average 

hedging cost, and the hedge slippage probability distribution are assessed by applying the 

Optimal Hedge Monte-Carlo (OHMC) methodology developed by Bouchaud & Potters [2003].  

The computed probability distribution of the option-seller-hedger’s P&L reflects the stochastic 

characteristics of the asset, the hedging strategy, and the Cliquet contract.  We determine the 

risk-premium that needs to be added to the average hedging cost to render the risk-return of the 

derivatives trader (that sells and hedges the option) to be no worse than a delta-one trader who 

is long the underlying asset. 

 Cliquets in the equity markets are often in the form of out-of-the money put Cliquets that 

are used to protect the holder from a market crash scenario (i.e., crash Cliquet, gap risk Cliquet).  

Most gap-risk Cliquets are defined as forward starting put spreads (e.g., 85-75 strike Cliquet put 

spread).  This structure is similar to a tranche of a market value CDO (with attachment points of 

15% and 25%).  Hedging the mezzanine tranche of such a CDO involves trading the underlying 

assets to protect against gap risk.  These structures share a common feature: sudden large moves 

of the underlying asset can cause economic loss.  The OHMC methodology proposed below will 

explicitly include such moves through a process that exhibits excess kurtosis and results in 

credit-type loss mechanisms.  
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 Petrelli et al [2006] analyzed optimal static hedging of multi-name credit derivatives (i.e., 

synthetic CDO tranches).  Kapoor et al [2003] employed a GARCH(1,1) model in the OHMC 

framework to examine the risk return characteristics of  two-tranche structures supported by a 

volatile asset.  In that work the underlying asset values were reported monthly and the hedging 

interval was also monthly.  The errors incurred in replicating the senior tranche were compared 

to that incurred in replicating the junior tranche, in addition to computing the average cost of 

attempted replication.  The impact of knockout and running premium for a Cliquet contract 

results in a wealth change formulation that is quite similar to that for a CDS swaption problem 

analyzed in Zhang et al [2006].  This work builds up on the formulations in Kapoor et al [2003] 

and Zhang et al [2006] and applies it to a Cliquet contract, and further analyzes residual risks and 

return on risk capital.  The ultimate goals of our series of works on optimal hedging are to be 

able to handle hedging, attempted replication, and assess residual risks of multi-asset options - be 

they credit type assets or equity type assets.  This is also a prerequisite to developing a 

satisfactory valuation model for multi-name credit derivatives.  The reader is referred to Petrelli 

et al [2007] for documentation of dynamic-hedge performance of CDO tranches, and to Laurent 

et al [2008] for a direct study of replication of CDO tranches. 

 In the OHMC approach the asset underlying the derivative is simulated based on a model 

that seeks to capture its real-world characteristics.  The hedge ratio and pricing functions are 

sought at every time step to keep the hedged derivative position as flat as possible between 

successive hedging intervals.  The numerical solution for hedging starts at the time-step prior to 

the option expiry.  The hedge ratio and pricing functions are a solution to the variational-calculus 

problem of minimizing a statistical hedging error measure between two time-steps while keeping 

the trading book flat on the average.  Thus the OHMC methodology puts itself in the shoes of a 

derivatives trader attempting to replicate the option payoff.  Like the derivatives trader, the 

OHMC methodology is concerned with residual risk accompanying any hedging strategy in the 

real-world.  OHMC seeks to deliver to the derivatives trader information on the average hedging 

costs and the residual risks.  By comparing the average cost of hedging and the residual risks 

with the amount of money someone is willing to pay the trader for that option, an opinion on the 

attractiveness of the trade can be developed. 

OHMC Versus “Risk-Neutral” Expectations 

The optimal hedging methodology adopted here follows the approach taken by Bouchaud and 

co-workers: see Bouchaud and Potters [2003] for an introduction to OHMC.  Other foundational 

studies of optimal hedging include Schweizer [1995], Laurent & Pham [1999], and Potters et al 

[2001].  All of these works are focused on the cost of option replication by analyzing dynamic 

hedging explicitly and as a pre-requisite to valuation. 
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The works on optimal hedging mentioned above and the approach pursued here are easily 

distinguished from the formal risk neutral valuation approaches insofar as follows: 

• OHMC addresses the mechanics of hedging, the average hedging costs and the hedge 

slippage distribution, and establishes the theoretical reasons for lack of perfect 

replication.  Taking expectations under a de-trended underlying process does not directly 

address hedging and replication errors (in risk-neutral modeling hedging errors are 

assumed to be zero under ideal conditions). 

 

• OHMC is applicable to general stochastic descriptions of the underlying.  Risk-neutral 

valuation - with demonstrable theoretical perfect replication - is limited to very specific 

descriptions of underlyings that are not empirically observed in even the most vanilla and 

liquid financial instruments, let alone exotic underlyings.  For example, the daily return 

kurtosis of US large cap stocks is on the average ~ 20: see Bouchaud & Potters [2003].  

The kurtosis of the daily and monthly returns of the S&P500 total return index is many 

multiples of 3 (the kurtosis of Geometric Brownian Motion). 

 

 The residual risk associated with any attempted replication strategy is of paramount 

importance to a derivatives trader trying to carve the risk-return profile of a trading book, and 

making the binary decision of selling an option at a given price in the first place.  OHMC is 

focused on hedging strategies, their expected costs, and residual risks. 

The central idea of derivative replication is establishing costs and trading strategies for 

eliminating risk.  However, valuation modeling has come to limit itself to taking expectations of 

option payoffs under a de-trended underlying process – without establishing the mechanics to 

achieve replication or estimates of the residual risks.  Such formal risk neutral models (that do 

not establish replication but presume it to be theoretically possible) are generally fit to market 

prices – without offering any analysis of hedging and its limitations.  The risk-neutral label 

seems to be earned merely by taking LIBOR discounted averages of option payoff evaluated 

using a de-trended description of the underlying relative to the cost of carry (which in recent 

environments has itself jumped around!).  Such formal valuation models do not differentiate 

options based on the relative sizes of replication errors endemic to the option contract and the 

underlying process.  While such formalism based valuation modeling is taking hold in 

accounting practices, it is largely an exercise of fitting model parameters to observed derivative 

prices.  Such formal risk neutral models do not directly help understand risk-return 

characteristics or hedge performance of vanilla options or exotics.  The main role of such risk 

neutral valuation models seems to be facilitating upfront P&L for exotics by employing 

parameters fitted to vanilla options, with the presumption that a delta to the underlying and 

vanilla options can perfectly replicate an exotic. 
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 (a) 

Figure 1a. Dependence of hedging error on hedging frequency and return kurtosis for a 1 month at the money put 

option (see Example 1 in Appendix-II for further details).  The hedge error measure displayed here is the standard 

deviation of hedging error divided by the average hedging cost.  The black line shows results for a stylized asset 

(stylized-asset 3 defined in section 4) with a return kurtosis of 15.  The rose-pink-line shows results for the same 

asset, but without any excess kurtosis, i.e., with a kurtosis of 3 which corresponds to a Geometric Brownian Motion 

(GBM) rendition of the asset. 

 

 

   (b)       (c)   

Figure 1b&c.  Sample path behavior of OHMC analysis with daily hedging for a 1 month at the money put option 

for a stylized asset with return kurtosis equal to 15 (see Example 1 in Appendix-II for further details).  The 

evolution of the asset-behavior and the hedge ratio is shown in (b).  The daily P&L is shown in (c) with 

contributions from the option position and the hedge position (discounted to start of hedging interval).  The P&L 

plot does not show the risk premium the option seller will add to the average hedging cost to get compensated for 

the residual P&L risk.  The sample path shown here corresponds to the 1 year 99.9% confidence level equivalent 

total wealth change over the options life.  
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Reality Versus Perfect Replication & Unique Price 

Minor jumpiness of returns (excess kurtosis) rules out perfect hedging even in the continuous 

hedging limit for vanilla options – as depicted in Figure 1 - based on an example of an at-the-

money put further detailed in Appendix-II.  This fact is brazenly ignored by the mainstream 

valuation modeling but experienced by the derivative trader herself.  The unsophisticated model 

user can fall into the convenient trap of believing that the only consideration in a derivatives 

trade is how correct is the volatility surface (or parameters of stochastic volatility models) in 

valuing a derivative and calculating the standard greeks (delta, vega, gamma).  Accounting 

departments (also called Product Control) further reinforce this risk-free replication belief based 

modeling regime – by embracing the unique derivative price found after calibrating parameters 

to observed vanilla prices.  This ignores the bid-offer of prices in vanilla derivatives and what 

they may reflect about the residual risks in attempting to replicate a vanilla option.  At greater 

peril, for exotics, this ignores the fact that the residual risks in replicating an exotic may be quite 

different than the vanilla option and a-priori one should have no expectation that calibration to 

some presumed mid price of vanillas results in a replicating strategy for the exotic.   

 Risk management departments (also called Risk Control) are charged with feeding the 

pricing model sensitivity outputs into a VaR model, and generally defer P&L deliberations to 

accounting.  Accounting departments in turn often defer to a valuation model that purports itself 

to be risk-neutral and does not a-priori communicate estimates of hedging errors.  VaR models 

vary in terms of granularity of market risk factors (index, vs. single name, etc) and their 

capabilities in making assessments of P&L with sensitivities and-or a complete revaluation.  Due 

to its simplifications, often VaR is not reported at a trade level.  With the valuation model based 

on presuming perfect replication, and the VaR model typically broad-brushed and not focused on 

the quirks of exotics, it is quite possible that trades are executed – possibly strongly motivated by 

the upfront P&L or significant carry – yet without any careful assessment of risks.  Therefore a 

proliferation of risk neutral valuation models has not generally been accompanied by an 

improvement in risk management.  In-fact, valuation models that purport to be risk-neutral and 

do not advertise irreducible hedging errors, perpetuate the incorrect belief that a delta-hedged 

position is close to risk free and actually aid and abet the taking of un-sized risks, despite the 

seeming oversight of valuation modeling, risk-control, and product control. 

     The diligent trader/risk manager will typically get to understand the exotic derivative 

over time and may know how its risk sensitivities are different enough from the vanilla 

derivative such that calibration of model with vanillas does not ensure a plausible pricing of risk-

premiums that are endemic to attempting to replicate the exotic.  The “risk-neutral” valuation 

models complete silence on hedge performance (as a part of valuation) renders them of little 

value in developing an exotics trading strategy with clearly documented risk-return tradeoffs. 
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The amount of compensation that a market agent that sells an option (and attempts to 

replicate) demands for unhedgable risks is for that agent to opine on and for trading 

counterparties to be the ultimate arbiter of.  The amount of risk premiums the market will bear 

will depend on demand and supply, market sentiments, and the extent to which the residual risks 

are diversifiable in a practical trading book.  Replication and diversification are at the heart of 

making derivative trading decisions, and derivative valuation models that are silent about even 

theoretically unhedgable risks are of little value in guiding trading and risk management in 

expressing a risk preference.  The OHMC approach has the potential to more directly tie together 

valuation modeling, hedge performance analysis, and risk management, by relating the average 

hedging costs and hedge slippage distribution to the distribution of the underlying as a precursor 

to valuation, and therefore prior to the stage where upfront P&L or carry motivations are 

entrenched.  The purpose of this article is to demonstrate the practical feasibility and the utility 

of the optimal hedging approach for Cliquet contracts.  It will be demonstrated that the OHMC 

framework can be utilized as a consistent hedging, pricing, risk-management engine that can 

serve the needs of traders, risk managers, and product control (see Table 1). 

Cliquet contracts are traded for liquid public market assets as well as more customized 

assets that could represent a trading strategy itself, in the form of either a rule based strategy, or a 

hedge fund, or an associated index. The values of such customized assets are often reported at a 

much lower frequency than the liquid public market assets, and the liquidity time interval over 

which any hedger can adjust the hedging portfolio can be even larger than the interval over 

which asset-values are reported.  The hedging of Cliquet contracts for such imperfectly liquid 

assets is one of the focus of this work, hence the explicit treatment of hedging frequency.  The 

bespoke baskets motivating this work are more widely held as long positions, therefore hedging 

requiring going long the underlying bespoke basket may be easier than going short.  However it 

is possible to go short by total return swaps with counterparties that want to go long the bespoke 

basket.  In this work we invoke an ability to go long as well as short the asset underlying the 

Cliquet contract, with limited frequency of adjusting the hedge due to contractual limitations on 

redemptions of customized baskets. 
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Characteristics Risk-Neutral Approach OHMC 

Hedging & 

replication 

i. Assumes perfect replication is 
theoretically possible and residual 
risks are non-existent 
 

ii. Continuous/instantaneous hedging 
with no transaction costs 
 

iii. Naïve deltas assuming (i)and (ii) 
without any reference to real-
world risks 

 
i. Seeks to minimize hedging error 

and assesses real-world residual 
risks that are generally found to 
be significant compared to 
average hedging costs 
  

ii. Can addresses hedging 
frequency and transaction costs 
  

iii. Produces hedge ratios that 
minimize desired hedging error 
measure (e.g., P&L volatility or 
expected shortfall) 
 

Underlying 

description 
i. De-trended martingale process 

only 

 
i. Independent of underlying 

process (i.e., applicable to non-
markov, fat tails, jumps etc) 
 

Risk 

management 

needs 

 
i. Valuation model based on risk-

free replication assumption – no 
direct risk metric output from 
model 
 

ii. Sensitivity of valuation models 
can be used to evaluate  risk 
measures external to valuation 

model (VaR, expected shortfall, 
etc) 
 

iii. Loss scenarios can be assessed by 
perturbing valuation model inputs  
 

 
i. Scenario evaluation/back-testing 

is performed as a part of 
assessing cost of hedging and 
hedge slippage measures which 
drive valuation 
 

ii. Risk measures (VaR and 
expected shortfall) are collateral 
model output en-route to 
assessing hedging strategy 
 

 

Table 1. Comparison of Risk Neutral Approach with Optimal Hedge Monte-Carlo (OHMC) 
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Organization 

The reader completely new to optimal hedging analysis is recommended to start with Appendix-

II which introduces it in the context of vanilla options and presents sample calculations on 

hedging error, average hedging costs and hedge ratios.  The reader with background on optimal 

hedging analysis should jump right into the Cliquet formulation, and Appendix-II is then best 

read prior to section 5 of the main text.   

 The mechanics of the Cliquet contract are presented in section 2, including a formulation 

of a Cliquet option seller’s P&L. Section 3 presents the OHMC analysis of the P&L of the 

Cliquet option seller – hedger, and the approach to finding the optimal hedge ratios and the 

average hedging cost as well as residual risks.  Also presented in section 3 are relative value and 

risk capital measures that utilize the assessments of average hedging costs and residual risks and 

provides guidance on valuation.  Appendix-I and III present details of the OHMC 

implementation for Cliquet contracts.  The OHMC method to analyze Cliquets pursued here does 

not hinge on any special or convenient stochastic description of the asset.  Rather, it assesses the 

average hedging cost and deviations around those averages, given any description of the asset 

and Cliquet contract parameters.  For the purpose of presenting specific examples we use a 

GARCH(1,1) description of the asset and employ three stylized asset descriptions.  Section 4 

presents the GARCH(1,1) description and a method of moments approach that can be used to 

calibrate its parameters to data.  Section 5 presents some specific examples. A discussion of this 

work and concluding remarks are presented in section 6. 
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2. Cliquet Contract 

The basic Cliquet put option contract consists of a series of forward starting European puts.  On 

pre-specified dates separated by the time-interval between checking payout trigger conditions, 

τroll, the value of the reference asset is compared to its value one look-back interval, τlook-back, 

earlier.  If the asset has fallen beneath a specified fraction, called strike K1, of its value one look-

back interval earlier, then a payout to the option purchaser is made by the option seller.  That 

payout is the fractional amount by which the asset has fallen below the strike K1 multiplied by a 

reference notional value – with possibly a maximum payout fraction established by a lower strike 

K2 < K1 (sometimes called a “bear-spread”) .  In the knock-out variant of the Cliquet contract, the 

contract terminates after one payout event.  In return for the possible payout, the option 

purchaser pays the option seller a running premium and/or possibly an upfront payment. The 

costs and efficacy of hedging such Cliquet contracts are analyzed here in the framework of 

minimizing P&L volatility in between hedging intervals.  There can be many other variants of 

the Cliquet contract - the framework developed here can handle any path-dependent derivative. 

 
Figure 2. Schematic of time-scales pertinent to the Cliquet contract.  The option tenor is denoted 
by T.  The most granular time-interval over which asset value observations are available is 

denoted by obsτ .  The hedging interval is denoted by hedgeτ .  The look-back interval over which a 

decline in asset value triggers payoff and a termination of the contract is denoted by backlook−τ .  

The time-intervals over which the drop in asset value is checked is denoted by rollτ .   

 

 

 One of the motivations for this study are Cliquets on assets with limited ability to 

rebalance hedges, due to contractual limitations on redemptions, and where the value of the 

underlying assets can be reported less frequently than a typical publicly traded stock or bond or 

CDS contract.  The redemption time-interval and the asset value reporting interval are two time 

scales that are characteristics of the underlying asset are a constraint on the Cliquet option trader.  

T 

backlook−τ
 

obsτ hedgeτ
 

rollτ  
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Additionally, the frequency of checking the payout condition and the look-back interval (over-

which a decline of asset value triggers payout) are time-scales pertinent to a Cliquet trading 

strategy.  These time-scales are depicted in Figure 2.  Devising a hedging strategy that is 

cognizant of these five time-scales and the asset characteristics (including its volatility clustering 

time-scale introduced later) is our purpose.  

 A-priori we know that the replication cannot be perfect, unless the description of the 

underlying asset is contrived.  We illustrated that for vanilla options in this paper (Figures 1 and 

Appendix-II).  One of our main goals is to demonstrate the utility of elucidating the residual 

risks while attempting to replicate as much as possible.  By combining the average hedging costs 

and the residual risks, we seek to develop a framework for relative value metrics that will drive 

the prices. 

Cliquet Option Sellers P&L 

The terminology and symbols needed to specify a Cliquet contract and a protection seller’s P&L 

are enumerated here. 

Contract trigger condition/look-back dates: { }Ttttt N == −1210
ˆ,......,ˆ,ˆ,0ˆ

 

Hedging interval: 
( ]1, +kk tt

 

Running premium rate: η 

Cliquet value: C(t) 

Payout trigger time:  ∋= ii tt ˆ minˆ
*

( )
( ) 1ˆ

ˆ
K

ts

ts

nlbi

i <
−

 

 { }1,.......,1, −+∈ Nnlbnlbi  

 nlb is the number of observation intervals in a look-back period 

Reference notional: 

 

Ψ  
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
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




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
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Risk-free discount factor:  df(τ, t) 

Premium accrual time: 

 

( )
( ]







 =

==
+

+

+ ∫ otherwise

1, if
     

ˆ
*    ;,),(

1

1

*

*

1

kk

k

i

t

t

kkk

ttI

t

t
tdtdftt

k

ττχ

  

Discounted payout:   

 

( ] ( ] ( ) ( )**11
ˆ,ˆ,, ikikkkk ttdftPttItt ++ =ω

 

P&L of sell Cliquet protection position between time tk and tk+1(discounted to tk): 

 
( ) ( ) ( ] ( ]{ } ( )111111 ,)(,1,,)(, ++++++ −−−+= kkkkkkkkkkkk

cliquet

t ttdftCttItttttCtt∆W
k

ωχΨη
 (1)

 

 

The P&L of the sell Cliquet position written above is for contracts with possibly a combination 

of a running premium and an upfront payment.  This specification of Cliquet P&L is used later to 

propagate the optimal hedging solution from the Cliquet expiry to the initial time step.  A similar 

formulation can be made for any other exotic Cliquets.  We focus on the one-touch knockout put 

variant of the Cliquet. 

Hedging the Sell Cliquet Protection Position 

In addition to the variables that impact the P&L on the sell Cliquet protection position, the other 

main object of interest for the Cliquet trader is ( )ktΦ , the amount of asset to hold at time step tk 

to hedge the Cliquet position.  The P&L generated by the hedge is determined by the change in 

asset values, the carry costs for owning the economics of the hedge, and the discount rates:  

 
( ) ( ) ),(

),(

)(
)(, 1

1

11 +

+

++ 







−= kk

kk

k

kkkk

hedge

t ttdf
ttDF

ts
tsttt∆W

k
Φ

 (2) 

To account for different carry costs (i.e., different funding rates) and possibly dividends or 

subscription fees associated with the asset, we employ a funding discount factor, DF(tk, tk+1), 

which is possibly distinct from the risk-free discount factor df(tk, tk+1).   Long dated derivative 

contracts with relatively large hedge ratios can be quite sensitive to the funding rates of the 

option seller-hedger.  For such contracts, the prevailing funding rates of the different market 

players can be as important as the differences in perceptions about the randomness of the asset 
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returns in determining the demand and supply in option markets.  In reality the funding rates can 

also be random, and in some situations can be a dominant determinant of the option cost.  While 

the formulation made here can handle random funding rates and discount rates, we only focus on 

hedging the impact of the asset value, and invoke constant funding and discount rates for the 

example calculations made here. 

 

3. Optimal Hedge Monte-Carlo Formulation for Cliquet   

Cliquet Seller-Hedger’s P&L 

We change slightly the notation of the Cliquet sellers-hedgers P&L ((1) & (2)) to develop the 

notation of the OHMC algorithm.  The contract value at time tk, C(tk), is denoted as a function of 

the spot at time step k: i.e,  as Ck(sk).   The hedge amount at time tk, Ф(tk), is denoted as a 

function of the spot at time step k, sk: i.e., Фk(sk).  This notation emphasizes that the value and 

hedge amount are viewed as time dependent functions of the spot asset value.
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To keep the notation compact and yet general we rewrite the above as 

 

( ) ( ) kkkkkkkkt HsGsCttW
k

Φ∆ +−=+ )(, 1  

 
( ]( ) ( ) ( ] ( )111111 ,,,)(,1 ++++++ −+−= kkkkkkkkkkk ttttttdfsCttIG χΨηω

   (4) 

   
( )( ) ( )111 ,,/ +++ −= kkkkkkk ttdfttDFssH

 

 

 

OHMC Problem 

In the OHMC approach a MC simulation of asset evolution is used to evaluate Gk and Hk for 

every random realization.  Based on that, all terms of the wealth balance (4) can be directly 

computed, other than the yet unknown deterministic functions of value and hedge ratio Ck(sk) and 

Фk(sk).  These two functions are found by imposing a constraint of zero average change in wealth 

and minimum wealth change variance: 
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Find  Ck(sk) and Фk(sk) so that 

 
( ) 0],[ 1 =+kkt ttWE

k
∆

 (5) 

 ( ) ( ) ( )( )[ ]2

11

2

, ,,    minimize
1 ++∆ ∆−∆=

+ kktkktttW ttWttWE
kkkkkt

σ
 (6) 

 

Appendix-I  & III describes the algorithm to determine the unknown functions  Ck(sk) and 

Фk(sk) to satisfy (5) and (6) given a simulated MC ensemble of sk that also provide Gk, and Hk. 

Residual Risks While Attempting to Replicate   

Each of the realities of fat return tails (kurtosis > 3) and discrete hedging individually rule out 

perfect replication (see Figures 1 and Appendix-II).  Certainly the combination of fat-tails and 

discrete hedging render the residual risk to be of direct interest to someone charged with 

managing the risk-return profile of a Cliquet trading book.  As mentioned in the introductory 

sections, we think that valuation modeling should not be divorced from assessment of residual 

risks inherent to any attempted replication strategy.  OHMC provides a readily implementable 

avenue to fix the schism created by formal risk neutral models that do not address replication-

hedging explicitly. 

 The OHMC hedging time-grid is specified as 

 
{ }Ttttttt Kkk == −+ 11210 ,....,,,.....,,,0

 

As a part of the OHMC algorithm we looked at the P&L between time step k and k+1 discounted 

to time step k; i.e., 

   `  `
( )1, +kkt ttW

k
∆

  

The total change in wealth discounted to t0 is then given by 

 
( ) ( ) ( )∑

−

=

+=
2

0

10 ,0,,0
K

k

kkkt tdfttWTW
k

∆∆
 

The cumulative P&L from trade initiation to tk (present valued to time tk) follows 
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The total change in wealth present valued to trade execution time is particularly important 

because it provides a metric that is directly pertinent at inception.  Imperfect replication 

can/will/should make a Cliquet protection seller ask for a greater spread than that which simply 

results in a zero average change in wealth.  We will examine the distribution of the total change 

in wealth from the point of view of solvency and associated risk capital, as discussed in the next 

sub-section.  To translate the total hedge slippage into an error term around the fair spread, we 

normalize total P&L by the product of payout reference notional and average premium payment 

time: 

 
( )
( )T

TW

,0

,00

χΨ

∆

 (7) 

The hedge slippage measure in (7) is pertinent to judge the risk-return of the Cliquet trade from 

inception to finish – by summing all the hedge slippage and translating it into a running spread 

by the normalization in (7).  In addition to quantifying the risk-return over the transaction, a 

trader also wants to control the P&L volatility over smaller time-intervals – say over the hedging 

interval.  We employ both time aggregated hedge slippage and local hedge slippage in assessing 

risk capital, as described in the next section. 

 Much of formal risk neutral valuation modeling literature altogether ignores the question 

of residual risks of replication attempts – invoking the formalism that as long as expectations are 

being taken under a de-trended underlying, somehow replicating strategies exists in a risk-

neutral world.  Such risk-neutral expectations are often taken under descriptions of the 

underlying that are easily shown to thwart perfect replication for even simple derivative contracts 

(jump-diffusion, GARCH(1,1), etc).  Formal risk neutral expectations are also purported to 

provide a valuation model for contracts for which a replicating strategy is hard to conceive (e.g., 

CDO tranches whose payouts occur only when jumps-to-default occur).  Such valuation models 

are mainly a parameter fitting exercise and are lacking the information needed by the person 

charged with attempting to replicate the derivative payoff or responsible for trading-risk 

management. 

 The issue of residual risks in an attempted replication strategy is operationally often 

relegated as a risk management topic, whereas valuation modeling focuses on absolutes of 

arbitrage-free pricing and is performed by individuals who are not responsible for managing 

trading positions and their risks.  Therefore hedging analysis has become distant form valuation 

modeling, and one often hears of models for valuation of derivatives that are not models for 

analyzing hedging!  This divorcing of valuation modeling from hedge performance analysis and 

risk management can account for the poor state of affairs in all these departments, and their 

marginal role in helping making informed trading decisions.  Consequently, poor risk 
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management and lack of understanding of risk return profiles of derivative trading books has 

often been concomitant with the proliferation of derivative valuation models.  

Risk Capital 

The losses incurred by a derivative trading book can jeopardize the solvency of a financial 

institution – or certainly the job of a trader or the existence of a trading desk or that of a hedge 

fund.  While ultimately a firm may be interested in its global risk profile, losses at any sub-unit 

that are disproportionately larger than its size indicate that either extreme odds have been 

realized and/or that the institution does not understand and can’t control the risks of its parts.  

Reputational damage resulting from financial losses in a subset of a firm can have a detrimental 

effect on the firm at a global level that go beyond the immediate financial risks.  Also, if a clear 

methodology of understanding risk-return is not expounded at a trade level or a trading desk 

level, it is unlikely (and dangerous to assume) that risks are understood at a global portfolio 

level.  In this backdrop the unchallenged invocation of replication and/or complete 

diversification of residual risks inside a valuation model is dangerous and misleading – 

especially for new or exotic options where historical observations of option behavior are lacking.  

For a sell Cliquet protection trade we address risk capital using the residual risk of the attempted 

replication strategy found within OHMC. Appendix-II provides examples for sell vanilla option 

positions. 

The expected P&L from a derivative trade should be compared with tail losses to ensure 

solvency, and profitability.  While great trades may come from market insights that are not 

modeled routinely, it should be possible to weed out poor derivative trades quantitatively.  To do 

so we define a specific solvency target and assess the risk capital associated with the derivative 

trade.  To compute risk capital over different time intervals (derivative tenor, hedging interval, 

etc), we employ a target hazard rate to consistently assess the target survival probability over 

different time horizons.   

 

survival probability over period τ                     ps(τ) 

τ interval hazard rate                     
( )( )

τ

τ
λτ

spln−
=

 

τ interval hazard rate based h interval survival probability                  ps(h) = exp[-λτ h] 

h interval expected P&L                
),( httWt +∆
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h interval ps(h) quintile wealth change              

     ( )( ) ( ) ( )( ){ } ( )hphptqhttWyProbabilithptq ssts =<+∋ ;,; ∆  
 

h interval ps(h) quintile deviation from average wealth change        

                            ( )( ) ( ) ( )( )hptqhttWhptQ sts ;,; −+= ∆
 

h interval ps(h) quintile expected return on risk capital 
      ( ))(;

),(

hptQ

httW

s

t +∆

 

Delta-One Bad Deal Bounds on Derivative Seller-Hedger 

Our attempted replication via OHMC analysis imposes a zero mean change in wealth constraint. 

In the face of residual risks, due to inherently imperfect hedging, (which is the driver of risk 

capital) an option seller will need to add an additional charge over the average hedging cost to 

create a positive expected change in wealth and try to obtain a certain pre-expense expected 

return on risk capital.  That expected return of risk capital can express an absolute solvency-

profitability criteria – i.e., this trade’s loss at confidence level x should not exceed y multiplied 

by its expected P&L.  Alternatively, the solvency-profitability criteria for a derivative trade can 

be formulated relative to another trade – for instance simply being long the asset underlying the 

derivative.   For the Cliquet (and other vanilla derivative trades analyzed via OHMC in the 

Appendix-II) we add a risk premium to the average cost of hedging so that they have an 

expected return on risk-capital equal to that of a delta-one long only position in the underlying.   

 The wealth change of the delta-one trader between t and t+h is determined by the change 

in asset values, the funding rates, and the discount rates: 

 

 

( ) ),(
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We assess the expected return on risk-capital of the delta-one trader and assess the bounding sell 

price of the derivative contract as one which results in identical expected return on risk capital 

for the derivative and the delta-one trader: 
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The resultant price of the derivative can be described as the delta-one bad deal bound pricing.  

At any lower price, the delta-one long only trader has a higher expected return per unit risk 

capital than the derivatives trader. 

 Different market operators can have different solvency targets.  For the sake of 

illustration in this paper we use the specific choice of 1 year 99.9% confidence level.  Such 

levels of confidence and even higher (say 1 year 99.97%) are pertinent to regulated financial 

institutions that rely on a perception of solvency at a high degree of confidence to maintain 

investor confidence and associated competitive funding costs.  There can be derivative trades 

that look attractive (relative to delta-one long only trade) at extreme confidence levels – but less 

attractive at lower confidence levels, and vice-versa.  From a relative value perspective one can 

try to price the derivative such that over a range of confidence levels it is more profitable than a 

delta one long position gamble on the underlying. 

 We examine the bounding calculation for the change in wealth over the tenor of the 

derivative, and over individual hedging intervals.  These are two different risk-preference 

expressions.  In employing the first one the market agent may have the capacity to take longer 

terms risks – possibly due to locked in funding terms and a capital base.  In the latter, the market 

agent wants to keep score over shorter time horizons.  In the case where we look at the wealth 

change over the derivative tenor the addition of the risk premium is straightforward - it is derived 

from the appropriate quintile of the total wealth change which is the sum of the wealth change 

over the different hedging intervals: 
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 (8) 

When we focus on the individual hedge intervals we piece together all the temporally local risk 

premiums rendering the trade at least as profitable as a delta-one trader locally.  We discount 

these local premiums to trade inception, and report it as day one price difference, be it in the 

form of upfront or a running premium:  
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    (9) 

 

We report sensitivities of average hedging costs and the sum of average hedging costs and the 

above described risk premiums.   

 Of course we can’t claim to have exhausted all interesting relative value arguments to 

establish bounds on a derivative price!  The market is made by agents with possibly different 

views on the underlying, and different utilities and risk preferences.  We focus on providing an 

exposition that OHMC can be used to systematically integrate replication based pricing ideas and 

risk-preference or utility based ideas, without discarding the key tenets of either of these 

approaches – i.e., a derivative trader can try to replicate what she can and express a risk 

preference based on the residual risks inherent to attempted replication. 

 

4. Reference Asset Description 

The OHMC methodology for analyzing hedging a Cliquet is completely independent of the 

dynamics of the underlying asset.  The ultimate practical application of the OHMC approach 

may even involve employing a proprietary model of the asset returns that combines empirically 

observed features as well as beliefs about the asset return nature.  Such models also involve 

conditioning on observations of underlying and possibly other explanatory factors.  A synthesis 

of econometric methods and attempted replication with quantification of average hedging costs 

and hedge error distributions is possible within the OHMC framework.     

A well known model of asset returns that sidesteps the perfect-hedge contrivance even 

for vanilla options is afforded by a GARCH(1,1) description of asset returns (Bollersev [1986], 

Engle[1994]).  The conditioning variable is starting volatility, and the jumpiness of returns 

associated with the return kurtosis thwarts the theoretically argued perfect hedge even under 

continuous hedging (see Figure 1 and Appendix-II).  We employ the GARCH(1,1) description 

to provide examples of the OHMC method as well as to describe the risk-return of the delta-one 

long only trader. 

Under GARCH(1,1) the asset and its volatility evolve as follows: 

 ( )
kkkk ttss ε∆σ∆µ∆ +=  (10) 

 ( )2

1

2

1

22 )1( −− ++−−= kkk αεβσσβασ  (11) 
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Standard Normal random-variates generated to create the return stochastic process in (10) are 

denoted by kε , and the volatility evolves per (11). 

 

Method of Moments Fitting to Empirical Returns 

The empirical return statistics can be used to analytically specify the parameters of the 

GARCH(1,1) model for the evolution of the reference asset.  Here are details of the 

unconditional moments used to infer the parameters (Carnero et al [2004]): 

Mean and Variance 

 trssr ∆µ∆ =≡     ;/  (12) 

 rrr −≡′ , 
222 ])[( σ∆σ trrEr =−≡  (13) 

The empirical mean and variance of the returns provide direct inferences of µ and σ through (12) 

& (13).  These could be purely historical or they could be based on ones views on the reference 

asset looking forward.  In addition to the long-term volatility the GARCH(1,1) model also has 

the starting volatility as an input.  This can be based on the volatility estimated from a smaller 

window of data trailing the date of analysis. 

Kurtosis 
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The empirical kurtosis is employed to express α  as a function of β : 
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Volatility Clustering Time 
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Finding the value of parameter β  that best reproduces the empirical auto-covariance of the 

squared returns results in a complete inference of parameters.  We chose the sum of the 

autocorrelations to a maximum lag (17) as the composite correlation target.  This sum is referred 

to as the volatility clustering time as it quantifies a characteristic time-scale over which the 

volatility is correlated. This can also be described as a characteristic time-scale over which 

volatility fluctuations result in excess kurtosis being manifest in the realized return time series.  

We iterate over β  from 0 to 1 to find the GARCH(1,1) value of the sum of the autocorrelations 

that is nearest to the empirical observation. 

Three Stylized Assets 

There are many facets to a Cliquet trading problem, which depend on tenor, strike, hedge 

interval, look-back period, in addition to the characteristics of the underlying.  We will attempt to 

highlight the key role of the OHMC analysis for Cliquets by focusing on hedge performance and 

by comparing the hedged P&L distribution with that of a long market agent, to delineate relative 

value metrics.  This is best accomplished through specific examples – for which we adopt 3 

stylized descriptions of assets on which Cliquet contracts are written.  These stylized asset 

descriptions are in Table 2 and Figure 3.  Asset 1 is representative of a single-stock.  Asset 3 has 

a generic broad market index profile.  Asset 2 has the profile of a diversified alternative beta 

product, be it basket of sample trades or a portfolio/index of hedge funds.  

The characteristics of the stylized assets shown in Figure 3 are: (1) correlation between 

the squared return residuals; (2) sample path simulation of volatility; (3) sample path simulation 

of return; (4) risk-capital for delta-one long only trade; (5) expected return on risk capital for 

delta-one long-only trade.  The risk capital is assessed with a 1year 99.9% equivalent confidence 

level statistical target. 
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Stylized Asset 1 

Daily Statistics  r  = 0.000793651; rσ = 0.025197632; ( ) 10252 =Γ ; 20=κ  

Fitted Parameters  µ = 0.20 (1/yr); σ = 0.40 (1/yr0.5); α  = 0.197468; β  = 0.755553 

Sensitivity Shown * (a) 30=κ ;α  = 0.206672; β  = 0.744686 

    (b) 3=κ ;α  = 0; β  = 0  (i.e., Geometric Brownian Motion) 

Stylized Asset 2 

Monthly Statistics  r  = 0.008333; rσ = 0.023094; ( ) 324 =Γ ; 8=κ  

Fitted Parameters  µ = 0.10 (1/yr); σ = 0.08 (1/yr0.5); α  = 0.354366; β  = 0.419041 

Sensitivity Shown*  (a) ( ) 5.124 =Γ ; α  = 0.48795;  β  = 0; 3=κ  

Stylized Asset 3 

Daily Statistics  r  = 0.000476; rσ = 0.010079; ( ) 15252 =Γ ; 15=κ  

Parameters   µ = 0.12 (1/yr); σ = 0.16 (1/yr0.5); α  = 0.146813; β  = 0.825871 

Sensitivity Shown * (a) 3=κ ;α  = 0; β  = 0  (i.e., Geometric Brownian Motion)  

 

Table 2.  Stylized asset descriptions employed to illustrate Cliquet sensitivities. 

*Sensitivities to GARCH(1,1) parameters are shown in the next section. 
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         (a) Stylized Asset 1                (b) Stylized Asset 2               (c) Stylized  Asset 3 

 

Figure 3.  For the three stylized assets analyzed here the auto-covariance of squared residuals, 

sample path simulation of the volatility and asset return, the risk capital (1 year 99.9% 

confidence level) and the expected change in wealth per unit risk capital for a delta-one long 

only trader are shown above. 
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5. Expected Cost of Hedging & Residual Risks for a Cliquet Put 

The multiplicity of time-scales characteristic to a Cliquet contract is generally perceived to be the 

main complexity over and above more vanilla contracts.  It is shown in this section that in the 

OHMC approach developed here these additional time-scales do not create an order of 

magnitude  additional complexity beyond the ones endemic to a vanilla contract.  If one is ready 

to explicitly deal with fat-tails and hedging errors endemic to vanilla contracts, then the 

methodology of dealing with the exotic contract is not a world apart from the vanilla contract.   

 The OHMC framework is subject to being customized for a trader to express her risk 

preference.  That risk preference – subject to revision, criticism, and fitting - can be readily 

expressed for the Cliquet contract too in OHMC.  This is quite different from the presumed 

perfect replication risk-neutral paradigm where the volatility surface or stochastic volatility 

parameters fitted to vanilla contracts are often sought to be enforced on the exotic contract.  The 

fitting exercise (volatility surface or stochastic volatility parameters) to vanillas in the risk-

neutral frame-work is an unacceptable starting point to dealing with exotics because of two 

reasons: (1) it is based on the perfect hedge paradigm which is inconsistent with the reality of the 

asset behavior that gives rise to implied volatility smile-skew (2) the exotic contract can have 

distinct drivers of unhedgable risks compared to the vanilla contracts used to fit parameters. 

 It is surprising that the presumed perfect replication (i.e., zero-risk) model is treated as 

the fundamental building block to dealing with exotics in the risk neutral approach and that is 

widely used in accounting of P&L.  The continued sponsorship of such models seems to be 

driven by the motivation of executing exotics that create upfront P&L when marked to market 

using models “calibrated” to vanillas, often with little understanding of their hedging and 

residual risk characteristics. 

 We are not offering a magical volatility surface or stochastic volatility parameters that 

address Cliquet trading, hedging, and pricing (see Appendix-II for OHMC implied volatility 

results).  We are demonstrating a framework that requires developing an objective measure 

description of the asset, delineating a hedging strategy, and assessing the performance of the 

hedging strategy.  The average cost of hedging and the hedge slippage distribution are central 

results of the OHMC exercise – these are needed for responsibly designing and trading exotics. 

Sensitivity Analysis 

The different Cliquet Contracts analyzed here are summarized in Tables 3, 4, & 5 (Figures 4, 5, 

& 6).  The starting asset value and the Cliquet payout notional are both set to $100 for the results 

presented here.  The hedging costs and hedge slippage measures are calculated assuming upfront 

payments, but reported in terms of running premiums for simplicity and to facilitate comparison. 
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Table 3. Cliquet put contracts on Stylized Asset 1 

 

Strike 

The more out of money that the Cliquet contract is, the greater is the hedge slippage compared to 
the average hedging cost.  This is shown in the strike dependence of Cliquet on Stylized Asset 1 
in Table 3 and in the Appendix-II.  As we look at more OTM strikes, the average hedging cost 
decreases, the bounds on the pricing decreases, and a greater fraction of the bounding price is 
based on hedge slippage.  This interpretation of hedging error as a part of option value is 
different from the risk-neutral practice where prices are simple averages of option payoffs under 
de-trended underlying descriptions.  In that risk-neutral approach there is no concession made for 
replication errors (instantaneous hedging zero kurtosis case) and the whole distribution of the 
underlying is distorted to fit an observed price – and that distribution is labeled risk-neutral.  

item case: 1 2 3 4 5 6

Tenor months 2 2 2 2 2 2

Look-back interval weeks 1 1 1 1 1 1

Roll interval days 1 1 1 1 1 1

Hedge interval days 1 1 1 1 1 1

K1 % 50 75 85 95 75 75

K2 % 0 0 0 0 0 0

mu (1/yr) 0.2 0.2 0.2 0.2 0.2 0.2

vol (1/yr^0.5) 0.4 0.4 0.4 0.4 0.4 0.4

kurtosis - 20 20 20 20 30 3

vol clustering time weeks 2 2 2 2 2 2

initial hedge notional %spot -0.025 -0.634 -3.052 -12.688 -0.6876 -0.0002

avg duration months 1.99 1.98 1.90 0.90 1.98 1.99

avg hedging cost bps/yr 0.75543 28 184 2327 30 0.00493

std dev residual P&L bps/yr 54 292 659 2211 309 2.31

bps/yr 26 351 577 3124 361 0.077

multiple of  avg 

hedging cost
34.2 12.5 3.1 1.3 11.8 15.7

bps/yr 66 478 778 3810 468 0.04676

multiple of  avg 

hedging cost
87.3 17.0 4.2 1.6 15.4 9.5

bad deal bound 1

bad deal bound 2
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Figure 4 (a), (b), (c) 

Sample path and distributional 

behavior for Cliquet on Stylized 

Asset 1 case 3 

The sample path shown here corresponds to 

the 1 year 99.9% confidence level 

equivalent total wealth change over the 

options life – i.e., the left tail of the total 

change in wealth of the Cliquet put seller-

hedger.  The P&L plots (b) do not show the 

risk premium the option seller will add to 

get compensated for residual risks. 

As shown in (a), the payout is triggered on 

day 18, with the asset showing a drop of 

32% over the 1 week look-back period.  

While the P&L variance optimal hedging 

amount increases from 1% to 7% over the 

days preceding the look-back, a loss of $15 

is experienced on the day payout is triggered 

(b).  If a generally higher hedge ratio were 

used, then the P&L volatility over the time 

leading up to the trigger would be higher.  

While OHMC can be tailored to minimize 

tail losses alone, there is no perfect hedge in 

the face of return kurtosis which is driven 

from volatility fluctuations in the 

GARCH(1,1) model employed here.  

Note that the underlying asset returns to 

$100 in 12 days after the Cliquet is 

triggered.  This indicates the inherent 

riskiness of a Cliquet put relative to a 

standard European option, especially for the 

high kurtosis of asset 1 (kurtosis = 20, 

similar to that of a single stock). 

The asymmetry of the total wealth change 

distribution (c) is important to recognize in 

deciding to sell a Cliquet put.  The bounding 

prices (Tables 3-5) ensure that the expected 

wealth change of the Cliquet seller per unit 

risk capital (at 1yr 99.9% confidence) is no 

worse than a delta-1 long position (Fig. 3).  

OHMC analysis makes available all this 

information en-route to valuation. 
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Table 4. Cliquet contracts on Stylized Asset 2 

Tenor 

For Cliquets we do not expect to find strong sensitivity of the running premium with tenor – as 
the risk of asset falling over the look-back interval is not directly influenced by the tenor.  
However we need to consider the volatility clustering time-scale in judging the sensitivity of the 
deal tenor.  If the volatility clustering time-scale is a significant fraction of tenor, then the choice 
of starting volatility becomes important.  We remind the reader that in all our examples we are 
setting starting volatility to the long-term historical average.  So, if the volatility clustering time-
scale is a significant fraction of tenor then the full range of volatility fluctuations are potentially 
not experienced.  We witnessed that for the vanilla option in Appendix-II. 

 The other consideration in judging the import of tenor is the way a risk-premium is 
assessed.  A global risk premium adds the wealth change over all the hedge intervals. The global 
risk premium (bound 1) is based on the sum of wealth changes over the deal tenor.  The 
summation results in some cancellations among gains and losses and results in a tighter wealth 
change distribution as the averaging interval increases. In contrast, the temporally local risk 
premium (bound 2) assessment does not benefit from cancellations over longer tenors and 
therefore is expected to be less dependent on tenor, and can also become larger if the transaction 
tenor becomes longer than the volatility clustering time such that the full range of asset volatility 
and kurtosis is felt.  For the Cliquet examples on stylized asset 2 we find that the global risk 
premium based bound decreases slightly with tenor, however the local risk premium based 
measure actually increases as the volatility forgets its starting value and bounces around. 

item case: 1 2 3 4 5 6 7 8 9 10

Tenor months 36 36 36 36 12 24 36 36 36 36

Look-back interval months 1 2 3 4 3 3 2 3 4 3

Roll interval months 1 1 1 1 1 1 2 3 4 1

Hedge interval months 1 1 1 1 1 1 2 3 4 1

K1 % 85 85 85 85 85 85 85 85 85 85

K2 % 0 0 0 0 0 0 0 0 0 0

mu (1/yr) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

vol (1/yr^0.5) 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08

kurtosis - 8 8 8 8 8 8 8 8 8 8

vol clustering time months 3 3 3 3 3 3 3 3 3 1.5

initial hedge notional %spot -0.16 -1.25 -3.01 -3.99 -1.51 -2.48 -0.33 -0.47 -0.55 -3.74

avg duration months 33.9 33.7 33.6 33.5 11.7 22.9 33.8 33.8 33.7 33.6

avg hedging cost bps/yr 0.65 4.74 9.57 12.27 6.15 8.51 3.03 5.14 6.59 11.36

std dev residual P&L bps/yr 5.97 16.64 21.21 22.18 31.92 25.47 15.48 20.83 24.54 21.95

bps/yr 2.9 64 95 101 102 101 50 79 97 104

multiple of avg 

hedging cost
4.4 13.6 9.9 8.3 16.6 11.9 16.5 15.3 14.7 9.2

bps/yr 8.3 142 202 209 173 195 89 126 147 215

multiple of  avg 

hedging cost
12.6 29.9 21.1 17.0 28.0 22.9 29.5 24.5 22.4 19.0

bad deal bound 1

bad deal bound 2
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Figure 5 (a), (b), (c) 

Sample path and distributional 

behavior for Cliquet on Stylized 

Asset 2 case 3 

As shown in (a), the payout is triggered on 

month 16, with the asset showing a drop of 

22% over the 3 month look-back period.  

While the P&L variance optimal hedging 

amount increases from 0.5% to 5.5% over 

the days preceding the look-back, a loss of 

$4.6 is experienced on the day payout is 

triggered (b).  

Note that the nature of the Cliquet is 

independent of the absolute level of the 

asset.  This asset climbed up rapidly (from 

$100 to $115 in one month) and then 

dropped 22 % triggering the Cliquet. 

The hedge performance associated with a 

tail loss event (1 year 99.9% confidence 

level) is shown in (b). Over the period 

leading to the trigger event the hedging 

works – albeit not perfectly. The P&L 

variance optimal hedging fails to prevent the 

large loss in the event of trigger in the 

shown sample path.   

Merely focusing on tail losses may limit the 

losses in the event of trigger, but increase 

the volatility otherwise.  Ways to improve 

the hedge performance by conditioning on 

additional information are briefly mentioned 

in the discussion section later.  In no case do 

we expect a perfect hedge.  Hence the 

importance of the residual P&L distribution, 

shown in (c).  At the time of trade 

execution, a delineation of hedging strategy 

and residual risks is the key result of OHMC 

analysis.  
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Table 5. Cliquet contracts on Stylized Asset 3 

 

Look-Back Interval 

By comparing case 1, 2, and 3 of Table 5 on asset 3 the role of look-back interval is illustrated.  
The average hedging cost, the hedge notional, and the residual risks increase with look-back 
interval.  However the ratio of the residual risk to average hedging cost decreases with look-back 
interval.  This is similar to the behavior observed for a vanilla put with respect to tenor, as shown 
in Appendix-II.  This decay of the hedge slippage as a fraction of average hedging cost is likely 
associated with the increasing efficacy of hedging as multiple hedge adjustments are made in 
between the look-back interval, and in the case of bound-1, it is likely due to the effect of 
temporal aggregation in shrinking the width of the wealth change distribution due to 
cancellations of hedge slips of opposite signs. 

 

 

  

item case: 1 2 3 4 5 6 7

Tenor yr 0.5 0.5 0.5 0.5 0.5 0.5 0.5

Look-back interval day/week/month 1 day 1 week 1 month 1 month 1 month 1 month 1 month

Roll interval day/week/month 1 day 1 day 1 day 1 day 1 day 1 day 1 day

Hedge interval days 1 day 1 day 1 day 2 day 3 day 4 day 5 day

K1 % 90 90 90 90 90 90 90

K2 % 80 80 80 80 80 80 80

mu (1/yr) 0.12 0.12 0.12 0.12 0.12 0.12 0.12

vol (1/yr^0.5) 0.16 0.16 0.16 0.16 0.16 0.16 0.16

kurtosis - 15 15 15 15 15 15 15

vol clustering time days 15 15 15 15 15 15 15

initial hedge notional %spot -0.0073 -1.04 -4.90 -4.68 -4.51 -4.32 -4.21

avg duration years 0.495 0.485 0.454 0.454 0.454 0.454 0.454

avg hedging cost bps/yr 0.47 16 58 58 58 58 58

std dev residual P&L bps/yr 15 84 122 124 126 127 128

bps/yr 26 136 174 176 179 180 183

multiple of avg 

hedging cost
54.5 8.5 3.0 3.0 3.1 3.1 3.2

bps/yr 80 350 328 297 281 271 265

multiple of avg 

hedging cost
170.0 21.8 5.7 5.1 4.9 4.7 4.6

bad deal bound 1

bad deal bound 2
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Figure 6 (a), (b), (c) 

Sample path and distributional 

behavior for Cliquet on Stylized 

Asset 3 case 3 

Like shown in Figures 4 & 5, the sample 

path shown here corresponds to the 1 year 

99.9% confidence level equivalent total 

wealth change over the options life – i.e., 

the left tail of the total change in wealth of 

the Cliquet put seller-hedger.  The P&L 

plots do not show the risk premium the 

option seller will add to get compensated for 

residual risks. 

As shown in (a), the payout is triggered on 

day 54, with the asset showing a drop of 

15.9% over the look-back period.  While the 

P&L variance optimal hedging amount 

increases from 0.5% to 4% over the days 

preceding the look-back, a loss of $5.5 is 

experienced on the day payout is triggered 

(b).  If a generally higher hedge ratio were 

used then P&L volatility over the time 

leading up to the trigger would be higher.  

There is no perfect hedge in the face of 

return kurtosis which is driven from 

volatility fluctuations in the GARCH(1,1) 

model employed here. 

The asymmetry of the total wealth change 

distribution (c) is important to recognize in 

deciding to sell a Cliquet put.  The bounding 

price presented in this work ensures that the 

expected wealth change of the Cliquet seller 

per unit risk capital is no worse than a 

simple delta-1 long position. 
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Roll Interval 

If the roll-interval is increased then the instances that the payout condition is checked decreases 

and one expects average hedging costs to go down as well as the hedge slippage measures.  In 

Table 4 we see that happens (despite an increasing hedging interval) by comparing case 2 and 7 

and case 3 & 8.  As shown in Figure 4, 5, a payout trigger can be associated with a rapid decline 

of the asset which may be followed by an increase – a larger roll interval makes the protection 

seller immune from some of these reversals, hence decreasing the value of the Cliquet put. 

Kurtosis 

The return kurtosis mediates the pricing dynamics in two ways: (1) higher kurtosis makes the 

asset values have greater probability of being realized away from the spot, hence shifting average 

hedging costs away from at-the-money (ATM) strikes to out-of-the-money (OTM) strikes; (2) 

the residual risks are controlled by kurtosis – as in the limit of continuous hedging a kurtosis 

value set to 3 enables the perfect hedging limit, whereas for kurtosis > 3 the residual risks can be 

significant.  So, for some strikes that are ATM or not too OTM the pricing can become 

insensitive to kurtosis as it become large as the mean hedging costs shift to more OTM strikes 

but the hedge slippage relative to average hedging costs gets worse. 

 Comparing cases 2, 5, 6 in Table 3 on the stylized asset 1 documents the impact of 

kurtosis going from 3 (Geometric Brownian Motion) to 20-30 which is characteristic of a typical 

daily return single stock time-series.  For the OTM strike considered in those examples, we see a 

dramatic increase in average hedging cost and hedge slippage error measures in going from 

kurtosis of 3 to 20, and a relatively muted difference in going from 20 to 30. 

Volatility Clustering Time 

The volatility clustering time-scale is the time-scale over which the volatility tends to forget its 

starting value and bounces around over the range of volatilities characteristic to the GARCH(1,1) 

description.  Note that the realized volatility of volatility is linked with realized kurtosis in the 

GARCH(1,1) model employed here.  If the volatility clustering time is smaller than the look-

back interval, then the associated return jumpiness is seen by the Cliquet contract and one 

expects higher hedging costs on the average and higher hedge slippage measures.  Table 4 

presenting results on stylized asset 2 (case 2 compared with case 10) shows the impact of 

decreasing the volatility time-scale from the look-back interval (3 months) to half the look-back 

interval.  We see an increase in hedging costs and hedge slippage standard deviation associated 

with the halving of the volatility clustering time.  The tail hedge slippage measures react much 

more than the mean and standard deviation of hedging costs– as witnessed in the larger 

differences in the bounds on the Cliquet sell price. If the volatility clustering time were to 

become larger than the look-back interval then the fat-tails of the underlying asset (excess 

kurtosis) are not manifest strongly in the hedge analysis of a Cliquet. 
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Hedging Frequency 

As shown in Figure 1 in the introduction, for a vanilla put, the total hedging error decreases as 

the hedging frequency increases, albeit to a significant irreducible value for realistic asset models 

that exhibit excess kurtosis.  We see the same feature in the Cliquet contract, as illustrated in 

Table 5 case 3 through 7. In those examples the mean hedging cost is not visibly impacted, but 

the hedge slippage standard deviation increases with hedging interval.  Bound-1 on the Cliquet 

price – which is based on a time-aggregated hedge slippage measure - increases with hedging 

interval.  This is due to the widening of the loss-tail of the  total change in wealth distribution 

with an increase in the hedging interval.  However bound-2, that assesses risk premiums based 

on hedge error slippage over individual hedge intervals - albeit much larger than bound-1, 

decreases with infrequent hedging for the example shown here.  The rate of decrease of bound-2 

with the hedging interval decreases with an increase in the hedging interval – indicating 

competing influences that balance out over larger intervals.  As the hedging interval increases, 

the 1 yr 99.9 equivalent confidence level over the hedging interval  becomes less deep into the 

left tail of the hedge interval based wealth change distribution.  So as the wealth change 

distribution itself is likely to be getting wider due to increasing hedging errors, by looking less 

deep into the left tail one can actually expect a local risk premium to be smaller.  One must also 

remember that as the hedging interval increases, the bounding return on risk capital associated 

with a delta-one position also increases.  These competing influences can explain the 

computationally simulated behavior of bound 2 as a function of the hedge interval. 

 

6. Discussion 

Relationship With Prior Work on Cliquets 

Cliquet type derivatives appear in all type of exotic flavors and colors (see Gatheral [2006]): 

Reverse Cliquets, locally capped-globally floored Cliquets, Napoleons (a distinct French tilt in 

this market).  Many of the early structures were fixed income in nature where the periodic 

coupon of the note was determined by a call or put Cliquet.  A review of the market up to early 

2004 has been given by Jeffery [2004].  One of the main difficulties in these derivatives is the 

exposure to the forward smile-skew of the underlying.  Wilmott [2002] pointed this out and 

assessed that it results in a rather high sensitivity of the underlying risk model used in pricing 

such structures.  As discovered by leading dealers in the late 1990’s, using a local volatility 

model can seriously underestimate the volatility-smile sensitivity of these derivatives (a couple 

of dealers are rumored to have lost several 100’s of millions of dollars).  As mentioned by 

Jeffery [2004], “dealers…failed to fully factor in hedging costs in deals written in 2002 and early 

2003”.  The crux of the problem was stated as follows: “While sensitivity towards the volatility 
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net change over the life of the equity option is often described as a ‘second order’ parameter in 

classical options theory [Black Scholes] , effectively modeling the so-called vega convexity in 

reverse Cliquets and Napoleon options is probably the most critical component in pricing.”  In a 

nutshell, the sensitivity to the “volatility of volatility” is extremely high.  Therefore, any model 

that purports to accurately value such structures must take into account changing volatility 

regimes and dynamic hedging with a view to address large sudden moves in the underlying asset.  

As Wilmott [2006] succinctly states, “The way in which the volatility impacts the price of this 

contract [Cliquet] is subtle to say the least, so it makes the perfect subject for an in-depth study 

which I hope will reveal how important it can be to get your volatility model right”.  

 After the debacle of the local volatility model in dealing with Cliquets, the knee-jerk 

reaction of a mainstream valuation modeling is to introduce stochastic volatility models.  

However, fitting parameters to expectations of payoffs with de-trended descriptions of 

underlying does not address replication directly – so one should not expect insights into hedging 

just because the underlying comes from a stochastic volatility model.  To add to that, even the 

most popular such stochastic volatility model, the Heston Stochastic Volatility Model, have 

highly variable parameters while fitting to Vanilla option prices within the standard risk-neutral 

fitting framework.  A comparison of stochastic versus local volatility models is given in 

Gatheral, [2006].  Our view is that Cliquet prices must be driven from a synthesis of average 

hedging costs plus a premium for unhedgeable risks associated with the treacheries of repeated 

vega-convexity flare-ups associated with the reset dates.  

 This work has addressed both the issues of a changing volatility and hedging analysis.  

The sensitivity of average hedging costs and hedge slippage to kurtosis and the volatility 

clustering time-scale described in the previous section squarely address points raised by Jeffrey 

[2004] and Wilmott [2002] & [2006].  The GARCH(1,1) parameters have been calibrated to the 

objective measure of the underlying.  That parameter fit tends to be more stable than fitting a risk 

neutral model to option prices.  The ability of GARCH(1,1) to represent the richness of the 

dataset and the return of the underlying depends on the length of the data, and one can always 

argue about extreme events not captured within a finite dataset, and empirical statistical 

characteristics not captured in GARCH(1,1).  Those criticisms can be objectively adjudicated by 

examining datasets of different lengths and/or out-rightly specifying statistical characteristics 

that are desired and refining the objective measure description (including adding a death state).  

We are not adverse to the Heston model.  In fact we use the Heston model (among others) within 

the OHMC framework - but calibrated to the objective measure of the underlying (using a 

similar method of moment matching as in the GARCH methodology in section 4).  We do not 

find any value in the calibration of risk-neutral models to vanilla option prices (without 

analyzing hedging and residual risks) and making assessments of valuation of Cliquets or other 

exotics, presuming perfect replication.  That does not address the risk-return dynamics of the 

Cliquet contract or any other exotic derivative.  
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OHMC Approach & Exotics 

The recognition of the idea of replication and the evolution of quantitative approaches from the 

Bachelier price (average of future cash-flows) to a replication cost price (cost of mitigating risks) 

is widely reflected in current quantitative finance practice.  The idea of replication is powerful 

and convenient.  Indeed, when perfect replication is feasible, one can simply take a statistical 

average of the option payoff under a de-trended description of the underlying asset (relative to 

carry cost) and the user of the model does not have to deal with any statistical risk measure 

(other than the average of a hypothetical distribution).  As the marketplace gives birth to 

complex derivatives at a rapid pace, implied parameters fitted to observed prices of vanilla 

options are often used in the valuation of complex derivatives by taking statistical averages of its 

payoff with a de-trended underlying.  The upfront P&L and/or carry for an exotic derivative, 

found by using a valuation model employing parameters fitted to vanillas, are of great interest to 

businesses.  

 In this evolution of modeling of derivative contracts, limits on replication are a major 

inconvenience.  If the vanilla derivative contract cannot be practically replicated, then its price 

should/could reflect a mix of some average hedging cost plus possibly a risk premium for 

unhedgable risks.  In fitting a parameter of a presumed perfect replication model to the observed 

prices of a far from perfectly replicable option one may end up believing that the prevailing risk 

premiums are being correctly or adequately represented, and will be effectively propagated to 

the exotic derivative valuation.  This is how valuation models create an appearance of an 

intelligent exercise of risk aversion.  However at no stage is risk actually being assessed in this 

cascading use of averages of payoffs under de-trended descriptions.  The asymmetries of 

residual risks and the market signals about them in the bid-offer of vanilla contracts are not 

explicitly propagated into the value of the exotic derivative by taking averages under de-trended 

descriptions.  The increase in complexity of the derivative contracts is therefore not accompanied 

by a better understanding of the hedging strategy or a quantification of residual risks in this mode 

of valuation modeling that has taken hold of accounting practices for simple and complex 

derivatives.  The purported unique price assessed using such valuation models and the ensuing 

implications for upfront P&L and/or carry beclouds the substantive business risk management 

issues of residual risks inherent in any attempted replication and assessment of risk-return.  Thus 

we find ourselves surrounded by a plethora of “risk-neutral” valuation models whose main 

claims are convenience and rapidity of fitting – with no analysis of hedging, attempted 

replication and residual risks being done en-route to valuation. 

 Alternatively, as pursued in this paper, one can start with a description of the underlying 

and explicitly analyze hedging and try to find the best hedging strategy as done in the OHMC 

approach.  If the hedging strategy is perfect, then the cost of hedging is the value of the 

derivative.  On the other hand if the hedge performance is not perfect, then the probability 
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distribution of the residual P&L is useful.  The OHMC method is mindful of the power of 

replication, but puts the burden of invoking it on the designer of the hedging strategy and 

tempers it with an estimate of the hedge slippage, accounting for characteristics of the derivative 

contract when the underlying asset exhibits jumpy returns.  While the routine water cooler talk 

with a savvy trader or risk manager could reveal the catalogue of unhedgable risks endemic to an 

attempted replication strategy, the mainstream quantitative valuation models have found it 

difficult to resist the allure of presuming perfect replication. This aversion to attempting to deal 

with the reality of imperfect replication is perhaps due to the steep gradient in going from taking 

averages under de-trended underlyings, to actually articulating a hedging strategy and elucidating 

its limitations.  Another reason mainstream quantitative valuation modeling has avoided dealing 

with imperfect replication is, perhaps, that imperfect replication challenges the notion of an 

unassailable or unique model price, which has become the main accounting goal of mainstream 

valuation models.  Rather than abandon addressing the imperfect replication situation, OHMC 

provides assessments of average hedging costs and residual hedging errors that can be used by a 

market agent in judging the price at which a market opportunity presents itself.  While OHMC in 

itself does not address the diversifiability of residual risks, or the risk preferences of distinct 

market agents, the information it provides can be used by a market agent to express her risk 

preference in the contexts of her trading book, and in effecting a hedging strategy. 

 We believe that the derivatives trader and his business and risk managers benefit from the 

in-depth hedge performance analysis that is provided by OHMC, prior to pricing any derivative 

trade.  In using OHMC, results on hedge performance and residual risks are available along with 

any assessment of valuation and the ensuing P&L (or trade carry).  As a result, the upfront P&L 

and carry of the hedged derivative position can be readily compared with irreducible hedging 

errors.  Hence a relative value metric for the trade is available as a part and parcel of valuation 

using OHMC.  Thus, the OHMC framework is a suitable tool for providing a consistent view of 

derivatives trades to trading, risk-control, and product-control. 

Future Work 

For problems with one major risk factor, the model developed here demonstrates the practical 

feasibility of OHMC for any option problem, including path dependent problems.  The key to 

efficient implementation is recognizing the limited support of the basis functions (Appendix-III) 

while assembling the set of equations to effect the numerical solution to the variational problem 

(Appendix-I).  Employing total wealth change quintiles as calibration targets, rapid fitting (by 

post-processing OHMC algorithm output) to observables can also be achieved – but the main 

benefit being the availability of hedge slippage measures at the time of pricing.  So the OHMC 

based valuation model is a tool of trading strategy and risk management while it is being used to 

mark-to-market a trading book.  Extensions to other hedging error measures – say expected 

shortfall – are also feasible.  
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 Based on this work, we also believe that OHMC can be applied to practical applications 

involving multidimensional problems, including multi-name credit derivatives.  For example, 

results on static hedge optimization for synthetic CDOs have been reported by Petrelli et al, 

[2006] and implications of uncertainty of realized correlation of spreads on hedging trades that 

are long correlation (and long carry) are assessed in Petrelli et al [2007].  Any sort of 

‘correlation-trading’ (best-of-baskets, multi-asset options, CDOs) should benefit from 

understanding the role of uncertainty in realized correlation on hedge slippage, in addition to the 

hedging error driven by marginal fat tail distributions.  Providing a practical primer on hedging 

while ‘correlation-trading’ and the ensuing implications for risk-return should be a fruitful target 

of multidimensional applications for OHMC.   

 Even in seemingly single asset problems, such as the Cliquet analysis pursued here, 

conditioning on explanatory variables could make the hedging strategy more effective.  For 

instance, if there is temporal persistence of volatility, then treating the squared residuals of return 

as a second variable (not necessarily traded) that is observed and accounted for in the hedge 

optimization holds the prospect of improving hedge performance.  Such conditioning can be 

effected in the multidimensional OHMC framework. We will next report on efficient two and 

three dimensional OHMC implementations and present examples employing multi-dimensional 

jumpy assets. 
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Appendix-I 

Cliquet Hedging Variational Problem 

The change in wealth of a Cliquet protection seller-hedger follows
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 In (I-1) & (I-2) Ck(.) and Фk(.) are unknown functions that we seek to find to accomplish the 

following statistical goal: 
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Minimizing the wealth change variance with a zero mean change of wealth is equivalent 
minimizing the mean squared change in wealth with a zero mean change of wealth.  To render 
this variational problem finite-dimensional we represent the option value and hedge notional 
functions of spot in a finite dimensional representation 
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The finite-dimensional representation used for the computations of the main section is detailed in 
Appendix-III.  Using (I-1) through (I-4) the first two statistical moments of the option-seller-
hedger’s wealth change follow 
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To solve for the unknown coefficients k

ja  and k

jb  we employ a Lagrange multiplier technique: 
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Substituting (I-5) and (I-6) into (I-7)-(I-10) defines the set of linear equations that must be solved 
to solve the finite-dimensional approximation of the Cliquet optimal hedge-valuation variational 
problem.   Further details of these linear equations are provided here.   (I-8) through (I-10) can be 
expressed as 
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A sum over the repeated index j is implied in the above (I-11).  The vector of unknowns is 
represented by hj: 
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From (I-10) 
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Initial Time Step 
 
Solving for the pricing and hedge notional is an ordinary minimization problem at the first time 
step: 
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C0 and Ф0 are the unknown quantities in (I-16).  We define perturbed quantities as deviations 

around ensemble averages 
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The solution for C0 and Ф0 that enforce zero mean change in wealth and that minimize the 

wealth change variance are  
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The OHMC algorithm to solve the variational problem for a Cliquet is not too different from that 

to solve the vanilla equity option hedging problem.  We start from the option maturity and work 

backwards, solving for the option spread value and optimal hedge notional.  Payout trigger 

events and the hedging interval are explicitly accounted for in the wealth balance.  For the 

Cliquet hedging problem, all the statistical averages are conditioned on knockout not having 

occurred at the starting time step.  The optimal hedge ratio and average hedging cost value are 

conditioned on there being a live Cliquet contract. 
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Consistency Between Vanilla and Exotic Options  

The similarity of OHMC algorithm between vanilla options and exotics is attractive because it 

enables consistency in the analysis of vanilla options and more exotic options.  This consistency 

is further reinforced if one uses identical descriptions of the process underlying the derivative 

contract.  If the exotic option is sensitive to a particular time scale description of the process, or, 

extreme tail behavior, then one needs to refine the description of the underlying based on 

available empirical information or ones view. That view can be a proprietary view and developed 

by comparison with other assets for which more empirical information is available.  The vanilla 

option analysis may also benefit (or at least not hurt) from such a refined stochastic description 

of the underlying.  The hedge ratios resulting from the OHMC analysis have a concrete real-

world objective– and there is no need to switch measures and descriptions of underlying between 

valuation analysis and assessment of hedge ratios.  The model parameters fitted to vanilla prices 

(without addressing irreducible hedging errors) do not have to be imposed on the exotic 

derivative under the superficial guise of consistency.   

 It is our experience that exotics can have distinct sensitivities that control the hedging 

errors in attempting to replicate them, and the option trader needs to directly focus on them, 

rather than being bound by say a volatility surface that originates from fitting volatilities to 

vanillas.  This is practically important because often upfront P&L resulting from the imposition 

of volatility surfaces that fit vanillas onto exotics can end up becoming the motivation for doing 

a trade, rather than an argument based on risk-return of the exotic option.  In the OHMC 

framework, consistency of analysis of vanilla and exotic option requires the following:  

1. Employ the same empirically realistic description of the underlying to the vanilla and 

exotic derivative problem; 

2. Assess the optimal hedging strategy for both the vanilla and exotic along with the average 

hedging costs; 

3. Assess residual hedging errors – be they driven by fat tails, or by discrete hedging 

intervals for both the vanilla and the exotic option;  

4. Where market prices for the vanilla option are readily available, interpret them based on 

risk return metrics derived from average hedging costs and residual risks, and develop a 

picture of market risk aversion that is cognizant of demand and supply for the derivative; 

5. Develop a view of exotics pricing based on average hedging costs and deviations around 

that average.  If there are common elements of risk-return between an exotic and a vanilla 

derivative, then the vanilla derivative observable pricing can help guide the exotic option 

trader to a competitive pricing point and the associated risk-return of the trade. 
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Appendix-II 

Optimal Hedge Analysis of Vanilla Options 

Examples of variance optimal hedging analysis of sell vanilla option positions are presented 

here.  The stylized asset descriptions employed in the main text (Section 4) are used here.  We 

present hedging costs and residual risks arising from a combination of asset return kurtosis and 

discrete hedging interval.  We also compare the P&L distribution of a trader that sells options 

and hedges to that of a delta-one trader that is simply long the underlying asset. Those relative 

value metrics are also cast in the form of bonds on the option price (detailed in the main section) 

and corresponding bounding implied volatility surfaces. 

 In applying risk-neutral models to value exotics, often the starting point is fitting their 

parameters to the observed prices of vanilla calls and puts.   Unlike the risk-neutral formalism, 

OHMC method does not presume perfect replication and makes available to the user the residual 

risks in attempted replication.  OHMC enables interpreting the observed prices as a combination 

of average hedging costs and the distribution around that average.  From a pure accounting mark-

to-market perspective if the objective is merely to fit a specific price, then one can calibrate to 

the different quintiles around the average hedging cost in OHMC.  The convenience of fitting the 

risk neutral formalism based models to derivative price data should not be an excuse for not 

knowing hedging errors endemic to attempted option replication.  OHMC offers an ability to fit 

prices too, although that is not its main goals.  More importantly, OHMC develops and back-tests 

the hedging strategy and makes available average hedging costs and hedging errors. 

OHMC Methodology 

Denoting the optional value and hedge ratio at time tk by Ck and Фk, the change in wealth of the 

option seller-hedger follows: 
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Using the symbols that are convenient in the Cliquet OHMC algorithm, we rewrite (II-1) as 
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The OHMC solution is propagated from maturity to the option starting point, where it becomes 
an ordinary minimization problem, as formulated in Appendix-I. 
 

I. Hedging Error Dependence on Hedging Interval & Return Kurtosis 

Example 1. Sell Put and Delta Hedge Stylized Asset 3 

Underlying characteristics:  µ = 0.12 (1/yr); σ = 0.16 (1/yr0.5); ( ) 15252 =Γ ; 15=κ  

Put parameters:  spot = 100; strike = $100; r = 4%/yr; maturity = 1 month 

The disparity in hedge slippage error between a realistically fat-tailed distribution and an 
idealized return distribution with no kurtosis is visible in Figure 1 (main section 1).  Kurtosis > 
3 renders the hedging error irreducible as the hedging frequency increases.  For Geometric 
Brownian Motion the hedging error decreases much more rapidly with hedging frequency, and is 
headed to zero in the limit of continuous hedging.  This result shows how much of the 
mathematical machinery to deal with continuous hedging while ignoring realistic return fat tails 
is of marginal practical importance because in the limit of continuous hedging the transaction 
costs would become unboundedly large, and in practically realistic returns, after a point, hedging 
more often does not reduce the hedging errors.  The OHMC framework handles discrete hedging 
without having to assume zero excess kurtosis for the underlying. 

 

 

Figure II-1.  Probability and cumulative density functions of the total wealth change ( )TW ,00∆  

of the put seller-daily variance optimal hedger.  The OHMC algorithm imposes a zero mean 

change in wealth ( )[ ] 0,00 =TWE ∆  and minimizes ( ) 0],[
2

1 =+kkt ttWE
k

∆  over every hedge 

interval.  The average cost of hedging, C0, and the residual P&L distribution is provided by 
OHMC by “back-testing” the trading strategy as a part of the MC simulation.  In this work we 
report multiple measures of value: (1) average hedging cost; (2) average hedging cost plus risk 
premium that renders the expected return on risk capital identical to a trade that is long the 
underlying asset.  The risk premium is assessed over the whole deal life (giving rise to bound 1), 
and alternatively, over each hedging interval (bound 2), as detailed in the main section (see 
section 3 for a full description of these bounds). 
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II. Strike-Kurtosis Sensitivity 

Example 2. Sell Put and Daily Delta Hedge on Stylized Asset 1 

Underlying characteristics:  µ = 0.20 (1/yr); σ = 0.40 (1/yr0.5); ( ) 10252 =Γ ; 20=κ  

Put parameters:  spot = $100; strike = K; r = 4%/yr; maturity =  1 month 

 

 

Table & Figure II-2.  OHMC results for a sell 1 month put with daily delta hedging (Example 2).  

OHMC evaluates the P&L variance optimal hedge ratio and the residual hedge errors.  The bad deal 

bound for the seller is the put sell price below which the put sellers expected return on risk capital (at 1 yr 

99.9% confidence level) is below that of a simple long position in the asset. The risk capital is assessed 

based on the hedging errors that are residual in the variance optimal hedging strategy.  The bad-deal 

bound-1 is based on equating the option seller-hedgers return on risk capital to a delta-1 trade over its life 

– whereas bad-deal bound-2 simply focuses on the discrete hedging interval risk-return. 
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Kurtosis Sensitivity 

The central role of return kurtosis in thwarting perfect replication and creating a dependence of 

implied volatility with strike is demonstrated in the results presented in this Appendix (Figure 1  

main section & Figure II-1 and II-2).  Now we examine the impact of changing the kurtosis, 

keeping all else equal.  Below are shown results for Example 2 with κ = 30.  The increase in 

kurtosis results in a greater chance that the asset values will end up further away from its average 

value – hence the average hedging around the spot decreases, but increases away from spot.  

However as shown in the first example, the residual risks are also an increasing function of 

kurtosis.  The option seller’s bounds on pricing, found by adding residual risks to the average 

hedging cost, increased for all the strikes for Example 2. 

 

 

Table II-3 OHMC results for a sell 1 month put with daily delta hedging (Example 2 with κ = 30).   

 

In this example the bad deal bound-1 is larger than bad deal bound-2.  In comparing bound 1 and 

bound 2, two factors need to be kept in mind: 

• In bound 1 the residual hedging errors are summed up over the option tenor and the total 

hedging error tail is employed to find the derivative sell price that makes the expected 

return on risk capital over the option tenor identical to a delta-one long position 

 

• In bound 2 the residual hedging errors over each hedging interval is analyzed separately 

to assess an addition to the average hedging cost that ensures the return on risk capital 

over every hedge interval is equal to a delta-one long position over the corresponding 

hedge-interval 

In the next example the pricing bad deal bound 1 falls below the bad deal bound 2. 

% spot
Black-Scholes 

implied vol (%)
% spot

multiple of avg 

hedge cost

Black-Scholes 

implied vol (%)
% spot

multiple of avg 

hedge cost

Black-Scholes 

implied vol (%)

80 -4.70 0.188 44.9% 0.625 3.33 58.4% 0.523 2.78 55.9%

90 -17.58 1.000 39.8% 1.596 1.60 47.7% 1.442 1.44 45.7%

100 -46.39 4.164 37.7% 4.866 1.17 43.8% 4.681 1.12 42.2%

110 -75.38 10.981 38.7% 11.715 1.07 46.8% 11.511 1.05 44.6%

120 -90.06 19.999 41.7% 20.754 1.04 55.4% 20.506 1.03 51.5%

strike K  

($)

hedge 

notional (% 

spot)

average hedging 

cost

delta-one risk-return based bad deal bound for option-seller

1 year 99.9% equivalent quintile of 

sum of hedging errors based                    

bound (1)

Sum of 1 year 99.9% equivalent 

quintile of  hedging errors based                              

bound (2)
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III. Tenor & Volatility Clustering Time Sensitivity 

Example 3. Sell Put & Monthly Delta Hedge Stylized Asset 2 

Underlying characteristics:  µ = 0.10 (1/yr); σ = 0.08 (1/yr0.5); ( ) 324 =Γ ; 8=κ  

      Put parameters:   spot = $100; strike = 85; r = 4%/yr; maturity = T 

 

 

       Table & Figure II-4.  OHMC results for a sell 85% strike put with monthly delta hedging (Example 

3).  OHMC evaluates the P&L variance optimal hedge ratio and the residual hedge errors.  The bad deal 

bounds for the seller is the put sell price below which the put sellers expected return on risk capital (at 1 

yr 99.9% equivalent confidence level) is below that of a simple long position in the asset. The risk capital 

is assessed based on the hedging errors that are residual in the variance optimal hedging strategy.  The 

first bad deal bound assesses risk-capital based on the sum of LIBOR discounted hedging errors over the 

deal life.  The second bad deal bound is based on assessing risk capital over the hedging interval and 

adding them to the upfront price (discounted at LIBOR). 

% spot
Black-Scholes 

implied vol (%)
% spot

multiple of avg 

hedge cost

Black-Scholes 

implied vol (%)
% spot

multiple of avg 

hedge cost

Black-Scholes 

implied vol (%)

3 -0.15 0.00223 11.60 0.09782 43.91 18.35 0.16491 74.03 20.18

6 -1.17 0.02366 11.06 0.42587 18.00 18.33 0.52214 22.07 19.30

9 -2.19 0.05499 10.62 0.68339 12.43 17.62 0.80604 14.66 18.46

12 -3.07 0.09006 10.37 0.90596 10.06 17.17 1.05451 11.71 17.98

18 -4.21 0.15499 10.06 1.20435 7.77 16.38 1.36099 8.78 17.03

24 -4.86 0.20996 9.91 1.32973 6.33 15.57 1.62705 7.75 16.63

T 

(months)

hedge 

notional 

(% spot)

average hedging cost 1 year 99.9% equivalent quintile of sum 

of hedging errors based                      

(bound 1)

Sum of 1 year 99.9% equivalent quintile 

of  hedging errors based                            

(bound 2)

delta-one risk-return based bad deal bound for option-seller
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Volatility Clustering Time Sensitivity 

To illustrate the impact of the volatility clustering time-scale we show results with a smaller 

volatility clustering time.  We keep all the parameters identical, but set the volatility clustering 

time to one-and-a-half months: ( ) 5.124 =Γ  instead of 3 months in the base case.  The starting 

volatility is the same as the previous case- i.e., set to the long-term volatility.  The effect of 

lowering the volatility clustering time is that the volatility bounces around over shorter time 

intervals.  As a result, the hedging errors are expected to become larger over shorter tenors as the 

starting volatility is forgotten and the full gamut of volatilities are realized.  Due to the shorter 

memory of the volatility clusters we also anticipate that the temporal averaging of volatility will 

occur more effectively over a given tenor compared to the case of more persistent volatility. 

 

 

       Table & Figure II-5.  OHMC results for a sell 85% strike put with monthly delta hedging (Example 

3).  The parameters are identical to the previous example – other than the volatility clustering time is 

shorter (1.5 months instead of 3 months).  As a result, over smaller tenors the impact of volatility 

fluctuations is felt, yielding a higher value of the put.  The temporal aggregation of the volatility also 

occurs more rapidly, giving rise to a sharper decay of implied volatility versus tenor. 

% spot
Black-Scholes 

implied vol (%)
% spot

multiple of avg 

hedge cost

Black-Scholes 

implied vol (%)
% spot

multiple of avg 

hedge cost

Black-Scholes 

implied vol (%)

3 -0.27 0.00412 12.27 0.167 40.53 20.23 0.221 53.54 21.39

6 -1.29 0.02573 11.18 0.503 19.57 19.12 0.565 21.95 19.69

9 -2.05 0.04944 10.46 0.695 14.06 17.71 0.815 16.48 18.52

12 -2.70 0.07653 10.10 0.846 11.06 16.83 1.016 13.27 17.77

18 -3.48 0.12522 9.69 1.007 8.04 15.50 1.266 10.11 16.63

24 -3.86 0.16498 9.47 1.053 6.38 14.50 1.492 9.04 16.16

T 

(months)

hedge 

notional (% 

spot)

average hedging cost

delta-one risk-return based bad deal bound for option-seller

1 year 99.9% equivalent quintile of sum 

of hedging errors based                           

(bound 1)

Sum of 1 year 99.9% equivalent 

quintile of  hedging errors based                          

(bound 2)
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Appendix-III     

Piecewise Hermite Cubic Basis Functions 

The hedge optimization problem posed here is infinite-dimensional insofar as we seek to find 
how the hedge ratio and option value should depend on spot, so that the expected change in 
wealth is zero and the hedge error measure is as small as possible.  This calculus of variations 
problem is rendered numerically tractable by using finite dimensional representations of the 
hedge ratio and option value.   
 
Consider a finite dimensional representation of a function f(x).  The x space is discretized by an 

increasing sequence of M nodal values, xj, 10 −≤≤ Mj , and basis functions are chosen to have 

limited support around these nodal locations and provide the desired level of continuity at the 
nodal locations.  Piecewise cubic Hermite polynomials ensure continuity up to the first derivative 
at the nodal locations.  An extended node list is defined, with each nodal value repeating itself 
once: 
 

 120 ,  
 odd  

even      
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2/)1(
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The finite dimensional representation of f(x) is made as 
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where for even j  
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and for odd j 
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Since 3*2*21**
ˆˆ

++ ≤<⇔≤< jjjj xxxxxx , at most 4 terms directly contribute to approximating 

f(x) 
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Let us express (III-5) in a more compact way.  If •j  is the smallest (even) nodal value such that 

2
ˆˆ

+•• <≤ jj xxx , then 
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For the optimal hedging application in this paper, a discrete (M in number) set of values of the 
reference asset, at time-step k, will be chosen as nodal locations for the finite dimensional 
representation for the option value and the hedging parameter. 
 
The basis functions (III-3)-(III-4) are defined such that the values of the parameters multiplying 
them provide directly provide the values of f and df/dx: 
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This property is useful to examine departures from delta hedging because the derivative of the 
option value with respect to the asset price is directly accessible. 
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Figure III-1. Piecewise Hermite cubic polynomial representation of  f(x) = x2exp[-x2] over [-3,3] 
using 7 nodes .  The 14 basis function and numerical valuations of the piecewise Hermite 
representation and direct evaluations of the function are shown in the plots. 
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