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CAP 5993/CAP 4993

Game Theory

Instructor: Sam Ganzfried

sganzfri@cis.fiu.edu
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Schedule

• HW4 out 4/4 due 4/13 (HW2 and HW3 back by 4/4).

• Project presentations on 4/18 and 4/20. 

• Project writeup due 4/20.

• Final exam on 4/25.
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Projects

• Can work in groups 1-3

• Project can be theoretical, or applied

– Could involve implementation, e.g., with Gambit

• Original summary project is ok if it is approved by me

• Can get full credit for all project types
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Solution concepts

• …
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Solution concepts

• Maxmin strategies

• Weak/strict domination

• Nash equilibrium

• Refinements of Nash equilibrium

– Trembling hand perfect equilibrium

– Subgame perfect equilibrium

– Proper equilibrium

– Evolutionarily stable strategies

• Quantal response equilibrium

• Correlated equilibrium
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Game representations

• …
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Game representations

• Strategic form

• Extensive form 

– Perfect information

– Perfect information (with chance events)

– Imperfect information (with chance events)

• Repeated (finitely and infinitely)
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Battle of the sexes

F C

F 2,1 0,0

C 0, 0 1,2
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• 3 equilibria:

– (F,F) (the payoff is (2,1))

– (C,C) (payoff is (1,2))

– ([(2/3(F), 1/3 (C)], [1/3 (F), 2/3 (C)]) 

• Expected payoff is (2/3, 2/3)

• The first two are not symmetric; in each one, one of the 

players yields to the preference of the other player. 

• The third equilibrium, in contrast, is symmetric and 

gives the same payoff to both players, but that payoff is 

less than 1, the lower payoff in each of the two pure 

equilibria. 
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• The players can correlate their actions in the following 

way. They can toss a fair coin. If the coin comes up 

heads, they play (F,F), and if it comes up tails they play 

(C,C). The expected payoff is then (1.5,1.5). Since 

(F,F) and (C,C) are equilibria, the process we have just 

described is an equilibrium in an extended game, in 

which the players can toss a coin and choose their 

strategies in accordance with the result of the coin toss: 

after the coin toss, neither player can profit by 

unilaterally deviating from the strategy recommended 

by the result of the coin toss.
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Correlated equilibrium

• Players’ choices of pure strategies may be correlated 

due to the fact that they use the same random events in 

deciding which pure strategy to play. Consider an 

extended game that includes an observer who 

recommends to each player a pure strategy that he 

should play. The vector of recommended strategies is 

chosen by the observer according to a probability 

distribution over the set of pure strategy vectors, which 

is commonly known among the players. This 

probability distribution is called a correlated 

equilibrium if the strategy vector in which all players 

follow the observer’s recommendations is a Nash 

equilibrium of the extended game.
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• The probability distribution over the set of strategy 

vectors induced by any Nash equilibrium is a 

correlated equilibrium (though there can be other 

correlated equilibria too …)

– Implies directly that correlated equilibrium always exist, 

since Nash equilibrium exists and each one will correspond 

to at least one correlated equilibrium.

• The set of correlated equilibria is a polytope that can be 

calculated as a solution to a set of linear equations. 
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• Let a denote pure strategy profile, and let ai denote 

pure strategy for player i. The variables in the LP are 

p(a), the probability of realizing a given pure-strategy 

profile a. Since there is a variable for every pure 

strategy profile there are thus |A| variables. Observe 

that as for the two-player zero-sum Nash equilibrium 

LP, the values ui(a) are constants.
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• One of the underlying assumptions of the concept of 

equilibrium in strategic-form games is that the choices 

made by the players are independent. In practice, 

however, the choices of players may well depend on 

factors outside the game, and therefore these choices 

may be correlated. Players can even coordinate their 

actions among themselves.

– E.g., in Split or Steal they attempted to correlate their actions 

in the “negotiation phase.” But was this talk “cheap?”
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• One good example of such correlation is the invention of the traffic light: 

when a motorist arrives at an intersection, he needs to decide whether to cross 

it, or alternatively to give right of way to motorists approaching the 

intersection from different directions. If the motorist were to use a mixed 

strategy in this situation, that would be tantamount to tossing a coin and 

entering the intersection based on the outcome of the coin toss. If two 

motorists approaching an intersection simultaneously use this mixed strategy, 

there is a positive probability that both of them will try to cross the 

intersection at the same time – which means that there is a positive 

probability that a traffic accident will ensue. In some states in the US there is 

an “equilibrium rule” that requires motorists to stop before entering an 

intersection, and to give right of way to whoever arrived at the intersection 

earlier. The invention of the traffic light provided a different solution: the 

traffic light informs each motorist which pure strategy to play, at any given 

time. The traffic light thus correlates the pure strategies of the players. Note 

that the traffic light does not, strictly speaking, choose a pure strategy for the 

motorist; it recommends a pure strategy. It is in the interest of each motorist 

to follow that recommendation, even if we suppose there are no traffic police 

watching, no cameras, and no possible court summons awaiting a motorist 

who disregards the traffic light’s recommendation.
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Battle of the sexes

F C

F 2,1 0,0

C 0, 0 1,2
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• The reasoning behind this example is as follows: if we enable 

the players to conduct a joint (public) lottery, prior to playing 

the game, they can receive as an equilibrium payoff every 

convex combination of the equilibrium payoffs of the original 

game. That is, if we denote by V the set of equilibrium payoffs 

in the original game, every payoff in the convex hull of V is an 

equilibrium payoff in the extended game in which the players 

can conduct a joint lottery prior to playing the game.

• The question naturally arises whether it is possible to create a 

correlation mechanism, such that the set of equilibrium payoffs 

in the game that corresponds to this mechanism includes payoffs 

that are not in the convex hull of V …
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Proof sketch

• Step 1: The only equilibrium payoff is (1,1,1).

• See full proof on page 302 of textbook.
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• Step 2: The construction of a correlation mechanism 

leading to the payoff (2,2,2). Consider the following 

mechanism that the players can implement:

– Players I and II toss a fair coin, but do not reveal the result of 

the coin toss to Player III.

– Players I and II play either (T,L) or (B,R), depending on the 

result of the coin toss.

– Player III chooses strategy c.

• Under the implementation of this mechanism, the 

action vectors that are chosen (with equal probability) 

are (T,L,c) and (B,R,c), hence the payoff is (2,2,2).

– Confirm that no player has a unilateral deviation that 

improves his payoff.



23

• Note that for the mechanism just described to be an 

equilibrium, it is necessary that Players I and II know 

that Player III does not know the result of the coin toss. 

In other words, while every payoff in the convex hull 

of the set of equilibrium payoffs can be attained by a 

public lottery, to attain a payoff outside the convex hull 

of V it is necessary to conduct a lottery that is not 

public, in which case different players receive different 

partial information regarding the result of the lottery.
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Chicken

L R

T 6,6 2,7

B 7, 2 0,0
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• The game has three equilibria:

– (T,R), with payoff (2,7)

– (B,L), with payoff (7,2)

– ([2/3(T),1/3(B)],[2/3(L),1/3(R)]), with payoff (4.67,4.67)

• Consider the following mechanism, in which an 

outside observer gives each player a recommendation 

regarding which action to take, but the observer does 

not reveal to either player what recommendation the 

other player has received. The observer chooses 

between three action vectors, (T,L), (T,R), (B,L), with 

equal probability.
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L R

T 1/3 1/3

B 1/3 0
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• After conducting a lottery to choose one of the three action 

vectors, the observer provides Player I with a recommendation to 

play the first coordinate of that vector. For example, if the action 

vector (T,L) has been chosen, the observer recommends T to 

Player I and L to Player II. If Player I receives a recommendation 

to play T, the conditional probability that Player II has received a 

recommendation to play L is 1/3 / (1/3 + 1/3) = ½, which is also 

the conditional probability that he has received a recommendation 

to play R. In contrast, if Player I receives a recommendation to 

play B, he knows that Player II has received L as his recommended 

action.

– Can show that neither player can profit by a unilateral deviation from the 

recommendation received from the observer (see page 304 from textbook).

– Expected equilibrium payoff is (5,5), which lies outside the convex hull of 

the three equilibrium payoffs of the original game. 
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• Example shows that the way to attain high payoffs for 

both players is to avoid the “worst” payoff (0,0). This 

cannot be accomplished if the players implement 

independent mixed strategies; it requires correlating the 

players’ actions. We have made the following 

assumptions regarding the extended game:

– The game includes an observer, who recommends strategies.

– The observer chooses his recommendations probabilistically, 

based on a distribution commonly known to the players.

– The recommendations are private, with each player knowing 

only the recommendation addressed to him or her.

– The mechanism is common knowledge among the players: 

each player knows that the mechanism is being used, each 

player knows that the other players know that the other know 

that this mechanism is being used, and so forth.



29

Prisoner’s dilemma

C D

C 4, 4 0, 5

D 5, 0 1, 1
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• Suppose row player is the “leader” and column 

player is the “follower.” What will they play?

• What if column player is “leader” and row 

player is “follower?”
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Stackelberg equilibrium

• A strategy profile (sS
1, s

S
2) is a Stackelberg equilibrium

for player 1 if 

– u2(s
S

1, s
S

2) >= u2(s
S

1, s2) for all s2

AND

– u1(s
S

1, s
S

2) >= u1(s1, s2) for all s1 and s2  such that s2 is a best 

response to s1.

• First condition: player 2 is best responding to player 1.

• Second condition: player 1 cannot profitably deviate 

assuming player 2 will play a best response to his 

strategy. 
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• Like extensive-form game where P1 acts first, 

then P2 acts, and solving for SPE. But we are in 

strategic-form setting where players act 

simultaneously.
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Chicken
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Battle of the sexes

F C

F 2,1 0,0

C 0, 0 1,2
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Rock-paper-scissors

rock paper scissors

Rock 0,0 -1, 1 1, -1

Paper 1,-1 0, 0 -1,1

Scissors -1,1 1,-1 0,0
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Security game
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L R

U 2, 1 4, 0

D 1, 0 3, 1
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Commitment to pure strategies

• In this strategic-form representation, the bottom 

strategy for the row player is strictly dominated by the 

top strategy. Nevertheless, if the row player has the 

ability to commit to a pure strategy before the column 

player chooses his strategy, the row player should 

commit to the bottom strategy: doing so will make the 

column player prefer to play the right strategy, leading 

to a utility of 3 for the row player. By contrast, if the 

row player were to commit to the top strategy, the 

column player would prefer to play the left strategy, 

leading to a utility of only 2 for the row player.
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Commitment to mixed strategies

• If the row player commits to placing probability p >1/2 

on the bottom strategy, then the column player will still 

prefer to play the right strategy, and the row player’s 

expected utility will be 3p+ 4(1−p) = 4−p ≥ 3.

• If the row player plays each strategy with probability 

exactly 1/2, the column player is indifferent between 

the strategies. In such cases, we will assume that the 

column player will choose the strategy that maximizes 

the row player’s utility (in this case, the right strategy). 

Hence, the optimal mixed strategy to commit to for the 

row player is p=1/2. 
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• There are a few good reasons for this assumption. If we 

were to assume the opposite, then there would not exist 

an optimal strategy for the row player in the example 

game: the row player would play the bottom strategy 

with probability p=1/2+ε with ε>0,and the smaller ε, 

the better the utility for the row player. By contrast, if 

we assume that the follower always breaks ties in the 

leader’s favor, then an optimal mixed strategy for the 

leader always exists, and this corresponds to a subgame 

perfect equilibrium of the extensive-form 

representation of the leadership situation.
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• For games with more than two players, in which the players 

commit to their strategies in sequence, we define optimal 

strategies to commit to recursively.  After the leader commits to 

a strategy, the game to be played by the remaining agents is 

itself a (smaller) leadership game. Thus, we define an optimal 

strategy to commit to as a strategy that maximizes the leader’s 

utility, assuming that the play of the remaining agents is itself 

optimal under this definition, and maximizes the leader’s utility 

among all optimal ways to play the remaining game. Again, 

commitment to mixed strategies may or may not be a possibility 

for every player (although for the last player it does not matter if 

we allow for commitment to mixed strategies).
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Computing the optimal strategy to 

commit to
• https://www.cs.cmu.edu/~sandholm/Computing

%20commitment%20strategy.ec06.pdf

https://www.cs.cmu.edu/~sandholm/Computing commitment strategy.ec06.pdf
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• Theorem: Under commitment to pure strategies, the set 

of all optimal strategy profiles in a normal-form game 

can be found in O(#players·#outcomes) time.

• Proof:

– Each pure strategy that the first player may commit to will 

induce a subgame for the remaining players. We can solve 

each such subgame recursively to find all of its optimal 

strategy profiles; each of these will give the original leader 

some utility. Those that give the leader maximal utility 

correspond exactly to the optimal strategy profiles of the 

original game.
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• For general strategic-form games, each player’s 

utility for each of the outcomes has to be 

explicitly represented in the input, so that the 

input size is itself Ω(#players·#outcomes). 

Therefore, the algorithm is in fact a linear-time 

algorithm.
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Commitment to mixed strategies

• In the special case of two-player zero-sum games, computing an 

optimal mixed strategy for the leader to commit to is equivalent 

to computing a minimax strategy, which minimizes the 

maximum expected utility that the opponent can obtain. 

Minimax strategies constitute the only natural solution concept 

for two-player zero-sum games: von Neumann’s Minimax 

Theorem states that in two-player zero-sum games, it does not 

matter (in terms of the players’ utilities) which player gets to 

commit to a mixed strategy first, and a profile of mixed 

strategies is a Nash equilibrium if and only if both strategies are 

minimax strategies. It is well-known that a minimax strategy can 

be found in polynomial time, using linear programming.



46

• Theorem: In 2-player strategic-form games, an optimal 

mixed strategy to commit to can be found in 

polynomial time using linear programming.
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• Theorem: In 3-player strategic-form games, 

finding an optimal mixed strategy to commit to 

is NP-hard.
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Security game
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• A pure strategy for the defender represents deploying a 

set of resources on patrols or checkpoints, e.g., 

scheduling checkpoints at the LAX airport or assigning 

federal air marshals to protect flight tours.  The pure 

strategy for an attacker represents an attack at a target, 

e.g., a flight. The strategy for the leader is a mixed 

strategy, a probability distribution over the pure 

strategies of the defender. Additionally, with each 

target are also associated a set of payoff values that 

define the utilities for both the defender and the 

attacker in case of a successful or a failed attack.
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• A key assumption of security games is that the payoff of an 

outcome depends only on the target attacked, and whether or not 

it is covered by the defender. The payoffs do not depend on the 

remaining aspects of the defender allocation. For example, if an 

adversary succeeds in attacking target t1, the penalty for the 

defender is the same whether the defender was guarding target 

t2, or not.

• This allows us to compactly represent the payoffs of a security 

game.  Specifically, a set of four payoffs is associated with each 

target.  These four payoffs are the rewards and penalties to both 

the defender and the attacker in case of a successful or an 

unsuccessful attack,  and are sufficient to define the utilities for 

both players for all possible outcomes in the security domain. 
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Security game
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Strong Stackelberg equilibrium

• A pair of strategies form a Strong Stackelberg

Equilibrium (SSE) if they satisfy

1. The defender plays a best response. That is, the defender 

cannot get a higher payoff by choosing any other strategy.

2. The attacker plays a best response. That is, given a 

defender strategy, the attacker cannot get a higher payoff 

by attacking any other target.

3. The attacker breaks ties in favor of the leader.
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• The assumption that the follower will always break ties 

in favor of the leader in cases of indifference is 

reasonable because in most cases the leader can induce 

the favorable strong equilibrium by selecting a strategy 

arbitrarily close to the equilibrium that causes the 

follower to strictly prefer the desired strategy.  

Furthermore an SSE exists in all Stackelberg games, 

which makes it an attractive solution concept compared 

to versions of Stackelberg equilibrium with other tie-

breaking rules. 
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Applications of security games
• ARMOR for Los Angeles International airport

– http://teamcore.usc.edu/, 

http://create.usc.edu/sites/default/files/publications/computatio

nalgametheoryforsecurityandsustainability.pdf

– Vehicular checkpoints, police units patrolling the roads to the 

terminals, patrolling inside the terminals (with canines), and 

security screening and bag checks for passengers.

– Need to allocate resources to eight different terminals with 

very different characteristics (physical size, passenger load, 

international vs. domestic flights, etc.)

– Assume n roads. Police strategy to place m < n checkpoints on 

the roads, where m is maximum number of checkpoints.

– ARMOR randomizes allocation of checkpoints to roads.

– The adversary may conduct surveillance of this mixed strategy 

and potentially choose to act through one of the roads.
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IRIS for US Federal Air Marshall Service

• The  US  Federal  Air  Marshals  Service allocates  air marshals to 

flights originating in and departing from the United States  to  

dissuade  potential  aggressors  and  prevent  an  attack should one 

occur.  Flights are of different importance based on a variety of 

factors such as the numbers of passengers, the population of source 

and destination, and international flights from different countries. 

Security resource allocation in this domain is significantly more 

challenging than for ARMOR:  a limited number of air marshals 

need to be scheduled to cover thousands of commercial  flights  

each  day.  Furthermore,  these  air  marshals must be scheduled on 

tours of flights that obey various constraints (e.g., the time required 

to board, fly, and disembark). Simply finding schedules for the 

marshals that meet all of these constraints is a computational 

challenge.  Our task is made more difficult by the need to find a 

randomized policy that meets these scheduling constraints, while 

also accounting for the different values of each flight.
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• PROTECT for US Coast  Guard

– Given a particular port and the variety of  critical  

infrastructure  that  an  attacker  may  attack  within  the port, 

USCG conducts patrols to protect this infrastructure; 

however, while the attacker has the opportunity to observe 

patrol patterns, limited security resources imply that USCG 

patrols cannot be at every location 24/7.

– It has been in use at the port of Boston since April 2011, and 

is also in use at the port of New York  since  February  2012.   

Similar  to  previous  applications ARMOR and IRIS, 

PROTECT uses an attacker-defender Stackelberg game 

framework, with USCG as the defender against terrorists that 

conduct surveillance before potentially launching an attack.

• Ferry Protection for the US Coast Guard

• TRUSTS for Security in Transit Systems
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Assignment

• Project proposal (1-2 pages) due on Tuesday.

• Reading for next class: chapter 10 from Bauso textbook.


