CAP 5993/CAP 4993
Game Theory

Instructor: Sam Ganzfried
sganzfri@cis.fiu.edu



Schedule

HW4 out 4/4 due 4/13 (HW2 and HW3 back by 4/4).
Project presentations on 4/18 and 4/20.

Project writeup due 4/20.

~inal exam on 4/25.




Projects

Can work In groups 1-3

Project can be theoretical, or applied
— Could involve implementation, e.g., with Gambit

Original summary project is ok If it is approved by me
Can get full credit for all project types



Solution concepts



Solution concepts

Maxmin strategies
Weak/strict domination
Nash equilibrium

Refinements of Nash equilibrium
— Trembling hand perfect equilibrium
— Subgame perfect equilibrium

— Proper equilibrium

— Evolutionarily stable strategies
Quantal response equilibrium

Correlated equilibrium



Game representations



Game representations

o Strategic form

» Extensive form
— Perfect information
— Perfect information (with chance events)
— Imperfect information (with chance events)

» Repeated (finitely and infinitely)



Battle of the sexes




3 equilibria:
— (F,F) (the payoff is (2,1))
— (C,C) (payoff is (1,2))
— ([(2/3(F), 1/3 (C)], [1/3 (F), 2/3 (C)])
» Expected payoff is (2/3, 2/3)
 The first two are not symmetric; in each one, one of the
players yields to the preference of the other player.

 The third equilibrium, in contrast, iIs symmetric and
gives the same payoff to both players, but that payoff is
less than 1, the lower payoff in each of the two pure
equilibria.
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* The players can correlate their actions in the following
way. They can toss a fair coin. If the coin comes up
heads, they play (F,F), and If it comes up tails they play
(C,C). The expected payoff is then (1.5,1.5). Since
(F,F) and (C,C) are equilibria, the process we have just
described is an equilibrium In an extended game, In
which the players can toss a coin and choose their
strategies in accordance with the result of the coin toss:
after the coin toss, neither player can profit by
unilaterally deviating from the strategy recommended
by the result of the coin toss.
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Correlated equilibrium

* Players’ choices of pure strategies may be correlated
due to the fact that they use the same random events In
deciding which pure strategy to play. Consider an
extended game that includes an observer who
recommends to each player a pure strategy that he
should play. The vector of recommended strategies is
chosen by the observer according to a probability
distribution over the set of pure strategy vectors, which
IS commonly known among the players. This
probability distribution is called a correlated
equilibrium if the strategy vector in which all players
follow the observer’s recommendations 1s a Nash
equilibrium of the extended game. 11



 The probability distribution over the set of strategy
vectors induced by any Nash equilibrium is a
correlated equilibrium (though there can be other
correlated equilibria too ...)

— Implies directly that correlated equilibrium always exist,
since Nash equilibrium exists and each one will correspond
to at least one correlated equilibrium.

» The set of correlated equilibria is a polytope that can be
calculated as a solution to a set of linear equations.
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_et a denote pure strategy profile, and let a; denote
oure strategy for player 1. The variables in the LP are
n(a), the probability of realizing a given pure-strategy
orofile a. Since there Is a variable for every pure
strategy profile there are thus |A| variables. Observe
that as for the two-player zero-sum Nash equilibrium
LP, the values u;(a) are constants.
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Constramts (4.53)
inferesting constraint 1s (4. W hl[‘h expresses the requir ement tha‘r pla\ ert 1111_1'-11'
be (weakly) better off playing action a when he 1s told to do so than playing any
other action a!, given that other agents play their prescribed actions. This con-
straint effectm eh' restates the definition of a correlated Pquﬂﬂwnum given in Dehnl-
tion3.4.12. Note that it can be rewrittenas ) _ 4, c.[wi(a) —u:(ai, >
0: in other words, whenever agent ¢ is “recommended” to play action a; with pm-
itive probability, he must get at least as much utility from doing so as he would
from playing any other action a.

We can select a desired correlated equilibrium by adding an objective function
to the linear program. For example, we can find a correlated equilibrium that max-
imizes the sum of the agents’ expected utilities by adding the objective function

maximize: T pla) T 1u;(a). (4.55)

ac A e N

Furthermore, all of the questions discussed in Section 4.2.4 can be answered
about correlated equilibria in polynomial time, making them (most likely) funda-
mentally easier problems.
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Theorem 4.6.1 The followi ing problems are in the
plied to correlated equilibria: uniqueness, Pareto optimal, ¢

subset inclusion, and subset containment.

Finally, it is worthwhile to consider the reason for the comy
ence between correlated equilibria and Nash equilibria. Why
the definition of a correlated equilibrium as a linear constraint (
cannot do the same with the definition of a Nash equilibrium, e
definitions are quite similar? The difference is that a correlated

volves a single randomization over action profiles, while in a N:
onstraint (

agents randomize separately. Thus, the (nonlinear) version of c
which would instruct a feasibility program to find a Nash equilibs

Zu,(a)”p,(u ) = ZH,((I;.U i) 11 pila;)
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~This constraint now mimics constraint (4.52). directly expressin:
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.0£Nash equilibrium. It states that each player i attains at least as much

unhtyfmm following his mixed strategy p; as from any pure st
ﬂ;m‘*ﬂlﬂ xmxed strategies of the other players. However
J use of the product [],_,, p;(a;).
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* One of the underlying assumptions of the concept of
equilibrium In strategic-form games Is that the choices
made by the players are independent. In practice,
however, the choices of players may well depend on
factors outside the game, and therefore these choices
may be correlated. Players can even coordinate their
actions among themselves.

— E.g., In Split or Steal they attempted to correlate their actions
in the “negotiation phase.” But was this talk “cheap?”
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One good example of such correlation is the invention of the traffic light:
when a motorist arrives at an intersection, he needs to decide whether to cross
It, or alternatively to give right of way to motorists approaching the
Intersection from different directions. If the motorist were to use a mixed
strategy In this situation, that would be tantamount to tossing a coin and
entering the intersection based on the outcome of the coin toss. If two
motorists approaching an intersection simultaneously use this mixed strategy,
there is a positive probability that both of them will try to cross the
Intersection at the same time — which means that there is a positive
probability that a traffic accident will ensue. In some states in the US there is
an “equilibrium rule” that requires motorists to stop before entering an
Intersection, and to give right of way to whoever arrived at the intersection
earlier. The invention of the traffic light provided a different solution: the
traffic light informs each motorist which pure strategy to play, at any given
time. The traffic light thus correlates the pure strategies of the players. Note
that the traffic light does not, strictly speaking, choose a pure strategy for the
motorist; it recommends a pure strategy. It is in the interest of each motorist
to follow that recommendation, even if we suppose there are no traffic police
watching, no cameras, and no possible court summons awaiting a motorist
who disregards the traffic light’s recommendation. 17



Battle of the sexes
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« The reasoning behind this example is as follows: if we enable
the players to conduct a joint (public) lottery, prior to playing
the game, they can receive as an equilibrium payoff every
convex combination of the equilibrium payoffs of the original
game. That Is, if we denote by V the set of equilibrium payoffs
In the original game, every payoff in the convex hull of V is an
equilibrium payoff in the extended game in which the players
can conduct a joint lottery prior to playing the game.

» The question naturally arises whether it is possible to create a
correlation mechanism, such that the set of equilibrium payoffs
In the game that corresponds to this mechanism includes payoffs
that are not 1n the convex hull of V ...
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Proof sketch

» Step 1: The only equilibrium payoff is (1,1,1).
 See full proof on page 302 of textbook.
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« Step 2: The construction of a correlation mechanism
leading to the payoff (2,2,2). Consider the following
mechanism that the players can implement:

— Players | and 11 toss a fair coin, but do not reveal the result of
the coin toss to Player III.

— Players | and Il play either (T,L) or (B,R), depending on the
result of the coin toss.

— Player Il chooses strategy c.

» Under the implementation of this mechanism, the
action vectors that are chosen (with equal probability)
are (T,L,c) and (B,R,c), hence the payoff is (2,2,2).

— Confirm that no player has a unilateral deviation that
Improves his payoft. 22



 Note that for the mechanism just described to be an

equilibrium, it is necessary that Players | and 11 know
that Player 111 does not know the result of the coin toss.
In other words, while every payoff in the convex hull
of the set of equilibrium payoffs can be attained by a
public lottery, to attain a payoff outside the convex hull
of V It Is necessary to conduct a lottery that is not
public, in which case different players receive different
partial information regarding the result of the lottery.
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Chicken
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« The game has three equilibria:

— (T,R), with payoff (2,7)
— (B,L), with payoff (7,2)

— ([2/3(T),1/3(B)],[2/3(L),1/3(R)]), with payoff (4.67,4.67)
« Consider the following mechanism, in which an

outside observer gives each
regarding which action to ta
not reveal to either player w

nlayer a recommendation
Ke, but the observer does

nat recommendation the

other player has received. The observer chooses
between three action vectors, (T,L), (T,R), (B,L), with

equal probability.
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 After conducting a lottery to choose one of the three action
vectors, the observer provides Player | with a recommendation to
play the first coordinate of that vector. For example, if the action
vector (T,L) has been chosen, the observer recommends T to
Player | and L to Player II. If Player | receives a recommendation
to play T, the conditional probability that Player Il has received a
recommendation to play L is 1/3 / (1/3 + 1/3) =¥, which is also
the conditional probability that he has received a recommendation
to play R. In contrast, if Player | receives a recommendation to
play B, he knows that Player Il has received L as his recommended
action.

— Can show that neither player can profit by a unilateral deviation from the
recommendation received from the observer (see page 304 from textbook).

— Expected equilibrium payoff is (5,5), which lies outside the convex hull of
the three equilibrium payoffs of the original game. 27



« Example shows that the way to attain high payoffs for
both players 1s to avoid the “worst” payoff (0,0). This
cannot be accomplished if the players implement
Independent mixed strategies; it requires correlating the
players’ actions. We have made the following
assumptions regarding the extended game:

— The game includes an observer, who recommends strategies.

— The observer chooses his recommendations probabilistically,
based on a distribution commonly known to the players.

— The recommendations are private, with each player knowing
only the recommendation addressed to him or her.

— The mechanism i1s common knowledge among the players:
each player knows that the mechanism is being used, each
player knows that the other players know that the other know
that this mechanism is being used, and so forth. 28



Prisoner’s dilemma
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* Suppose row player 1s the “leader” and column
player 1s the “follower.” What will they play?

* What if column player 1s “leader” and row
player 1s “follower?”
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Stackelberg equilibrium

« A strategy profile (s>, s>,) is a Stackelberg equilibrium
for player 1 if
— U,(S°;, $°,) >=U,(S°;, S,) forall s,
AND
— Uy(S>, S°,) >=u4(Sy, S,) Tor all s, and s, such that s, is a best
response to s;.

 First condition: player 2 is best responding to player 1.
« Second condition: player 1 cannot profitably deviate
assuming player 2 will play a best response to his
strategy.
31



» Like extensive-form game where P1 acts first,
then P2 acts, and solving for SPE. But we are in
strategic-form setting where players act
simultaneously.
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Chicken

Swerve Straight

Swerve

Straight

Fig. 2: Chicken with numerical
payoffs
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Battle of the sexes
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Rock-paper-scissors

rock paper SCISSOI'S
Rock 0,0 -1, 1 1, -1

Paper 1,-1 0,0 -1,1
ScISsors -1.1 1,-1 0,0
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Security game

e Random strategy:

Adversary

» /ncrease cost/uncertainty to attackers

Target #1

Target #2
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Commitment to pure strategies

* |n this strategic-form representation, the bottom
strategy for the row player is strictly dominated by the
top strategy. Nevertheless, If the row player has the
ability to commit to a pure strategy before the column
player chooses his strategy, the row player should
commit to the bottom strategy: doing so will make the
column player prefer to play the right strategy, leading
to a utility of 3 for the row player. By contrast, if the
row player were to commit to the top strategy, the
column player would prefer to play the left strategy,
leading to a utility of only 2 for the row player.
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Commitment to mixed strategies

* |f the row player commits to placing probability p >1/2
on the bottom strategy, then the column player will still
prefer to play the right strategy, and the row player’s
expected utility will be 3p+ 4(1—p) =4—p > 3.

* |f the row player plays each strategy with probability
exactly 1/2, the column player is indifferent between
the strategies. In such cases, we will assume that the
column player will choose the strategy that maximizes
the row player’s utility (in this case, the right strategy).
Hence, the optimal mixed strategy to commit to for the
row player is p=1/2.
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» There are a few good reasons for this assumption. If we
were to assume the opposite, then there would not exist
an optimal strategy for the row player in the example
game: the row player would play the bottom strategy
with probability p=1/2+¢ with €>0,and the smaller &,
the better the utility for the row player. By contrast, if
we assume that the follower always breaks ties in the
leader’s favor, then an optimal mixed strategy for the
leader always exists, and this corresponds to a subgame
perfect equilibrium of the extensive-form
representation of the leadership situation.
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« For games with more than two players, in which the players
commit to their strategies in sequence, we define optimal
strategies to commit to recursively. After the leader commits to
a strategy, the game to be played by the remaining agents Is
Itself a (smaller) leadership game. Thus, we define an optimal
strategy to commit to as a strategy that maximizes the leader’s
utility, assuming that the play of the remaining agents is itself
optimal under this definition, and maximizes the leader’s utility
among all optimal ways to play the remaining game. Again,
commitment to mixed strategies may or may not be a possibility
for every player (although for the last player it does not matter if
we allow for commitment to mixed strategies).
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Computing the optimal strategy to

commit to
o https://www.cs.cmu.edu/~sandholm/Computing

%20commitment%20strategy.ec06.pdf
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https://www.cs.cmu.edu/~sandholm/Computing commitment strategy.ec06.pdf

« Theorem: Under commitment to pure strategies, the set
of all optimal strategy profiles in a normal-form game
can be found In O(#players-#outcomes) time.

e Proof:

— Each pure strategy that the first player may commit to will
Induce a subgame for the remaining players. We can solve
each such subgame recursively to find all of its optimal
strategy profiles; each of these will give the original leader
some utility. Those that give the leader maximal utility
correspond exactly to the optimal strategy profiles of the

original game.
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 For general strategic-form games, each player’s
utility for each of the outcomes has to be
explicitly represented in the input, so that the
input size 1s itself Q(#players-#outcomes).
Therefore, the algorithm is in fact a linear-time
algorithm.
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Commitment to mixed strategies

 In the special case of two-player zero-sum games, computing an
optimal mixed strategy for the leader to commit to is equivalent
to computing a minimax strategy, which minimizes the
maximum expected utility that the opponent can obtain.
Minimax strategies constitute the only natural solution concept
for two-player zero-sum games: von Neumann’s Minimax
Theorem states that in two-player zero-sum games, it does not
matter (in terms of the players’ utilities) which player gets to
commit to a mixed strategy first, and a profile of mixed
strategies 1s a Nash equilibrium if and only if both strategies are
minimax strategies. It is well-known that a minimax strategy can
be found In polynomial time, using linear programming.
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« Theorem: In 2-player strategic-form games, an optimal
mixed strategy to commit to can be found In
polynomial time using linear programming.

Proor. For every pure follower strategy ¢, we compute a
mixed strategy [or Lthe leader such that 1) playing | is a best
response for the follower, and 2) under this
mixed strate

st

‘:__"' s =1

We nole thal this program may be inleasible [or some
ample, if ¢ is a strictly domi-

Neveriheless, the program must be [easible

tegies; among these follower

* that maximizes the linear

gram for £%, and the follower plays 1%,

constitutes an optimal strategy profile. [] 46
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« Theorem: In 3-player strategic-form games,
finding an optimal mixed strategy to commit to
IS NP-hard.
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Security game

Detender Attacker

Target | Covered Uncovered | Covered l_.||!|;;::'r'|.-1.=:1‘l:j:=|j||

Table 1 Example of a secunty game with two targets.
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A pure strategy for the defender represents deploying a
set of resources on patrols or checkpoints, e.g.,
scheduling checkpoints at the LAX airport or assigning
federal air marshals to protect flight tours. The pure
strategy for an attacker represents an attack at a target,
e.g., a flight. The strategy for the leader iIs a mixed
strategy, a probability distribution over the pure
strategies of the defender. Additionally, with each
target are also associated a set of payoff values that
define the utilities for both the defender and the
attacker in case of a successful or a failed attack.
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« A key assumption of security games is that the payoff of an
outcome depends only on the target attacked, and whether or not
It Is covered by the defender. The payoffs do not depend on the
remaining aspects of the defender allocation. For example, if an
adversary succeeds In attacking target t,, the penalty for the
defender is the same whether the defender was guarding target
t,, or not.

« This allows us to compactly represent the payoffs of a security
game. Specifically, a set of four payoffs Is associated with each
target. These four payoffs are the rewards and penalties to both
the defender and the attacker in case of a successful or an
unsuccessful attack, and are sufficient to define the utilities for
both players for all possible outcomes in the security domain.
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Security game

Detender Attacker

Target | Covered Uncovered | Covered l_.||!|;;::'r'|.-1.=:1‘l:j:=|j||

Table 1 Example of a secunty game with two targets.
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Strong Stackelberg equilibrium

A palir of strategies form a Strong Stackelberg
Equilibrium (SSE) If they satisfy
1. The defender plays a best response. That is, the defender
cannot get a higher payoff by choosing any other strategy.

2. The attacker plays a best response. That Is, given a
defender strategy, the attacker cannot get a higher payoff
by attacking any other target.

3. The attacker breaks ties in favor of the leader.
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» The assumption that the follower will always break ties
In favor of the leader In cases of indifference is
reasonable because In most cases the leader can induce
the favorable strong equilibrium by selecting a strategy
arbitrarily close to the equilibrium that causes the
follower to strictly prefer the desired strategy.
Furthermore an SSE exists in all Stackelberg games,
which makes It an attractive solution concept compared
to versions of Stackelberg equilibrium with other tie-
breaking rules.
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Applications of security games

 ARMOR for Los Angeles International airport

— http://teamcore.usc.edu/,
http://create.usc.edu/sites/default/files/publications/computatio
nalgametheoryforsecurityandsustainability.pdf

— Vehicular checkpoints, police units patrolling the roads to the
terminals, patrolling inside the terminals (with canines), and
security screening and bag checks for passengers.

— Need to allocate resources to eight different terminals with
very different characteristics (physical size, passenger load,
International vs. domestic flights, etc.)

— Assume n roads. Police strategy to place m < n checkpoints on
the roads, where m is maximum number of checkpoints.

— ARMOR randomizes allocation of checkpoints to roads.

— The adversary may conduct surveillance of this mixed strategy
and potentially choose to act through one of the roads.



IRIS for US Federal Air Marshall Service

The US Federal Air Marshals Service allocates air marshals to
flights originating in and departing from the United States to
dissuade potential aggressors and prevent an attack should one
occur. Flights are of different importance based on a variety of
factors such as the numbers of passengers, the population of source
and destination, and international flights from different countries.
Security resource allocation in this domain is significantly more
challenging than for ARMOR: a limited number of air marshals
need to be scheduled to cover thousands of commercial flights
each day. Furthermore, these air marshals must be scheduled on
tours of flights that obey various constraints (e.g., the time required
to board, fly, and disembark). Simply finding schedules for the
marshals that meet all of these constraints is a computational
challenge. Our task is made more difficult by the need to find a
randomized policy that meets these scheduling constraints, while
also accounting for the different values of each flight.



« PROTECT for US Coast Guard

— Given a particular port and the variety of critical
Infrastructure that an attacker may attack within the port,
USCG conducts patrols to protect this infrastructure;
however, while the attacker has the opportunity to observe
patrol patterns, limited security resources imply that USCG
patrols cannot be at every location 24/7.

— It has been in use at the port of Boston since April 2011, and
IS also In use at the port of New York since February 2012.
Similar to previous applications ARMOR and IRIS,
PROTECT uses an attacker-defender Stackelberg game
framework, with USCG as the defender against terrorists that
conduct surveillance before potentially launching an attack.

 Ferry Protection for the US Coast Guard
 TRUSTS for Security In Transit Systems 56



Assignment

* Project proposal (1-2 pages) due on Tuesday.
« Reading for next class: chapter 10 from Bauso textbook.
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