
River otters predation on adult and juvenile salmonids

Merav Ben-David Department of Zoology and Physiology University of Wyoming

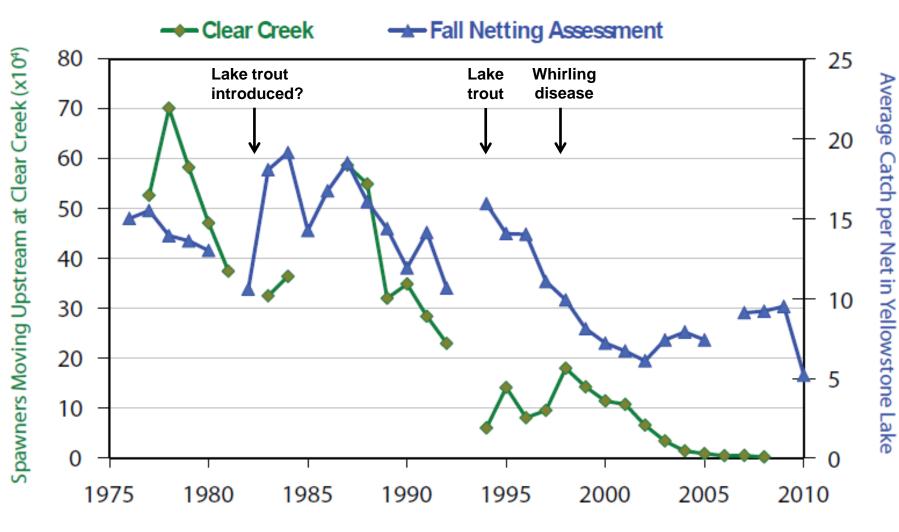
Yellowstone Lake Fish

Yellowstone cutthroat trout(Oncorhynchus(406 mm; 19 inches)clarki bouvieri)

longnose dace (*Rhinichthys cataractae*) (102 mm; 4 inches)

longnose sucker (*Catostomus catostomus*) (541 mm; 21 inches)

redside shiner (*Richardsonius balteatus*) (127 mm; 5 inches)



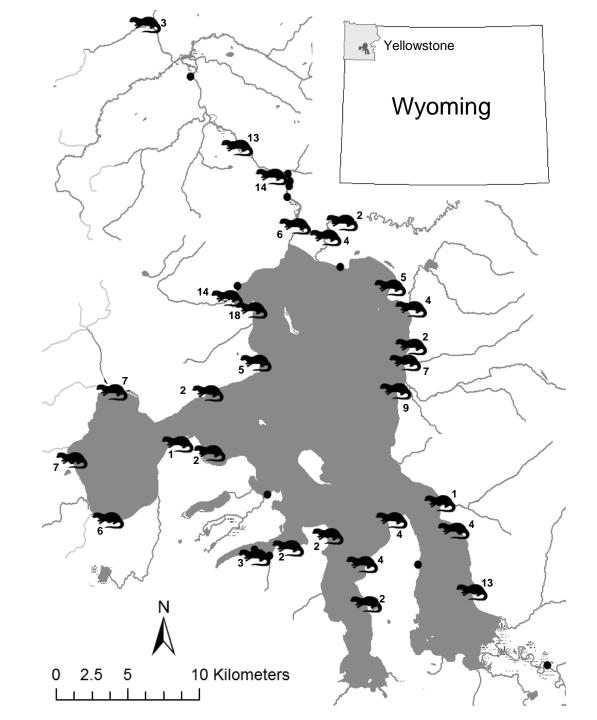
lake chub (*Couesius plumbeus*) (140 mm; 5.5 inches)

lake trout (*Salvelinus namaycush*) (up to 903 mm; 36 inches)

Observed Declines in Cutthroat Trout in Yellowstone Lake

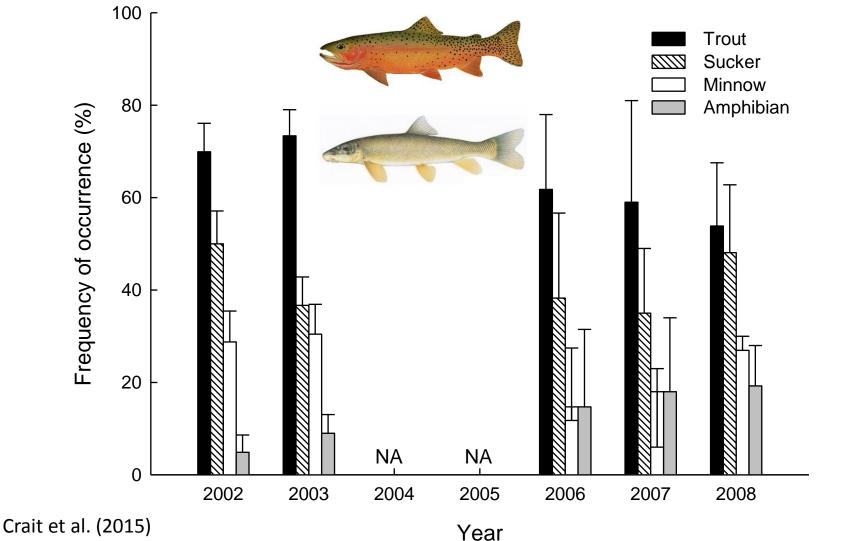
Koel et al. 2012

Sampling effort

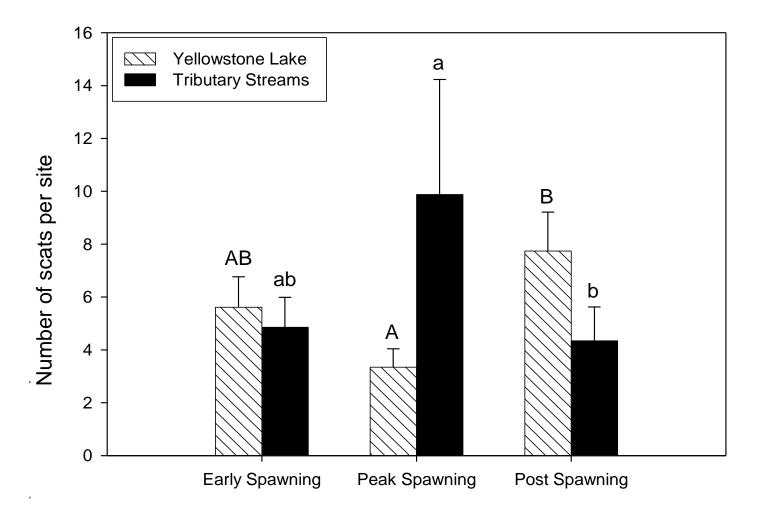

Summer 2002-2003 & 2005-2010

94 otter latrines (52 on streams, 42 on lake)

<u>Survey length</u> Streams: 52.8 km Lake: 203 km



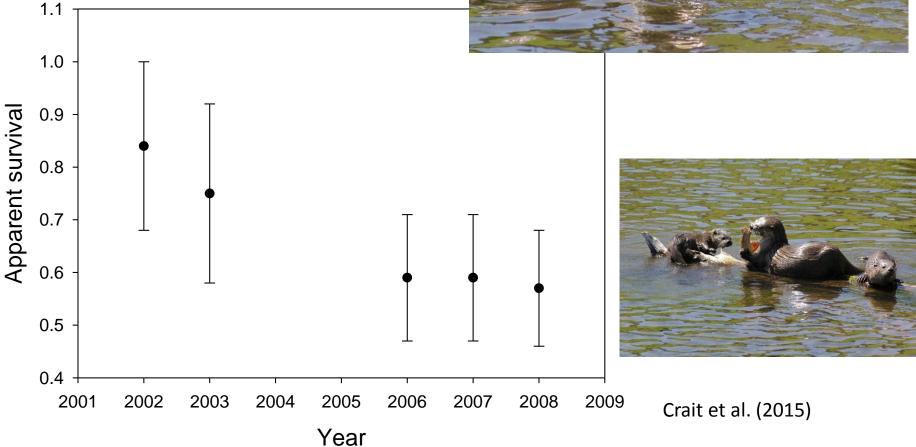
Jamie Crait



Cutthroat trout are the main prey for river otters in Yellowstone Lake but declined in otter feces from


73% to 53%

Otters follow the movement of spawning cutthroat trout to tributary streams

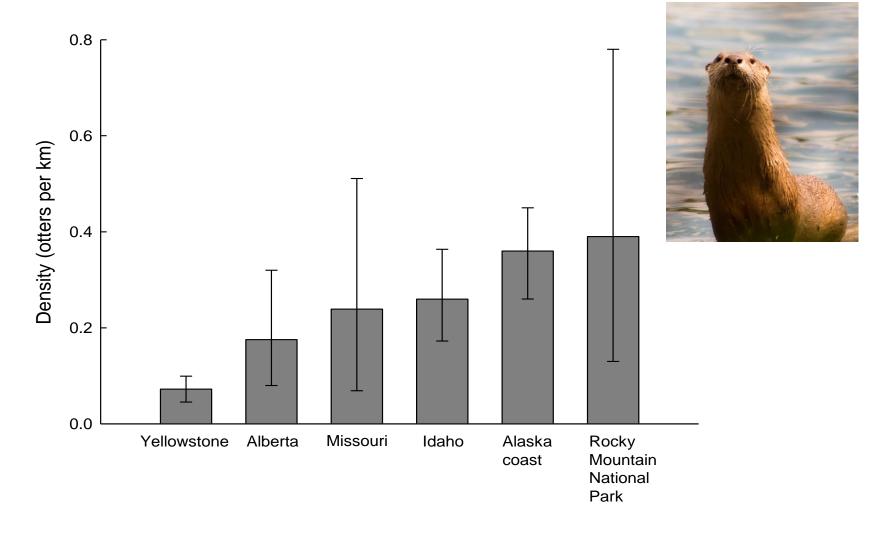


Crait and Ben-David (2006)

Otter survival declines with reductions in spawning cutthroat trout

How many river otters?

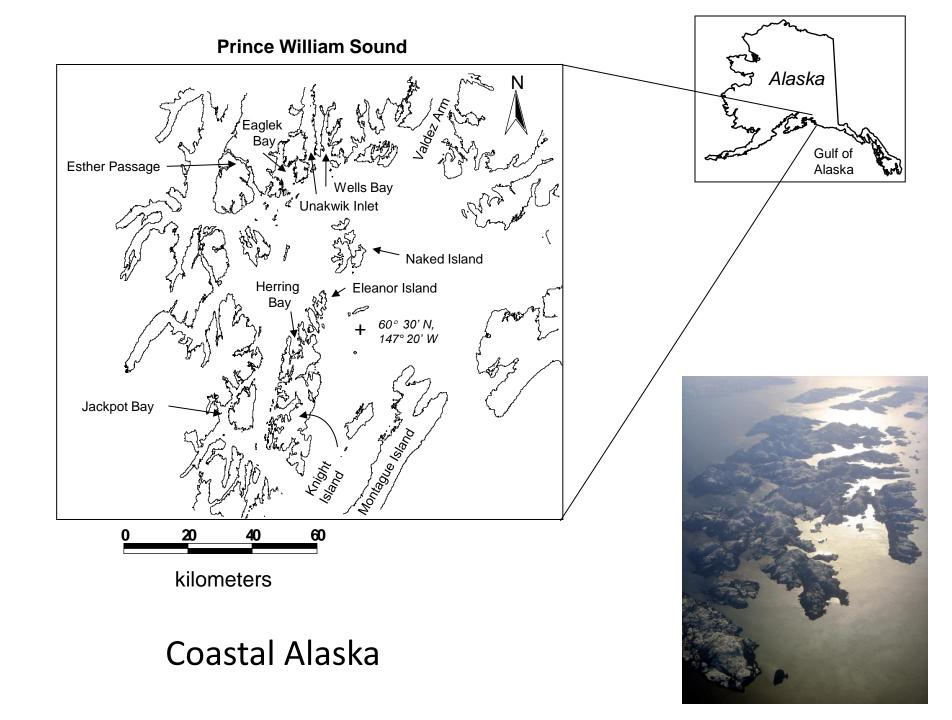
Capture re-capture population estimates from non-invasive genetic sampling



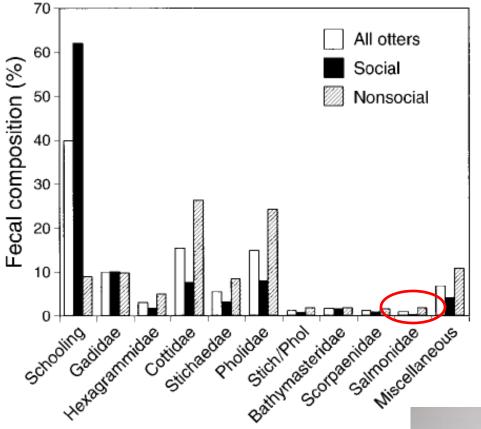
DePue and Ben-David (2007)

Site	Date	Lab ID	73	33	701		801		829		Rio-01		Rio-05		Rio-17		Rio-19	
LP06111	6/13/2006	PWS234	172	180	206	206	230	234	236	240	280	F	342	351	171	171	272	280
LP06111	6/13/2006	PWS103	172	180	206	206	230	234	236	240	280	284	342	351	171	171	272	280
HB06074	6/2/2006	PWS425	180	188	202	206	234	234	240	244	280	F	0	0	171	175	272	280
HB06021	7/5/2006	PWS703	180	188	202	206	234	234	240	244	280	288	339	345	171	175	272	280
HB06067	7/7/2006	PWS129	180	188	202	206	234	234	240	244	280	288	339	F	171	175	272	280
HB06004	8/10/2006	PWS547	180	188	202	206	234	234	240	244	280	288	345	F	171	175	272	280
HB06015	7/18/2006	PWS952	180	188	202	206	234	234	240	244	280	288	345	F	171	175	272	280
HB06203	6/28/2006	PWS025	180	188	198	202	234	234	240	244	280	284	327	351	171	175	272	280
LP06111	6/13/2006	PWS112	180	188	198	202	234	234	240	244	280	284	327	351	171	175	272	280
HB06182	6/26/2006	PWS013	180	188	198	202	234	234	240	244	280	284	327	351	171	175	272	280
HB06119	7/6/2006	PWS311	180	188	198	202	234	234	244	F	280	284	327	351	171	175	272	280
HB06183	8/12/2006	PWS582	180	188	202	F	234	234	240	244	280	284	327	351	171	175	272	280
HB06181	5/31/2006	PWS111	180	188	198	202	234	234	240	244	280	284	351	F	171	175	272	280
HB06203	6/28/2006	PWS071	180	188	202	F	234	234	240	244	280	284	351	F	171	175	272	280
HB06185	5/24/2026	PWS200	180	188	202	206	234	234	244	244	280	288	0	0	171	175	272	280
HB06060	7/7/2006	PWS143	180	188	202	206	234	234	244	244	280	288	336	339	171	175	272	280
LP06005	6/3/2006	PWS490	180	188	202	206	234	234	244	F	280	288	336	339	171	175	272	280
HB06004	8/10/2006	PWS772	180	188	202	206	230	234	236	240	280	284	336	339	171	175	280	280
HB06004	8/10/2006	PWS779	180	188	202	206	230	234	236	240	280	284	336	339	171	175	280	280
HB06004	7/5/2006	PWS572	180	188	206	206	230	234	240	248	280	288	336	342	171	175	280	288
HB06001	7/5/2006	DWC800	180	188	206	206	230	234	240	248	280	288	336	342	171	175	280	288
LP06032	7/8/2006	PWS548	180	188	202	206	234	234	244	244	280	284	345	345	171	175	280	288
HB06067	7/14/2006	PWS932	180	188	202	206	234	234	244	244	280	284	345	345	171	175	280	288
LP06032	77872006	PWS145	180	188	198	206	234	234	244	F	280	284	336	351	171	177	268	280
HB06074	6/2/2006	PWS148	180	188	198	206	234	234	244	248	280	284	336	351	171	177	268	280
1 206005	6/3/2006	PW/S164	180	188	198	206	234	234	244	248	280	284	336	351	171	177	268	280
HB06146	6/10/2006	PWS491	180	188	202	206	234	234	248	252	284	288	345	345	171	177	268	288
LP06032	6/12/2006	PWS159	180	188	202	206	234	234	248	252	284	288	345	345	171	177	268	288
LP06014	7/7/2006	PWS564	180	188	202	206	234	234	248	252	284	288	345	345	171	177	268	288
LP06032	7/14/2006	PWS714	180	188	202	206	234	234	248	252	284	288	345	345	171	177	268	288
HB06144	8/3/2006	PWS755	180	188	202	206	234	234	248	252	284	288	345	345	171	177	268	288
LP06084	77972006	PVVS888	180	180	- 717	1 206	1 730	734	744	248	1 280	- 747			171	177	272	272
EI06001	6/13/2006	PWS156													171	177	272	272
LP06111	6/5/2006	PWS115				\cap	$1 \cap$	1	$1 \cap$	10					171	177	272	272
El06018	67/23/06	PWS699				U	ΤŪ		TO	ΤU					171	177	272	272
EI06001	6/13/2006														171	177	272	272
HB06070		PWS074	172	180	202	206	230	234	240	244	288	292	342	348	171	175	272	280
LP06014	6/29/2006		172	180	202	206	230	234	240	244	288	292	342	348	171	175	272	280
HB06207	5/25/2006		180	180	202	202	230	230	240	248	280	292	0	0	171	177	272	280
HB06067	7/7/2006		180	180	202	202	230	230	240	248	280	292	339	351	171	177	272	280
LP06005	6/3/2006		180	180	202	202	230	230	240	248	280	292	339	351	171	177	272	280
E106001	E 6/14/2006	PW/S260	180	184	206	206	230	234	236	l 240	280	288	342	351	171	177	272	284

Otter density in Yellowstone Lake is the lowest recorded


How many cutthroat trout are consumed by otters in Yellowstone Lake?

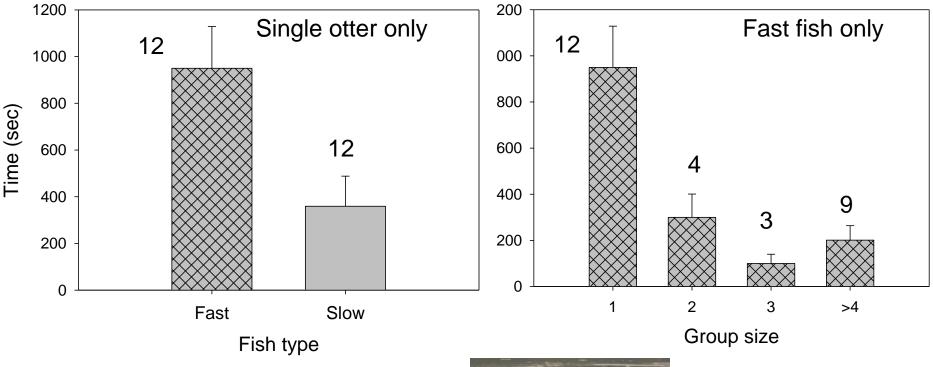
- A 10 kg otter would consume about 1 kg of fish daily (10% of body mass)
- A 20 40 cm cutthroat trout weighs 2 4 kg
- At 73% of the diet in 365 days an otter will consume 266
- A population of 24 (18 30) otters will eat <u>6,384</u> each year


Lake Ozette, Washington, is less than 5 km (3 mi) from the coast

Coastal river otters follow spawning migrations of salmon up river

Fish family

Ben-David et al. (2005)


River otters feed on inter- and sub-tidal fish and consume schooling pelagic fishes when they become available in the nearshore environment. But salmonids constitute a small fraction of their diet.

Foraging success (time to first capture) of captive river otters is a function of fish type and group size

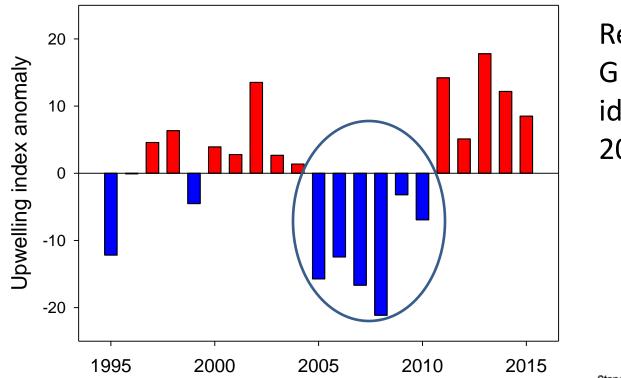
Wilcoxon, *P* < 0.001

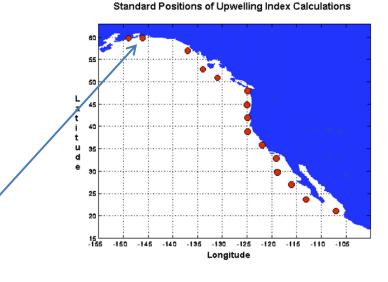
ANOVA, *P* < 0.001

Ben-David Unpublished Data

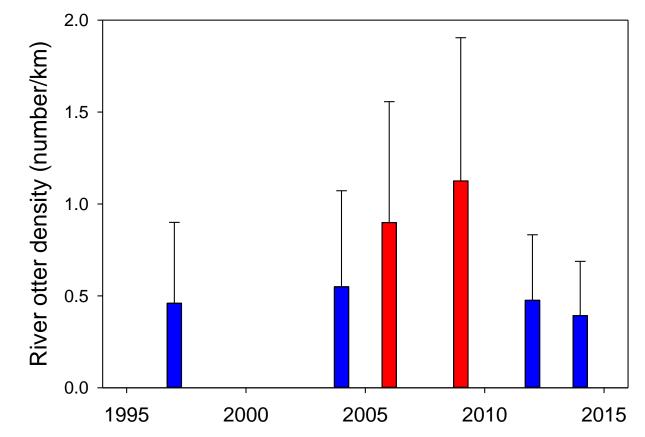
Which is why coastal river otters form large groups (of males!!!)

Coastal river otters are subsidized by marines resources

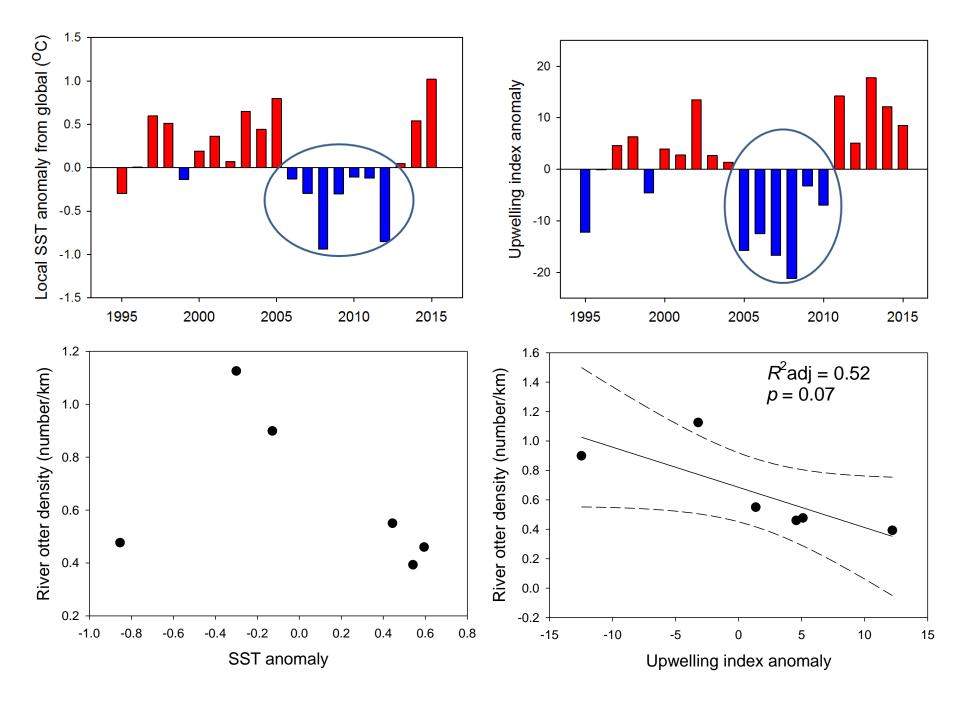




Regime shift in the Gulf of Alaska identified around 2007-2008


> Litzow et al. (2014)

http://www.pfeg.noaa.gov/products/PFEL/

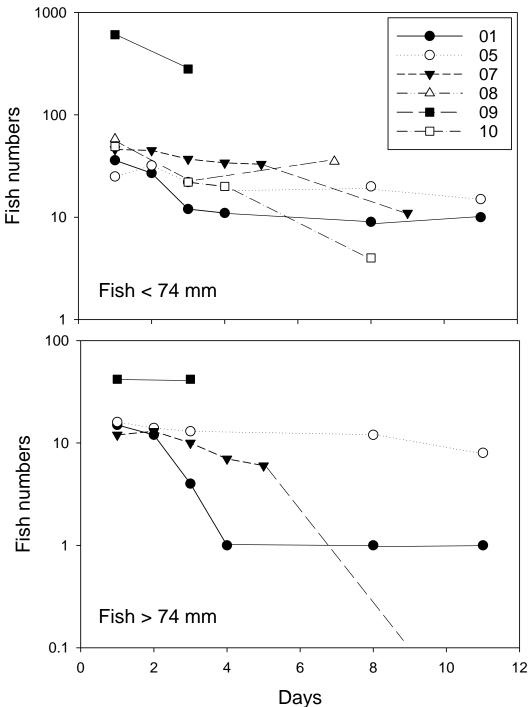


River otter density calculated from spatially explicit capture-recapture data

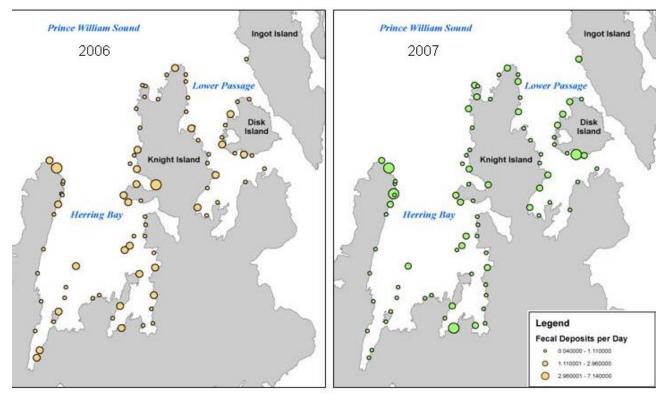
How many **adult** sockeye salmon are consumed by otters in Lake Ozette?

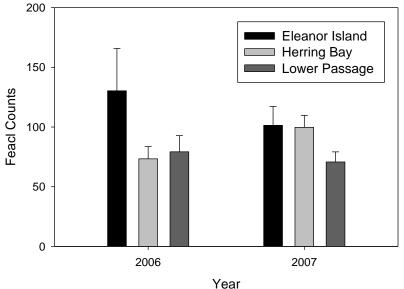
- A 10 kg otter would consume about 1 kg of fish daily (10% of body mass)
- A 20 40 cm sockeye salmon weighs 2 4 kg
- At ?% of the diet in 365 days an otter will consume
- A population of ?? (?? ??) otters will eat _____
 each year

Otter predation on juvenile salmonids?


- Preferred prey size 80 150 mm
- Otters eat 10% of body mass each day
- Most Juvenile salmonids smolt at smaller size

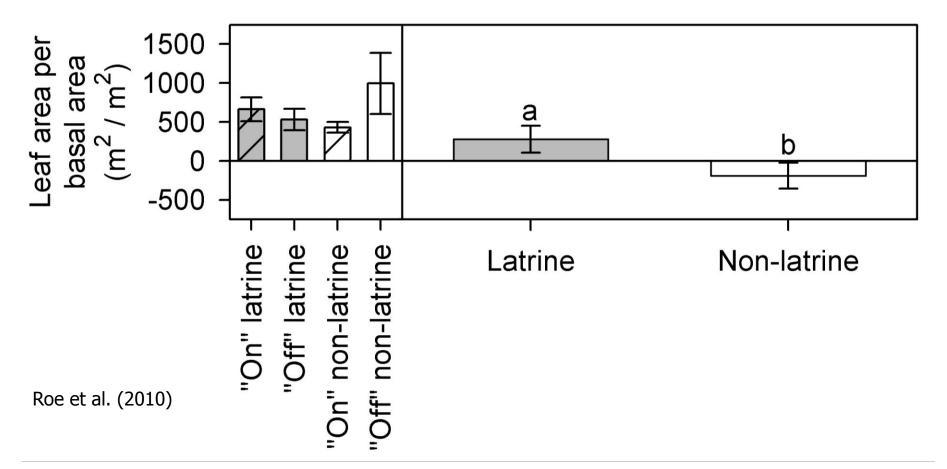
Predation on juvenile salmonids is enhanced in off-channel ponds

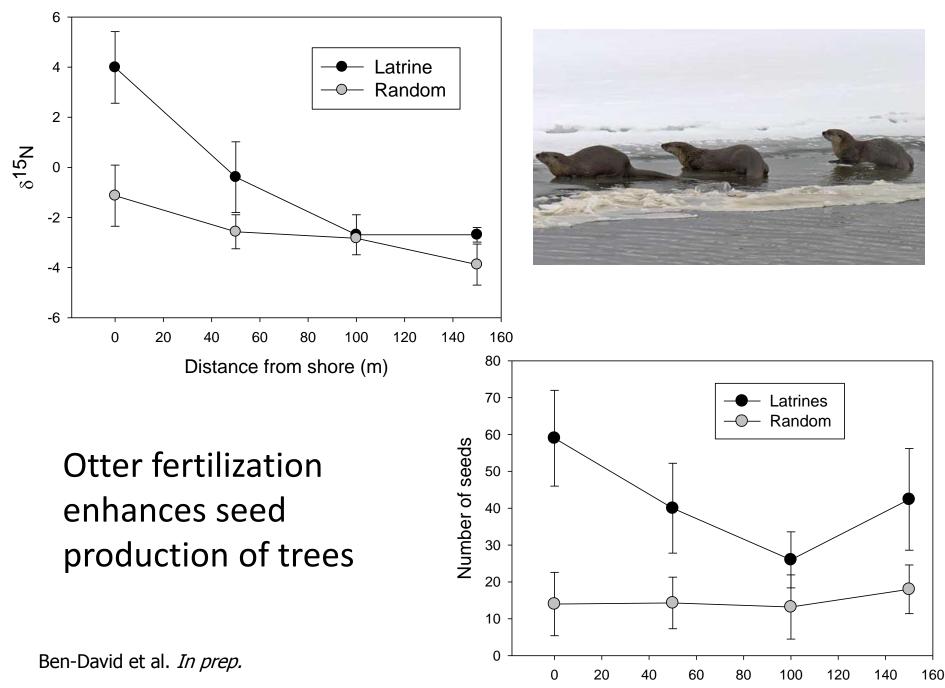


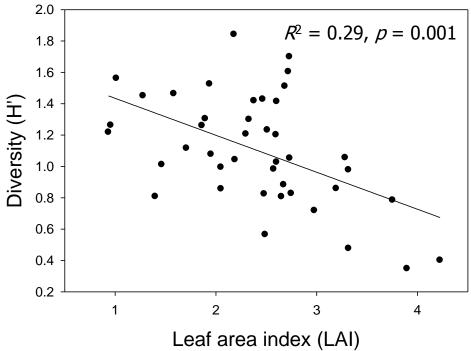

Pond No.	Date			Predator		
		Mink	Otter	Merganser	Bald ea	gle
Beaver pond	July 1	+	+	-	-	
0.4						SA SANA S
01	July 5	-	-	-	-	
	July 6	+	-	-	-	
	July 8	-	-	++	-	
	July 17	+	+	-	-	
05	July 8	+	+	-	-	
07	July 12	+	-	+	-	
	July 14	р	-	-	-	
	July 15	+	-	-	-	
	July 16	р	-	-	-	
	July 17	+	-	-	-	
10	July 13	+	-	-	+	
	July 17	-	-	-	++	

Removal ("lethal translocation") of river otters from Lake Ozette?

Because of changes in abundance and sociality, otter nutrient transports vary in space and time

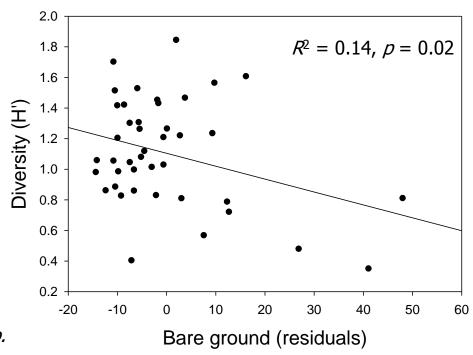



Ott et al. In prep.


Otter fertilization enhances photosynthetic capacity of trees

Aaron Roe

Distance from shore (m)



Roe et al. In prep.

Otter disturbance and fertilization affect plant diversity

Roe et al. In prep.

Colleagues:

Shannon Albeke Teri Balser Gail Blundell Terry Bowyer Larry Duffy Pam Groves Jay Gulledge Mike Harrington Dave McDonald Carolyn Meyer Nathan Nibbelink Olav Ormseth Kaiti Ott Eric Regehr

Undergraduate Students:

Paul Berry, Chris Durham, Leo Faro, Kendra Huffine, Sara Locker, Ryan McDonald, Nicole Meyer, Bonnie Myers, Kristopher Pope, Mathew Seymour, Michael Torbett, Chad Smith, Jessica (Boyd) Smith, Carisa Stansbury, Damian Stansbury, Melissa Thompson, Marci Trana, Suszana Trillhose, Travis Whittaker, Matthew Wood, Michelle Wood, Rebecca Zook

Graduate Students:

Shannon Albeke, Adi Barocas, Gail Blundell, Jamie Crait, Heidi Hansen, Jason Herreman, Kaiti Ott, Regan Rostain, Aaron Roe, Christopher Taylor