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Abstract-The flow of a third-grade fluid due to the torsional and longitudinal oscillations of an 
infinite circular rod is discussed. The non-linear coupled partial differential equations resulting from 
the momentum equations are solved numerically and the result is compared with that of a regular 
perturbation solution. The velocity field, the axial shear force, and the torque acting on the rod are 
computed. The stress power is found to be. negative at particular times, but that expended in a cycle 
turns out to be positive. 

1. INTRODUCTION 

Truesdell [l] suggested that, if the terms of the Clausius-Duhem inequality regarding the 
motion of a fluid are taken as independent, the stress power is positive. Although this is true 
for a purely viscous media, it does not necessarily hold for all materials. In fact, Rajagopal 
[2] showed that, for a dynamically possible motion taking place in a dissipative material (in 
this case a second-order fluid), the stress power may be negative locally in space at some 
instants of time. Rivlin [3] conjectured, however, that the stress power should be positive 
over a cycle. Huilgol [4] found a steady flow of second-grade fluid that is compatible with 
all the equations of rational thermodynamics and for which the stress power is negative 
throughout the whole domain. Consequently, deformation may generally occur with 
absorption or release of energy or both. 

The task of this work is to determine the behavior of the stress power, the velocity field, 
and the dynamical boundary layer when an infinite circular rod performs longitudinal and 
torsional oscillations about its axis of symmetry in a third-grade fluid. 

The first author to address the problem of rotational oscillations of a rod immersed in 
a fluid was Stokes [S], in the case of the classical linear viscous fluid. Casarella and Laura 
[6] considered also the longitudinal oscillations of the rod and computed the drag. 
Rajagopal[7] extended the problem to a second-grade fluid and found an exact solution in 
terms of the modified Bessel functions but did not explicitly compute the drag. 

Although the second-grade fluid model is able to predict the normal stress differences 
which are characteristic of non-Newtonian fluids, it does not take into account the shear 
thinning and thickening phenomena that many show. The third-grade fluid model repre- 
sents a further, although inconclusive, attempt toward a comprehensive description of the 
properties of viscoelastic fluids. 

2. PRELIMINARIES 

An incompressible simple fluid is defined as a material whose state of present stress is 
determined by the history of the deformation gradient without a preferred reference 
configuration [8]. Its constitutive equation can be written in the form of a functional 

T(t) = - PI + ; (F:(s)), (2.1) 
s=o 

where p1 is the undetermined part of the stress tensor and F is the deformation gradient. 

* Correspondence author. 
Contributed by K. R. Rajagopal. 
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Coleman and No11 [9] defined the incompressible fluid of differential type of grade n as 
the simple fluid obeying the constitutive equation 

T= --PI+ iSj (2.2) 
j=l 

obtained by asymptotic expansion of the functional in (2.1) through a retardation parameter 
a. If n = 3 the first three tensors Sj are given by 

Si = PA,, 

S 2 = a1A2 + a,A:, 

S3 = PiA3 + Pz(A~AI + A2A1) + MtrA?)Ar. 

3. GOVERNING EQUATIONS 

We will require that the Clausius-Duhem inequality is met, that is, the specific Helmholtz 
free energy is a minimum at the equilibrium for the system. This assumption implies 
that [lo] 

cc 2 0, ai 20, 81 = 82 = 0, 

8320, -JzGiGIa,+cc2IJ~. 

Hence, the stress tensor for an incompressible homogeneous fluid of third-grade 
simplifies to 

T = - p1 + pA1 + a1A2 + u,A: + /&(trA:)A,, (3.1) 

where p1 is the indeterminate part of the stress tensor due to the constraint of incompressi- 
bility, p the viscosity, al, a2 the normal stress moduli, and 8s the higher-order viscosity. 

We are going to assume that the temperature and other variables do not affect the 
rheological properties of the fluid, which are therefore given as constant throughout the 
work. The kinematic tensors A1 and A2 are defined through [l l] 

A 1 = (grad v) + (grad v)~, (3.2a) 

dA, A2 = - dt + A,(gradv) + (gradv)TA1, (3.2b) 

where v is the velocity, grad the gradient operator and d/dt the material time derivative. 
On substituting (3.1) into the momentum equation 

divT+pb=pz, (3.3) 

and neglecting the body forces, we have 

PddivAi + aldivA + a,divA: + P3div[(trA:)A1] = p$ + gradp. (3.4) 

As the rod is assumed to be infinitely long and for axisymmetric solutions, we assume 
a velocity field of the form 

v = u(r, t)ee + w(r, t)e,, (3.5) 

where e,, ee, e, are the unit vectors along the r, 19 and z directions, respectively, and the 
pressure field as 

p = p(r, 0. (3.6) 

Substituting (3.5) into (3.2a) and (3.2b) we obtain 

A, = 

O g-p> (5)- 
au v ( ) --- 
ar r 

0 0 , 

aw c ) z 0 0 

(3.7a) 
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a av v - --- 
( ) at ar I 

0 0 

a aw 

atar () 
0 0 

. (3.7b) 

1 
After algebraic manipulations, 

A: = 

($-;>‘+(z>’ 0 

0 (g-y)’ (a- &) , (3.7c) 

0 
(Ee)($) (E>’ _ 

Using the above expressions in (3.1), equation (3.3) yields 

+4(~)(~)+~~}+Zol,{~~-f(~)l+~~ 
oa2v ~2 awazw i aw 2 v2 ap 

rar2 r3 +aral’+5 ar ( >I 
+py=g= , 

p g+;g-; 
( 

2 

) ( 
+a,& $+$y! r2) 3{;(%~;3+~G)‘(~_;~ +2/3 

au v 2 azv 
+3 z-- 

( >( r 
--;;+;)+2($)($)($-p) 
ar2 

azw a2v ( )( iav v 
+ yq ar’-;s+r’ 

)I 
_pLy&), (3.8b) 

(3.8~) 

The velocity of the surface of the rod is given by 

v(re, 4 = Vi cos (wl t)e, + V2 cos (02 t)e,, 

where Vr, V2 are constants. 

(3.9) 

Assuming that there is no slip on the rod surface and that the velocity goes to zero as r + co, 
the boundary conditions become 

r = r. =S v(ro, t) = Vlcos(ol t) and w(ro, t) = V2 cos(w2t), (3.1Oa) 

r-+ 03, v, w + 0. (3. lob) 

Equations (3.8b) and (3.8~) can be solved together with the boundary conditions given by (3.1Oa) 
and (3.1Ob). Then the pressure field can be found, to within a constant, from (3.8a). 

Introducing the reference velocity 

U=J_, 
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and defining the variables 
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R=L 
lo’ 

c=!. w=w 
r0 V' V' 

we obtain the dimensionless form of equations (3.8b) and (3.8~): 

(3.11) 

(3.12) 

Clearly, the dimensionless parameters governing the problem are 

where Re is the Reynolds number based on the reference velocity V, rl is the absorption 
number and 83 is a parameter based on the higher viscosity fi3 which resembles the Reynolds 
number. 

4. A PARTICULAR CASE: THE ROTATING ROD 

Let us suppose for the time being that the rod simply rotates about its axis with constant 
angular velocity: this is a simplified version of the problem under investigation and a case 
that often occurs in oil drilling design. 

We assume a velocity field of the kind 

ii = u(R)ee 
when the boundary conditions are 

o=l atR=l, 

v+O asR-+co. 

After integrating once with respect to R, the momentum equation (3.8~) in the 8 direction 
yields 

where 

and C is the undetermined integration constant. 
Equivalently, the above equation can be rewritten as 

(4.1) 

F+zF'=$, (4.2) 
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where 

and y is an integration constant. 
Following [12], the methods to obtain the exact solution and the series solution to (4.2) 

will be outlined. 

4.1. Exact solution 
Equation (4.2) can be solved formally [13], the only real solution being 

Let us define a new variable a as 

Substituting (4.4) into (4.3), we have 

F=+-a{3Jm+‘Jm,. (4.5) 

For small values of a, the above expression can be expanded using the binomial theorem 

1 
F(R,a)=- 

s{ 

2a 8 
---_la3+*** 

3a 3 
(4.6a) 

Let us assume a power series expansion for the undetermined constant y: 

y=yo+ayl+a2y,+~‘**, (4.6b) 

and consider the first two terms of the Taylor expansion of F with respect to a as 

dF 
F = F,, + dcc y + . * ., 

where 
F. = lim F(R, a). 

a-0 

Now expression (4.6a) can be rewritten as 

F=$+ ($-$)a-3[($)‘($-($y)+$]a2+(l(a3). (4.7) 

Integrating term-by-term and applying the boundary conditions 

u(R,a)lRzl.= 1, o(R, a)1 - 0 R-co- 3 

the constants yo, y1 and y2 are found to be 

Yo = -2, Yi = - 8, Y2 = +?. 
Finally, we have 

In order for the expansion of (4.5) to converge, the binomial theorem requires that 
Ial < 1, that is, 

- l<$&+l VR. (4.8) 

Now, after substituting into (4.8) the approximate expression of y, that is, 

y = y. + ay, + a2y2 = - 2 - $a + *a2, (4.9) 

which is obtained from its expansion in power series with respect to a, and considering that 
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(4.8) is always satisfied if it is true for R = 1, we get 

- 1 <$(*c12+-2)J%< 1. 

The numerical solution of (4.10) yields a radius of convergence of c1 = 0.0342. 

(4.10) 

4.2. Series solution 
Equation (4.2) is solved by a regular perturbation method. The function F(R, cc) is 

expanded in power series about the point o! = 0 as follows: 

F(R, c() = F,,(R) + d,(R) + cr2Fz(R) + . . . . (4.11) 

By substitution of (4.11) and (4.6a) into equation (4.2) and after equating the coefficients of 
like powers of LY, integrating, and applying the boundary conditions, we have 

y(R) = f - /!- L - 1 a +‘2 4 - --& - & a2 +0(x3). 
3R(R4 > R (5, > 

(4.12) 

Note that (4.12) perfectly matches the expansion of the exact solution, as expected, since the 
power series expansion of a function is unique. 

The general solution o,(R) can be shown to be 

v,(R) = - L i anP 

2R p=,, (1 + ~P)R~~’ 
(4.13) 

where the coefficients unp are given by the recurrence formula 

p-l p-m-l n-pimn-p+k+m-1 

anp = -,z, kgo 2 C aimajkan-i-j-i,p-m-k-~ 
i=m j=k 

(4.14) 

and 

a00 = - 2. 

5. PERTURBATION METHOD SOLUTION OF THE FULL PROBLEM 

Let us assume a regular perturbation expansion for the velocity field around B3 = 0: 

v = vo + p34 + &52 + . . .) (5.1) 

w = wo + f13w1 + p:KJ2 + . . . . (5.2) 

After substitution in the governing equations, by equating the coefficients of like powers of 
jj3 we have, for the terms of O(l), 

1 a2vo 

ki aR2 (- 
--= (5.3) 

(5.4) 

with boundary conditions 

cosQ,t and W= cosR2t at R = 1. 

Also, 
tio,3,+0 as R-r co. 

For the terms of 0(p3), 

i aa, 61 

+x=-s 
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The exact solution to (5.1) and (5.2) has been found by Rajagopal[7] and is given here in 
dimensionless form: 

f I 

(5.7) G(R, t) = Re 

: 

where Re denotes the real part of the complex number which follows and 

These expressions are to be used in (5.5) and (5.61, which can be solved nume~ca~ly. 

6. DRAG, AXIAL SHEAR FORCE AND TORQUE 

Recalf the definition of Stokes drag in a fluid [14]; 

D= s t * nda, I6.V 
agO 

where t is the traction on the boundary of the body ap and n is the unit vector in the 
direction of the uniform velocity at infinity. Rather than in the Stokes drag, we are 
interested in computing the axial shear force and the torque per unit length that are 
required to produce the prescribed osciIlations of the rod. This ~nfo~ati~n is of great help 
in the design of any oil drilhng machinery or equipment. 

The torque and the axial force per unit length are given, respectively, by 

M = 27cr&,, (6.2) 

F = 27(rOtrz, (6.3) 
where 
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Let us non-dimensionalize (6.3) and (6.4): 

A= 

The overbar denotes dimensionless quantities. 

7. STRESS POWER 

The stress power in a third-grade fluid is given by [ 153: 

where 1 A 1 ( is defined as the trace norm of the tensor A 1. 
In our case, after non-dimensionalization, (7.1) reduces to 

~=?A 
p V3/r0 

= &,I2 + $1 -gill2 + $wl14. 

Integration of (7.2) through the whole domain yields 

+ ;r, -$~I2 + $A,I.)RdR. 

(6.6) 

(6.7) 

(7.1) 

(7.2) 

(7.3) 

8. NUMERICAL ALGORITHM OF THE FULL PROBLEM 

The finite difference method and a regular mesh are used for the numerical solution. The 
transformation S = l/R is applied for transforming the infinite physical domain to a finite 
calculation domain, that is: 

RGCR,, ~1, s G cs,, 01, 

R=l a 
s’ aR= 

44 2=s4z+2s3z 
as' aR2 as2 as' 

The Crank-Nicholson method is employed in this time-dependent problem. Due to the 
highly non-linear terms in the governing equations, the convergence of the numerical 
solution depends on the choice of the initial condition, that is, on the velocity distribution at 
time t = 0. The exact solution to the problem under investigation for second-order fluid is 
available [7] and is used as an initial condition. 

9. RESULTS AND DISCUSSION 

Figures 1 and 2 show how the velocity profile varies with &: the velocity is plotted at 
equal intervals of time in a half cycle. It is clear that, as the higher-order viscosity increases, 
the velocity gradient becomes steeper and loses monotonicity. The dynamical boundary 
layer does not seem to be significantly affected by fi3 because the elastic forces still dominate 
the viscous ones. 

Torque and force vs time are reported for various values of f13 (Figs 3 and 4); as expected 
their maximum increases with p3. The curves representing torque and force are similar 
because the periods of the longitudinal and torsional oscillations are taken as equal in the 
actual computations. 

Figure 5 confirms, in the case under investigation, what Rajagopal [2] anticipated for 
a different problem: the stress power is locally negative at some instants of time as well as in 
the whole domain (Fig. 6). The smaller the f13, the longer the stress power remains negative. 
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Fig. 1. 
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Fig. 2. 

Fig. 3. 



406 R. BANDELLI et al. 

Re = 100, alpha 1 = I. beta 3 = 1,10, IS 

Fig. 4. 

beta 3 = 10, alpha 1 = 1, T= 100 to 150, Re= 100 
500 

1 

-100-l I 

0.95 0.96 0.97 0.98 0.99 1.00 

S= l/R 

Fig. 5. 

Re = 100. alpha 1 = I, beta 3 = 1, 10, 15 

0.50 -75 1 .oa 
2 _5- 

ij t=tlT 

-10 - 

-15 - 

-2oL 

Fig. 6. 

A comparison between Figs 5 and 7, which represent the stress power in a power-law fluid, 
helps to understand that the elastic effect is responsible for this phenomenon. 

The influence of the elastic forces on the velocity can be fully appreciated by examining 
the velocity profile for a purely viscous fluid (Figs 8 and 9) and a viscoelastic fluid (Figs 1 
and 2). The wavy profile typical of purely viscous fluids is substituted by a fan profile in 
a material in which elastic effects are present. 
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Re = 100. alpha 1 = 0, beta 3 = 0.01.0.05 

-2 - 
r=tlT 

-4 - 

-6 - 
-8 - 

-1OL 

Fig. 7. 

-beta 3 = 0 -- beta 3 = 0.05 

Alpha I = 0, T = 100 to 150, Re = 100 

0.45 Oh6 Oh7 0.98 oh9 IhO 

S= 1/R 

Fig. 8. 

- beta 3 = 0 -- beta 3 = 0.05 

Alpha I = O.T= 100 to 150, Re= 100 

407 

-1.0 ! 7 

0.95 0.96 0.97 0.98 0.99 1 .oo 
S= 1/R 

Fig. 9. 

NLM 29:3-J 
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Symbols: perturbation method solution 
cont. lines: exact numerical solution 

beta 3 = 0.01, alpha 1 = 1.00, T= 1 to 50,Re = 100 

-1.0 I 1 

0.95 0.96 0.97 0.98 0.99 1 .oo 
S= l/R 

Fig. 10. 

Figure 10 reports the perturbation method results, which are compared with the exact 
solution for a particular case. 
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