emperature Imbalance And Fluctuations Due T Difficult Fuels - Diagnosis, Counter Measures -

Prof. Dr. Hans Paul Drescher and Dipl.-Ing. Manfred Deuster

Bonnenberg & Drescher Projektentwicklung GmbH, Aldenhoven, Germany

rage temperature

Brenn- stoff	Emissivität [-]
1.1	0,45
1.2	0,58
1.3	0,68
1.4	0,40
1.5	0,61
1.6	0,48
1.7	0,63
1.8	0,55

riation of FEGT for hard coal with different emissivity values

Temperature range indicating local fluctuations

Hard Coal 200 MWel

Lignite 800 MWel

eduction of CO by temperature balancing (800 MW lignite)

Acoustic gas temperature measurement system

Effects of temperature balancing on O₂ (red) and CO (blue)

Net efficiency and temperature balancing (660 MW hard coal)

J

- high resolution (> 100 paths)
- ✓ allways all path bidirectional
- ✓ increased measuring speed (< 20 sec. per complete cycl</p>

- ✓ acoustic signal serveillance
- ✓ bi-directional data tranfer to DCS and redundancy
- ✓ 3-dimensional determination between different levels

High resolution temperature distribution in the top of a blast furnace

diagnosis of the combustion and the operation of boilers with difficult fuels to comply with rapid temperature changes, high local imbalances and an nown wide range of average temperatures.

required information about the fire is available since the introduction of the stic temperature measurement technology. The significant advantages result the fact that the measurement is not influenced by radiation.

perature balancing improves the local O₂-distribution and reduces CO-peak this is particularly relevant for boilers with corrosion problems or slagging. same time, an even temperature distribution leads to higher efficiency and is ortant for a stable combustion at low load with difficult fuels or during start une one out prevention).

requirements from combustions with difficult fuels and with control applicati e led to new standards for acoustic systems concerning resolution, speed a bility.

Thank You

artners progress Industriepark Emil Mayrisch, D-52457 Aldenhoven Tel.: +49 (02464) 5810 Fax: +49 (02464) 58136 Email: info@budi.de, Web: www.budi.de

Hi-Tech Systems & Services Lin

Withe House, 119 Park Street, Kolkata 700 01 Tel.: +91 (033) 2229 0045, Fax: +91 (033) 222 Email: info@hitech.in, Web: www.hitech.in

$$C = \sqrt{\frac{\pounds R \cdot R}{M} \cdot T}$$

- C = speed of sound
- T = "true" gas temperature
- M = molecular weight
- R = universal gas constant

$$\mathscr{E}$$
 = specific heat

 $T = 1000 \ ^{\circ}C$ $C = 686 \pm ? m/s$

unaccuracy < 1,5 %

N

Innovation in Condition Monitoring

Key benefits

Yvan Jacquat Managing Director

Think ahead, Move forward

Topics

Topics

Application

Turbo generators Pump storage

Current practices:

• Operation of the machine beyond its normal lifespan

Endwinding

- Operating costs reduction by increasing of the availability and reliability
- Operating of the machine closer to the real needs (leading to several run-up and run-down/day)

Premature ageing and winding deterioration

Dominant self resonance frequencies of the bars

Original status:

Endwinding deterioration:

Source: Erweiterte Diagnoseverfahren für Kraftwerksturbosätze

Impact on PD activites

High level of Endwinding Vibration

Increased risk of electrical discharges & short circuit

Insulation crack and abrasion between Endwinding and support elements

Online Endwinding Monitoring

Main advantages:

- Online Measurement takes into consideration the **temperature effect** on the stator bar dominant self resonance frequency
- In normal condition, the self resonance frequency of the 4-nodes model of the Endwinding may be reduced by -5Hz from 35°C to 65°C
- With the aging of the generator, the frequency shift rise up to -12Hz

Source: Erweiterte Diagnoseverfahren für Kraftwerksturbosätze

Key benefits of innovation

New sensor generation with:

- Improved temperature response
- Improved long term stability

Long term stability

Sensitivity stability after aging cycles (3h @ 100°C and 3h cooling)

Topics

Application

Example - Omkareshwar - HPP Project 8x65MW

Application

The airgap variation is the result of mechanical deformation induced by forces on the rotor, on the stator and electromagnetic forces

Think ahead, Move forward www.mc-monitoring.com

Measuring principle Arga Montoring M

- Contactless, capacitive principle, no wear
- Reliable, no maintenance
- Immune to shocks/vibrations
- Immune to magnetic field, EMI
- Operating temperature up to +125° C
- Carrier frequency technique, amplitude modulated high frequency

Think ahead, Move forward www.mc-monitoring.com

Key benefits of innovation

New digital conditioner

Digital conditioners

Key advantages:

- Numeric linearization making it **stable** and **independent** from environmental conditions (temperature, humidity,...) due to less analogue components
- Numeric regulated carrier frequency making impedance measurements more **stable** and more **repetitive**
- Digital linearization allowing a **greater fineness** in linearization adjustment
- Digital calibration making it **stable** and **invariable** with the time
- Galvanic insulated output with internal power supply making possible the use of standard 4..20mA input cards and the whole system less sensitive to grounding effect in heavy noise environment

Digital conditioners: Temperature response

Digital conditioners: Linearity – 5..25mm

Case study

After overspeed testing, nominal airgap reduced from 12.9mm down to 9.3mm

Think ahead, Move forward www.mc-monitoring.com

Topics

- A: High electrical field due to sharp edge
- B: Delamination of single conductor to main insulation
- C: Broken conductors
- D: Delamination of the main insulation
- E: Electrical treeing
- F: Abrasion of the corona slot protection
- G: Gas inclusion

Endwinding area

- H: Problem in the cooling ducts
- I: Splitting of the insulation (manufacturing)
- J: Pollution on the surface
- K: Defect or broken spacers

Risk level (IEC 60034-27):

- High risk
- Normal risk
- Low risk

Typical installation

Benefits of 1000pF sensors

Detection of PD activities **deep inside the winding** of the machine requests low frequency PD measurements:

Key benefits of innovation

New PD systems according to IEC 60270 standard:

- Automated Calibration
- Standalone field-proven Portable system with built-in True Color Touch Screen display
- True simultaneous data acquisition for analysis of PD signals

Automated calibration

Partial Discharge

Standalone Portable PD System:

• Standalone PD measurement without computer for analysis

Many thanks for your attention

Real time Process Improvement & Diagnos

Thermal Power Pla

Expert Syste

Abhishek Kumar Himanshu Pant J S Chandok NETRA-NTPC Limited

Presentation Outline

Need & Objectives Optimization Challenges Impact & Potential Savings

Applications

Background Underlying Technologies Efficiency Optimization System Chemistry Diagnostic & Optimization System Solution Architecture

Conclusions

eed & Objective

Optimiz Challen

eed & Objective

- > Plant Capacity: 500 MW Coal |
- \rightarrow Coal price : . 3000/T
- \rightarrow Coal GCV : 3500 KCal/Kg
- Amount in INR

NETRA- NTPC

Impact

Potent

Domain Expertise

lain Plant Op hemistry Op iterature

Underlying Technologies

Dert Technologies: Artificial Intelligence

eural Networks olutionary algorithms izzy logic dvanced pattern cognition

Underlying Technologies

Dert Technologies: Statistical Tools

egression analysis urve fitting ustering & assification

Underlying Technologies

Application Development Framework

ervice oriented chitecture DBMS ch User Experience

Underlying Technologies

oplica	tions			
ime plant imization system	Operator advisory for controllable parameters	On the spot Plant Heat rate (HR) improvement	Constraint Handling	Overview Eff Op
erage HR rovement 3-10 Kcal.	Self learning ANN models	Customizable GA Based Optimization system	Real time CV	Sy:

oplica	tions			
Real time tection of chemistry issues	Fine tuning of chemical parameters to reduce corrosion and scaling problem	Optimization of chemical treatment	Single platform for online as well as offline parameters	Overview Che Dia Op
Darameter lization & Fault Tree analysis	learning tool for plant chemist, and analyst	Platform for converting plant chemistry expertise into tangible form	Role based dashboards customized to individual needs	VEX.Development vex.dex vex.de

Boiler Drum	Feed Water		Main Steam
CI & Si contamination Free NaOH Na-PO4 Ratio Theoretical conductivity Iron deposit rate	Ammonia CO2	St Ar C0	eam Purity nmonia D2
Condensate	Dozing		Others

m/lssue	Chem Analyzer prediction	Actual condition	Action/benefit
olumn ustion	Detected	Column Exhaustion	replaced
enser age	Detected	Problem occurred	Stabilized
ytical blem	Detected	Silica analyser faulty	Calibrated/ standards replaced
iser leak	Detected	Condenser leak	Appropriate action taken
silica	Blow down recommendation	High silica in off line data	100/50 T blow down
PO4	Detected	High boiler conductivity	B/D to reduce boiler conductivity
iler nination	Detected	High sodium	Normalized after B/D

Case Studies

Ch Dia Op Sys

Ch

Dia

Op Sys

onclusion

 \rightarrow The combination of operational data, domain expertize and expert system technologies can produce significant improvements in power plant performance and reliability

 \rightarrow Real time monitoring and diagnosis can help to maintain equipment's health thu increasing plant operation lifetime

 \rightarrow With stringent environmental norms, such system can benefit power utilities in controlling emissions

 \rightarrow Efficiency improvement can help to achieve performance targets in PAT regime

 \rightarrow Such systems can be customized according to different utilities needs

→Service Oriented Architecture enables interoperability and seamless integration with existing, legacy and future systems

Thank You

- abhishekkumar@ntpceoc
 himanshupant@ntpceoc.
- ischandok@ntpceoc.co.ir

Solar Simulators – Plant optimization

V.S.Sharma – GM Renewable Energies Dated : 12/04/13

STEAG – Operations full of energy

steag

More than 75 years old company, based in Germany

Owns more than 11,000 MW plants

Planning – operation – supply – marketing – recycling

Project development, planning, operation and supply of power plants...

... in Germany and ...

Marketing of electricity and district heat, and...

...recycling of power plant byproducts.

Key figures (as of Dec. 2011) External sales 3,066 € m

Capital expenditure on fixed assets 1,283 € m

Employees 5,800

Steag's Activities

steag

Steag India Activities

- Engineering Consultancy
- O&M services ~ 5000 MW
- System Technology Simulators and Plant optimization systems
- Training and advisory services

Steag India – Solar activities

- Several DPRs and feasibilities
- Ebsilon Solar
- Solar simulator with Trax
- Owners Engineer NTPC Anta
- Training on Solar With IITJ

STEAG holds a strong position in the renewable energy market

<u>steag</u>

Topics for discussion

Simulator types – Steady state, Quasi Steady state and Dynamic

stea

- Applications of Dynamic simulators in Solar thermal
 - o Dynamic simulators Case studies DLR, SESI
 - o Basic applications Training
 - o Simulation studies Correction factors for a Steady State simulator
 - o Research on Operational Optimization
 - Startup time optimization
 - Plant trip risk minimization Transients
 - Mirror cleaning frequency optimization
 - Thermal storage usage optimization
- Applications of Steady state simulators in Solar thermal
 - o Design optimization Field sizing and Annual electricity generation
 - o Cost optimization Field size and storage for minimum LCOE
 - o Hybridization studies Optimization of extraction and injection points
 - o PG testing of plant and Daily performance monitoring

Types of simulation

o Simulations done at a particular point of time based on Algebraic equations

stea

- o Simulations can be done over multiple time steps but the simulation at a particular step has no relation with the previous step. e.g. DNI at a particular time step would not consider the DNI of previous step
- o Mostly used as a design tool or cumulative output analysis tool but can not be used for the study of transients
- Quasi steady state :
 - Simulation is done in discrete time steps, but the input state for a particular time step can be taken from the calculated state in the previous time step.
 - o Can take care of thermal inertia during start up / shut down, cloudy conditions , storage etc. to some extent

Types of simulation

steag

Dynamic :

- A dynamic simulator runs like an actual plant
- Based on differential equations and is used to do the continuous analysis of transients
- It is able to consider thermal inertia during the start up and shut down and clouding conditions satisfactorily
- Used for comparatively short duration analysis since it needs a lot on computation power

Topics for discussion

- Simulator types Steady state, Quasi Steady state and Dynamic
- Applications of Dynamic simulators in Solar thermal
 - o Dynamic simulators Case studies DLR, SESI
 - o Basic applications Training
 - o Simulation studies Correction factors for a Steady State simulator
 - o Research on Operational Optimization
 - Startup time optimization
 - Plant trip risk minimization Transients
 - Mirror cleaning frequency optimization
 - Thermal storage usage optimization
- Applications of Steady state simulators in Solar thermal
 - o Design optimization Field sizing and Annual electricity generation
 - o Cost optimization Field size and storage for minimum LCOE
 - o Hybridization studies Optimization of extraction and injection points
 - o PG testing of plant and Daily performance monitoring

Case Study 1 - Modelica / Dymola based dynamic simulator by DLR

- A dynamic simulator has been created for a Parabolic trough plant in which numerous transient effects are accounted for which have an impact on the energy yield.
- The model possesses a control layer which is able to reliably cope with changing weather conditions.
- An automatic plant operation during one or even several consecutive days is possible.
- Due to the open layout of the model, submodels can easily be modified or replaced. Therefore more detailed submodels can be developed and tested.

Case Study 1 - Modelica / Dymola based dynamic simulator by DLR

A complex control layer has been developed which is able to operate the plant automatically, even during bad weather periods.

Case Study 2 - Trax based simulator from Steag

- Based on 50 MW PT
- Joint development with Trax Inc. of USA
- Being used for training jointly with IITJ.
- Steag is using for various studies and Research

- Physical and control models developed using Trax toolkit, while the HMI is developed in Wonderware Intouch
- We understand that it is the first commercially available simulator for solar thermal power plants

Case Study 2 - Trax based simulator from Steag

Topics for discussion

- Simulator types Steady state, Quasi Steady state and Dynamic
- Applications of Dynamic simulators in Solar thermal
 - o Dynamic simulators Case studies DLR, SESI
 - o Basic applications Training
 - o Simulation studies Correction factors for a Steady State simulator
 - o Research on Operational Optimization
 - Startup time optimization
 - Plant trip risk minimization Transients
 - Mirror cleaning frequency optimization
 - Thermal storage usage optimization
- Applications of Steady state simulators in Solar thermal
 - o Design optimization Field sizing and Annual electricity generation
 - o Cost optimization Field size and storage for minimum LCOE
 - o Hybridization studies Optimization of extraction and injection points
 - o PG testing of plant and Daily performance monitoring

Using the simulator various operation regimes and control strategies can be studied / designed and various types of transients can be studied