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TECHNICAL CORNER

Validity and Reliability of Quantitative
Electroencephalography

Robert W. Thatcher, PhD

ABSTRACT. Reliability and validity are statistical concepts that are reviewed and then
applied to the field of quantitative electroencephalography (qEEG). The review of the scientific
literature demonstrated high levels of split-half and test–retest reliability of qEEG and convinc-
ing content and predictive validity as well as other forms of validity. QEEG is distinguished
from nonquantitative EEG (‘‘eyeball’’ examination of EEG traces), with the latter showing
low reliability (e.g., 0.2–0.29) and poor interrater agreement for nonepilepsy evaluation. In con-
trast, qEEG is greater than 0.9 reliable with as little as 40-s epochs and remains stable with high
test–retest reliability over many days and weeks. Predictive validity of qEEG is established by
significant and replicable correlations with clinical measures and accurate predictions of out-
come and performance on neuropsychological tests. In contrast, non-qEEG or eyeball visual
examination of the EEG traces in cases of nonepilepsy has essentially zero predictive validity.
Content validity of qEEG is established by correlations with independent measures such as
the MRI, PET and SPECT, the Glasgow Coma Score, neuropsychological tests, and so on,
where the scientific literature again demonstrates significant correlations between qEEG and
independent measures known to be related to various clinical disorders. The ability to test
and evaluate the concepts of reliability and validity are demonstrated by mathematical proof
and simulation where one can demonstrate test–retest reliability as well as zero physiological val-
idity of coherence and phase differences when using an average reference and Laplacian montage.

KEYWORDS. Reliability, validity, quantitative EEG

Quantitative electroencephalography (qEEG)
is distinguished from visual examination
of EEG traces, referred to as ‘‘nonquantita-
tive EEG’’ by the fact that the latter is
subjective and involves low sensitivity and

low interrater reliability for nonepilepsy
cases (Benbadis et al., 2009; Cooper,
Osselton, & Shaw, 1974; Malone et al.,
2009; Piccinelli et al., 2005; Seshia, Young,
& Zifkin, 2008; Woody, 1966, 1968). In
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contrast, the qEEG involves the use of
computers and power spectral analyses
and is more objective with higher reliability
and higher clinical sensitivity than visual
examination of the EEG traces for most psy-
chiatric disorders and traumatic brain injury
(Hughes & John, 1999). As stated in a recent
visual non-qEEG study by Malone et al.
(2009),

The interobserver agreement (Kappa)
for doctors and other health care pro-
fessionals was poor at 0.21 and 0.29,
respectively. Agreement with the cor-
rect diagnosis was also poor at 0.09
for doctors and �0.02 for other health-
care professionals. (p. 2097)

Or in a study of non-qEEG visual examin-
ation of the EEG traces it was concluded by
Benbadis et al. (2009), ‘‘For physiologic
nonepileptic episodes, the agreement was
low (kappa¼ 0.09)’’ (p. 843).

A recent statement by the Canadian
Society of Clinical Neurophysiology further
emphasizes the low reliability of visual exam-
ination of EEG traces or non-qEEG in the
year 2008, where they conclude

A high level of evidence does not exist
for many aspects of testing for visual
sensitivity. Evidenced-based studies are
needed in several areas, including (i)
reliability of LED-based stimulators,
(ii) the most appropriate montages for
displaying responses, (iii) testing during
pregnancy, and (iv) the role of visual-
sensitivity testing in the diagnosis of
neurological disorders affecting the
elderly and very elderly. (Sehsia et al.,
2008, p. 133)

The improved sensitivity and reliability of
qEEG was first recognized by Hans Berger
in 1934 when he performed a qEEG analysis
involving the power spectrum of the EEG
with a mechanical analog computer and
later by Kornmuller in 1937 and Grass and
Gibbs (1938) (see Niedermeyer & Lopes Da
Silva, 2005). QEEG in the year 2010 clearly
surpasses conventional visual examination
of EEG traces because qEEG has high

resolution in the millisecond time domain
and approximately 1 cm in the spatial
domain, which gives qEEG the ability to
measure network dynamics that are simply
‘‘invisible’’ to the naked eye. Over the last
40 years the accuracy, sensitivity, reliability,
validity, and resolution of qEEG has steadily
increased because of the efforts of hundreds
of dedicated scientists and clinicians that
have produced approximately 90,000 qEEG
studies cited in the National Library of
Medicine’s database. Since approximately
1975 it is very difficult to publish a
non-qEEG study in a peer-reviewed journal
because of the subjective nature of different
visual readers agreeing or disagreeing in their
opinions about the squiggles of the ‘‘EEG’’
with low ‘‘interrater reliability’’ for nonepi-
lepsy cases (Benbadis et al., 2009; Cooper
et al., 1974; Malone et al., 2009; Piccinelli
et al., 2005; Seshia et al., 2008; Woody,
1966, 1968). This article does not discuss
the issue of qEEG in the detection of
epilepsy. This topic is well covered by many
studies (see Niedermeyer & Lopes Da Silva,
2005). Instead, this article is focused on the
nonepilepsy cases, the very cases that visual
non-qEEG is weakest.

It is useful to first revisit the standard
concepts of ‘‘reliability’’ and ‘‘validity’’ of
quantitative EEG while keeping in mind
the historical background of non-qEEG vis-
ual examination of EEG traces. Although
non-qEEG is insensitive and unreliable for
the evaluation for the vast majority of psy-
chiatric and psychological disorders and
mild traumatic brain injury, it is used in
approximately 99% of U.S. hospitals as the
currently accepted standard of care. Given
this background, the purpose of this article
is to define the concepts of ‘‘reliability’’ and
‘‘validity’’ and evaluate these concepts as
they apply to the clinical application of
qEEG. Such an endeavor requires some
knowledge of the methods of measurement
as well as about the basic neuroanatomy
and neurophysiology functions of the brain.

It is not possible to cover all clinical disor-
ders, and therefore mild traumatic brain
injury will be used as examples of qEEG val-
idity and reliability. The same high levels of
clinical validity and reliability (i.e., >0.95)
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of qEEG have been published for a wide
variety of psychiatric and psychological dis-
orders—to cite only a few, for example,
attention deficit disorders (Mazaheri et al.,
2010; van Dongen-Boomsma et al., 2010),
attention deficit hyperactivity disorder
(Gevensleben et al., 2009), schizophrenia
(Begić, Mahnik-Milos, & Grubisin, 2009;
Siegle, Condray, Thase, Keshavan, &
Steinhauer, 2010); depression (Pizzagalli
et al., 2004); obsessive compulsive disorders
(Velikova et al., 2010); addiction disorders
(Reid et al., 2003); anxiety disorders
(Hannesdóttir, Doxie, Bell, Ollendick, &
Wolfe, 2010) and many other disorders.
The reader is encouraged to visit the
National Library of Medicine database at
https://www.ncbi.nlm.nih.gov/sites/entrez?
db=pubmed and use the search terms ‘‘EEG
and xx’’ where xx¼ a clinical disorder. Read
the Methods section to determine that a
computer was used to analyze the EEG
which satisfies the definition of qEEG and
then read the hundreds of statistically signifi-
cant qEEG studies. The search term ‘‘EEG’’
is necessary because the National Library of
Medicine searches article titles and rarely if
ever is the term ‘‘qEEG’’ used in the title
(e.g., this author has published more than
150 peer-reviewed articles on qEEG and
has never used the term ‘‘qEEG or QEEG’’
in the title).

VALIDITY DEFINED

Validity is defined by the extent to which
any measuring instrument measures what
it is intended to measure. In other words,
validity concerns the relationship between
what is being measured and the nature and
use to which the measurement is being
applied. One evaluates a measuring instru-
ment in relation to the purpose for which it
is being used. There are three different types
of validity: (a) criterion-related validity, also
called ‘‘predictive validity’’; (b) content
validity, also called ‘‘face validity’’; and (c)
construct validity. If a measurement is unre-
liable, then it can not be valid; however, if a
method is reliable it can also be invalid, that
is, consistently off the mark or consistently

wrong. Suffice it to say that clinical correla-
tions are fundamental to the concept of val-
idity and are dependent on our knowledge of
basic neuroanatomy and neurophysiology.
These concepts are also dependent on our
methods of measurement and the confidence
one has in the mathematical simulations
when applied in the laboratory or clinical
context. Today there are a wide number of
fully tested mathematical and digital signal
processing methods that can be rapidly
evaluated using calibrated signals and a
high-speed computer to determine the math-
ematical validity of any method. This article
does not spend time on this topic except for a
brief mention of a few methods that are not
valid when applied to coherence and phase
measures. This is because of technical limita-
tions, for example, the use of an average ref-
erence or the Laplacian surface transform
and Independent Components Analysis
(ICA) and the calculation of coherence and
phase. It is shown in a later section that the
average reference and the Laplacian distort
the natural physiological phase relationships
in the EEG and any subsequent analyses of
phase and coherence are invalidated when
these remontaging or reconstruction meth-
ods are used (Nunez, 1981; Rappelsberger,
1989). The average reference and Laplacian
and ICA methods are valid for absolute
power measures but have limitations for
phase measures. This is a good example of
why validity is defined as the extent to which
a measuring instrument measures what it is
intended to measure.

Leaving the mathematical and simulation
methods aside for the moment, the most
critical factor in determining the clinical
validity of qEEG is knowledge about the
neuroanatomy and neurophysiology and
functional brain systems, because without
this knowledge then it is not possible to even
know if a given measurement is clinically
valid in the first place. For example, neuro-
logical evaluation of space occupying lesions
has been correlated with the locations and
frequency changes that have been observed
in the EEG traces and in qEEG analyses,
for example, lesions of the visual cortex
resulted in distortions of the EEG generated
from the occipital scalp locations, or lesions
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of the frontal lobe resulted in distortions of
the EEG traces arising in frontal regions,
and so on. However, early neurological and
neuropsychological studies have shown that
function was not located in any one part of
the brain (Luria, 1973). Instead the brain is
made up of complex and interconnected
groupings of neurons that constitute ‘‘func-
tional systems,’’ such as the ‘‘digestive sys-
tem’’ or the ‘‘respiratory system’’ in which
cooperative sequencing and interactions give
rise to an overall function at each moment of
time (Luria, 1973). This widely accepted view
of brain function as a complicated functional
system became dominant in the 1950s and
1960s and is still the accepted view today.
For example, since the 1980s new technolo-
gies such as functional MRI (fMRI), PET,
SPECT, and qEEG=MEG have provided
ample evidence for distributed functional
systems involved in perception, memory,
drives, emotions, voluntary and involuntary
movements, executive functions, and various
psychiatric and psychological dysfunctions
(Mesulam, 2000). Modern PET, qEEG,
MEG, and fMRI studies are consistent with
the historical view of ‘‘functional systems’’
presented by Luria in the 1950s (Luria,
1973), that is, there is no absolute functional
localization because a functional system of
dynamically coupled subregions of the brain
is operating. For example, several fMRI and
MRI studies (e.g., diffusion tensor imaging,
or DTI) have shown that the brain is orga-
nized by a relatively small subset of ‘‘mod-
ules’’ and ‘‘hubs’’ that represent clusters of
neurons with high within-cluster connectivity
and sparse long-distance connectivity (Chen,
He, Rosa-Neto, Germann, & Evans, 2008;
Hagmann et al., 2008; He et al., 2009).
Modular organization is a common property
of complex systems and ‘‘Small-World’’
models in which maximum efficiency is
achieved when local clusters of neurons rely
on a small set of long-distance connections
to minimize the ‘‘expense’’ of wiring by shor-
tened time delays between modules (Buzsaki,
2006; He et al., 2009). Also, recent qEEG
and MEG analyses have demonstrated that
important visually invisible processes such
as directed coherence, phase delays, phase
locking, and phase shifting of different

frequencies is critical in cognitive functions
and various clinical disorders (Buzsaki,
2006; Sauseng & Klimesch, 2008; Thatcher
et al., 2009). Phase shift and phase syn-
chrony has been shown to be one of the
fundamental processes involved in the
coordination of neural activity located in
spatially distributed ‘‘modules’’ at each
moment of time (Breakspear & Terry, 2002;
Freeman, Burke, & Homes, 2003; Freeman
& Rogers, 2002; Lachaux et al., 2000;
Sanseug & Klemish, 2008; Thatcher,
North, & Biver, 2005a, 2008a, 2008b;
Thatcher et al., 2009).

VALIDITY OF COHERENCE
AND PHASE

Coherence is a measure of the stability of
phase differences between two time series.
Coherence is not a direct measure of an attri-
bute like ‘‘temperature’’ or ‘‘volts,’’ instead it
is a measure of the ‘‘reliability’’ of phase dif-
ferences in a time series. If the phase differ-
ences are constant and unchanging over
time then coherence equals 1. If, on the other
hand, phase differences are changing over
time and are random over time then coher-
ence equals 0 (i.e., unreliable over time).
Therefore, unlike absolute power, coherence
is not a straightforward analytical measure;
rather coherence depends on multiple time
samples to compute a correlation coefficient
in the frequency or time domains. The val-
idity and reliability of coherence fundamen-
tally depends on the number of time
samples as well as the number of connections
(N) and the strength of connections (S) in a
network, or Coherence¼N�S. Thus, it is
sensitive to the number and strength of con-
nections and therefore as the number or
strength of connections decreases then
coherence decreases. This is because it is a
valid network measure and as one would
expect the reliability of the coherence mea-
sure declines when the number or strength
of connections declines. Here is an instance
where the validity of coherence is established
by the fact that the reliability is low, that is,
no connections means no coupling and
coherence approximates zero.
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To evaluate the validity of coherence, it is
important to employ simulations using cali-
brated sine waves mixed with noise. In this
manner a linear relationship between the
magnitude of coherence and the magnitude
of the signal-to-noise ratio can be demon-
strated, which is a direct measure of the pre-
dictive validity and concurrent validity of
coherence. For example, if one were to use
an invalid method to compute coherence
such as with an average reference, then it is
irrelevant what the stability of the measure
is because coherence is no longer measuring
phase stability between two time series and
therefore has limited physiological validity.

Figure 1 is an example of a validation test
of coherence using 5Hz sine waves and a 30�

shift in phase angle with step-by-step
addition of random noise. As shown in
Figure 1, a simple validity test of coherence
is to use a signal generator to create a cali-
brated 1 mV sine wave at 5Hz as a reference
signal, and then compute coherence to the
same 1 mV sine wave at 5Hz but shifted by

30� and adding 2 mV of random noise, then
in the next channel add 4 mV of random
noise, then 6 mV, and so on.

Mathematically, validity equals a linear
relationship between the magnitude of
coherence and the signal-to-noise ratio, that
is, the greater the noise, the lower is coher-
ence. If one fails to obtain a linear relation-
ship, then the method of computing
coherence is invalid. If one reliably produces
the same set of numbers but a nonlinear
relationship (i.e., no straight line) occurs,
then this means that the method of comput-
ing coherence is invalid (the method reliably
produces the wrong results or is reliably off
the mark). Figure 2 shows the results of the
coherence test in Figure 1 and demonstrates
a linear relationship between coherence and
the signal-to-noise ratio, thus demonstrating
that a standard Fast Fourier Transform
(FFT) method of calculating coherence using
a single common reference (e.g., one ear,
linked ears, Cz, etc.) is valid. Note that the
phase difference of 30� is preserved even

FIGURE 1. An example of four 1 uV and 5Hz sine waves with the second to the 4th sine wave shifted by 30
degrees. Note. Gaussian noise is added incrementally to channels 2 to 4. Channel 2¼ 1 uV signal þ2 uV of
noise, channel 3¼ 1 uV signal þ4 uV of noise and channel 4¼ 1 uV signal þ6 uV of noise. Nineteen channels
were used in the analyses of coherence in 2 uV of noise increments. The Fast Fourier Transform analysis is
the mean of thirty 2-s epochs sampled at 128Hz.
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when coherence is less than 0.2. The preser-
vation of the phase difference and the linear
decrease as a function of noise is a math-
ematical test of the validity of coherence.

WHY THE AVERAGE REFERENCE
OR LAPLACIAN MONTAGES ARE
INVALID WHEN COMPUTING
COHERENCE AND PHASE

DIFFERENCES

An important lesson in reliability and val-
idity is taught when examining any study
that fails to use a common reference when
computing coherence. For example, the
average reference mathematically adds the
phase differences between all combinations
of scalp EEG time series, and then divides
by the number of electrodes to form an
average. Finally, the average is subtracted
time point by time point from the original
time series recorded from each individual

electrode, thereby replacing the original time
series with a distorted time series. This pro-
cess scrambles up the physiological phase
differences so that they are irretrievably lost
and can never be recovered. The method of
mixing phase differences precludes meaning-
ful physiological or clinical correlations since
measures such as conduction velocity or
synaptic rise- or fall-times can no longer be
estimated due to the average referencing.

Also, coherence methods such as ‘‘direc-
ted coherence’’ cannot be computed and
more sophisticated analyses such as phase
reset, phase shift and phase lock are pre-
cluded when using an average reference.
The mixing together of phase differences in
the EEG traces is also a problem when using
the Laplacian transform. Similarly, recon-
struction of EEG time series using ICA also
replaces the original time series with an
altered one that eliminates any physiological
phase relationships and therefore is an inva-
lid method of calculating coherence as well.

FIGURE 2. Top is coherence (y-axis) vs signal-to-noise ratio (x-axis). Bottom is phase angle on the y-axis and
signal-to-noise ratio on the x-axis. Note. Phase locking is minimal or absent when coherence is less than
approximately 0.2 or 20%. The sample size was 60 s of EEG data and smoother curves can be obtained
by increasing the epoch length.
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One may obtain high reliability in test–retest
measures of coherence; however, the reliability
is irrelevant because the method of compu-
tation using an average reference or a Lapla-
cian montage to compute coherence is
invalid in the first place.

As pointed out by Nunez (1981), ‘‘the
average reference method of EEG recording
requires considerable caution in the
interpretation of the resulting record’’ (p.
194) and that ‘‘the phase relationship
between two electrodes is also ambiguous’’
(p. 195). As mentioned previously, when
coherence is near unity then the oscillators
are synchronized and phase and frequency
locked. This means that when coherence is
too low (e.g., <0.2), then the estimate of
the average phase angle may not be stable
and phase relationships could be nonlinear
and not synchronized or phase locked.

The distortions and invalidity of the aver-
age reference and Laplacian transform are
easy to demonstrate using calibrated sine
waves mixed with noise just as was done in
Figures 1 and 2. For example, Figure 3
shows the same simulation as shown in
Figure 2, with a 30� phase shift as used for
coherence with a common reference. The
top row is coherence on the y-axis and the
bottom row is the phase difference, the left
column is using the average reference and
the right column is the Laplacian. It can be
seen here that coherence is extremely vari-
able and does not decrease as a linear func-
tion of signal-to-noise ratio using either the
average reference nor the Laplacian mon-
tage. It can also be seen in Figure 3 that
EEG phase differences never approximate
30� and are extremely variable at all levels
of the signal-to-noise ratio.

FIGURE 3. Left top is coherence (y-axis) versus signal-to-noise ratio (x-axis) with a 30� phase shift as shown
in Figure 2 using the average reference. Note. The left bottom is phase differences in degrees in the y-axis and
the x-axis is the signal-to-noise ratio using the average reference. The right top graph is coherence (y-axis)
versus signal-to-noise ratio (x-axis) using the Laplacian montage. The right bottom is phase difference on
the y-axis and signal-to-noise on the x-axis using the Laplacian montage. In both instances, coherence drops
off rapidly and is invalid with no linear relationship between signal and noise. The bottom graphs show that
both the average reference and the Laplacian montage fails to track the 30� phase shift that was present
in the original time series. In fact, the phase difference is totally absent and unrepresented when using an
average reference or a Laplacian montage and these simulations demonstrate that the average reference
and the Laplcain montage are not physiologically valid because they do not preserve phase differences or
the essential time differences on which the brain operates.
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The results of these analyses are consistent
with those by Rappelsberger (1989), who
emphasized the value and validity of using
a single reference and linked ears in estimat-
ing the magnitude of shared or coupled
activity between two scalp electrodes. The
use of remontage methods such as the aver-
age reference and Laplacian source deri-
vation are useful in helping to determine
the location of the sources of EEG of differ-
ent amplitudes at different locations. How-
ever, the results of this study showed that
coherence is invalid when using either an
average reference or the Laplacian source
derivation. This same conclusion was also
demonstrated by Essl and Rappelsburger
(1998); Kamiński and Blinowska (1991);
Kamiński, Blinowska, and Szellenberger
(1997); and Korzeniewska, Mańczak,
Kamiński, Blinowska, and Kasicki (2003).

The average reference and the Laplacian
transform also distort measures of phase dif-
ferences, which is also easy to demonstrate
by using calibrated sine waves. For example,
a sine wave at Fp1 of 5Hz and 100 mV
with zero phase shift, Fp2 of 5Hz and

100 mV with 20� phase shift; F3 of 5Hz and
100 mV with 40� phase shift; F4 of 5Hz
and 100 mV with 60� phase shift; C3 of 5Hz
and 100 mV with 80� phase shift; C4 of
5Hz and 100 mV with 100� phase shift; P3
of 5Hz and 100 mV with 120� phase shift;
P4 of 5Hz and 100 mV with 140� phase
shift; O1 of 5Hz and 100 mV with 160� phase
shift and O2 of 5Hz and 100 mV with 180�

phase shift and channels F8 to Pz¼ 0 mV
and zero phase shift. Figure 4 compares
the incremental phase shift with respect to
Fp1 using linked ears common reference
(solid black line), the average reference (long
dashed line), and the Laplacian (short
dashed line). This is another demonstration
of how a noncommon reference such as the
average reference and the Laplacian scram-
ble phase differences and therefore caution
should be used and only a common reference
recording (any common reference and not
just linked ears) is the only valid method of
relating phase differences to the underlying
neurophysiology, for example, conduction
velocities, synaptic rise times, directed coher-
ence, phase reset, and so on.

FIGURE 4. Demonstration of distortions in phase differences in a test using 20� increments of phase differ-
ence with respect to Fp1. Note. The solid black line is using a Linked Ears common reference, which accu-
rately shows the step-by-step 20� increments in phase difference. The average reference (dash-dot line)
and the Laplacian (dashed line) significantly distort the phase differences.

Technical Corner 129

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
W
N
E
U
 
J
o
u
r
n
a
l
 
o
f
 
N
e
u
r
o
t
h
e
r
a
p
y
]
 
A
t
:
 
0
1
:
2
7
 
8
 
J
u
n
e
 
2
0
1
0



VALIDITY BY HYPOTHESIS
TESTING AND QEEG NORMATIVE

DATABASES

The Gaussian or Normal distribution is
an ideal bell-shaped curve that provides a
probability distribution which is symmetrical
about its mean. Skewness and kurtosis are
measures of the symmetry and peakedness,
respectively of the Gaussian distribution. In
the ideal case of the Gaussian distribution
skewness and kurtosis¼ 0. In the real world
of data sampling distributions skewness
and kurtosis¼ 0 is never achieved and, there-
fore, some reasonable standard of deviation
from the ideal is needed to determine
the approximation of a distribution to
Gaussian. The primary reason to approxi-
mate ‘‘normality’’ of a distribution of EEG
measures is that the sensitivity (i.e., error
rate) of any normative EEG database is
determined directly by the shape of the
sampling distribution. In a normal distri-
bution, for example, one would expect that

approximately 5% of the samples will be
equal to or greater than �2 SD and approxi-
mately 0.13%� 3 SD (John, 1977; John,
Prichep, & Easton, 1987; Hayes, 1973;
Prichep, 2005; Thatcher, Biver, & North,
2003; Thatcher, Walker, Biver, North, &
Curtin, 2003).

A practical test of the sensitivity and accu-
racy of a database can be provided by cross-
validation. There are many different ways to
cross-validate the contents of a database.
One is to obtain independent samples, and
another is to use a leave-one-out cross-
validation method to compute Z scores for
each individual subject within it. The former
is generally not possible because it requires
sampling large numbers of additional parti-
cipants who have been carefully screened
for clinical normality. However, the second
method is certainly possible for any database.
Gaussian cross-validation of an EEG
database can be accomplished by the latter
method in which a participant is removed
from the distribution and the Z scores

FIGURE 5. Example of Gaussian cross-validation of EEG normative database. Source: Thatcher, Walker,
et al. (2003).
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computed for all variables based on his or her
respective age matched mean and standard
deviation in the normative database. The
participant is placed back in the distribution
and then the next participant is removed
and a Z score is computed, and this process

is repeated for each normal participant to
obtain an estimate of the false positive
hit rate. A distribution of Z scores for each
of the EEG variables for each participant
was then tabulated. Figure 5 is an example
of the Gaussian distributions of the

TABLE 1. Cross-validation of EEG normative database.

Measure %> 2SD %< 2SD %> 3SD %< 3SD

Delta Amplitude Asym. 2.58 3.08 0.21 0.19
Theta Amplitude Asym. 2.29 2.62 0.15 0.13
Alpha Amplitude Asym. 2.71 2.72 0.18 0.19
Beta Amplitude Asym. 2.68 2.65 0.15 0.15
Delta Coherence 1.99 2.14 0.14 0.22
Theta Coherence 2.22 1.88 0.22 0.16
Alpha Coherence 2.55 1.62 0.18 0.18
Beta Coherence 2.20 1.38 0.18 0.10
Delta Phasey 0.89 3.52 0.00 0.23
Theta Phasey 1.61 1.87 0.04 0.13
Alpha Phasey 1.61 1.66 0.04 0.24
Beta Phasey 2.83 0.72 0.27 0.03
Absolute Powery 4.15 1.67 0.23 0.12
Relative Power 4.09 0.52 0.68 0.00
Total Powery 4.23 1.60 0.08 0.04
Average 2.58 1.98 0.18 0.14

Note. Source: Thatcher, Walker, et al. (2003).
y
Transformed data.

FIGURE 6. Illustration of method of computing error rates or sensitivity of a normative EEG database based
on the cross-validation deviation from Gaussian. Note. Source: Thatcher, Walker, et al. (2003).
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cross-validated Z scores of 625 participants
from birth to 82 years of age used in a norma-
tive EEG database (Thatcher, Walker, et al.,
2003).

Table 1 shows the results of a Gaussian
cross-validation of the 625 participants in
the normative EEG database used in the
evaluation of patients (Thatcher, Walker,
et al., 2003). A perfect cross-validation
would be 2.3% at þ2 SD, 2.3% at �2 SD,
0.13% at þ3 SD, and 0.13% at �3 SD.
Table 1 shows a cross-validation grand aver-
age of 2.28%� 2 SD and 0.16%� 3 SD. The
cross-validation result shows that the EEG
normative database is statistically accurate
and sensitive with slight differences between
variables that should be taken into account
when evaluating individual Z scores.

Figure 6 is a bell-shaped curve showing
the ideal Gaussian and the average cross-
validation values of the EEG normative
database used to evaluate patients. The error
rates or the statistical sensitivity of a qEEG
normative database are directly related to
the deviation from a Gaussian distribution.
Figure 6 also illustrates the method of
estimating the statistical sensitivity of a
normative EEG database in terms of the
deviation from Gaussian.

Table 2 is an example of the calculated
sensitivity of an EEG normative database

for different age groups using the method
described in Figure 6.

PREDICTIVE VALIDITY OF
NORMATIVE DATABASES

Predictive (or criterion) validity has a
close relationship to hypothesis testing by
subjecting the measure to a discriminant or
cluster analysis to some statistical analysis
in order to separate a clinical subtype from
a normal reference database. Nunnally
(1978) gave a useful definition of predictive
validity as ‘‘when the purpose is to use an
instrument to estimate some important form
of behavior that is external to the measuring
instrument itself, the latter being referred to
as criterion [predictive] validity’’ (p. 87).
For example, science ‘‘validates’’ the clinical
usefulness of a measure by its false positive
and false negative rates and by the extent
to which there are statistically significant
correlations to other clinical measures and,
especially, to clinical outcomes (Hughes &
John, 1999).

An example of predictive validity of
the Linked Ears qEEG normative database
is the use of a discriminant function to evalu-
ate the false positive=false negative classi-
fication rate using a normative database

TABLE 2. Normative EEG database sensitivities for different age groups at �2SD and �3SD.

FFT Normative Database

2 STDEVs CALC SENSITIVITY: FP¼TP=(TPþFP) or FN¼TP=(TPþFN)
AGES (þ=�2SD) (>¼ 2SD) (<¼�2SD)
0–5.99 0.95448265 0.9771774 0.97730526 þ=�2 Std. Dev.
6–9.99 0.95440363 0.9772031 0.97720054
10–12.99 0.9543997 0.97724346 0.97715624
13–15.99 0.95440512 0.97723601 0.97716911
16-ADULT 0.9543945 0.97718143 0.97721307
ALL 0.95442375 0.97720714 0.97721661

3 STDEVs CALC SENSITIVITY: FP¼TP=(TPþFP) or FN¼TP=(TPþFN)
AGES (þ=�3SD) (>¼ 3SD) (<¼�3SD)
0–5.99 0.99743898 0.99871123 0.99872774 þ=�3 Std. Dev.
6–9.99 0.99744112 0.99871611 0.99872501
10–12.99 0.99744688 0.99873171 0.99871518
13–15.99 0.99743186 0.99871951 0.99871234
16-ADULT 0.99743835 0.99870216 0.99873619
ALL 0.99744002 0.99871716 0.99872286

Note. FFT¼Fast Fourier Transform. Source: Thatcher, Walker, et al. (2003).
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and traumatic brain injury (TBI) patients
(Thatcher, Walker, Gerson, & Geisler,
1989). In this study the traumatic brain
injured patients were distinguished from
age-matched normal control participants at
a classification accuracy of 96.2%. Four dif-
ferent cross-validations were conducted in
the Thatcher et al. (1989) study and showed

similar accuracies although the strength of
the discrimination declined as a function of
time from injury to test.

Figure 7 shows the correlation to neuro-
psychological test scores in an independent
replication of the Thatcher et al. (1989)
study. In this study a similar discriminant
function produced similar sensitivities and

FIGURE 7. Example of predictive and content validity by clinical correlations of quantitative EEG (QEEG) with
neuropsychological test scores. Note. TBI¼ traumatic brain injury; WAIS¼Wechsler Adult Intelligence Scale.
Source: Thatcher, North, et al. (2001), reprinted with permission.

FIGURE 8. Example of content validity demonstrated by statistically significant correlations between
Full-Scale IQ and quantitative EEG (from Thatcher, North, & Biver, 2005a, reprinted with permission).
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predicted the Glasgow Coma Score with a
correlation of 0.85 (Thatcher, North, et al.,
2001). Another example of predictive val-
idity is the ability of qEEG normative values
to predict cognitive functioning. Figure 8
shows correlations to Full-Scale IQ as an
example of predictive validity and content
validity. A more complete analysis of the
predictive validity of a normative EEG data-
base is shown in Table 3 (Thatcher, Walker,
et al., 2003; Thatcher, North, & Biver,
2005b, 2005c). In Table 3, the percentage
of statistically significant correlations at
p< .01 between qEEG normative EEG and
WRAT School Achievement scores and
measures of intelligence are shown. The rela-
tive effect size of the normative EEG correla-
tions differs for different measures, which
is valuable information when using any

normative database, not just a qEEG nor-
mative database. Similar high and significant
correlations between qEEG and neuropsy-
chological test performance have been pub-
lished in many studies. A search of the
National Library of Medicine’s database
using the search terms EEG and Neuropsy-
chological Tests produced 1,351 citations.

EXAMPLES OF CONTENT VALIDITY
OF NORMATIVE DATABASES

Content validity is defined by the extent to
which an empirical measurement reflects a
specific domain of content. For example, a
test in arithmetic operations would not be
content valid if the test problems focused
only on addition, thus neglecting subtraction,

TABLE 3. Examples of predictive validity by clinical correlations between quantitative EEG and intelligence
(Wechsler Intelligence Scale for Children–Revised) and academic achievement tests (Wide Range
Achievement Test).

EFFECT SIZE P< .01: qEEG Correlations with School Achievement & IQ Measures

Percent Significant Correlations @ P< .01, N¼ 466

P <= .01 READING SPELLING ARITH IQFULL IQVERB IQPERF

Amplitude Asymmetry
DELTA 64% 61% 55% 64% 61% 61%
THETA 78% 70% 70% 70% 67% 59%
ALPHA 63% 63% 53% 64% 63% 52%
BETA 56% 56% 34% 58% 61% 47%

Coherence
DELTA 27% 14% 41% 38% 22% 38%
THETA 27% 6% 36% 30% 27% 23%
ALPHA 9% 6% 45% 11% 14% 5%
BETA 11% 5% 38% 22% 17% 6%

Absolute Phase
DELTA 11% 8% 8% 16% 6% 17%
THETA 9% 5% 8% 13% 9% 17%
ALPHA 9% 3% 33% 14% 19% 6%
BETA 9% 5% 30% 6% 9% 3%

Relative Power
DELTA 13% 0% 31% 0% 6% 0%
THETA 56% 44% 94% 6% 6% 0%
ALPHA 19% 0% 75% 0% 0% 0%
BETA 13% 6% 44% 19% 13% 13%

Relative Power Ratios
Theta=Beta 50% 44% 63% 56% 56% 50%
Theta=Alpha 13% 0% 69% 0% 0% 0%
Alpha=Beta 50% 31% 50% 38% 38% 25%
Delta=Theta 19% 25% 56% 19% 13% 25%

Note. Source: Thatcher, Walker, et al. (2003).
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multiplication, and division. By the same
token, a content-valid measure of cognitive
decline following a stroke should include
measures of memory capacity, attention and
executive function, and so on.

Normative databases are distinct from
small experimental control groups in their
scope and their sampling restriction to clini-
cally normal or otherwise healthy individuals
for the purpose of comparison. Another dis-
tinguishing characteristic of normative data-
bases is the ability to compare a single
individual to a population of ‘‘normal’’ indi-
viduals in order to identify the measures that
are deviant from normal and the magnitude
of deviation. Normative databases them-
selves do not diagnose a patient’s clinical
problem. Rather, a trained professional first
evaluates the patient’s clinical history and
clinical symptoms and complaints and then
uses the results of normative database com-
parisons to aid in the development of an
accurate clinical diagnosis. Most important,
this is to link functional localization of
deregulated brain regions (i.e., anatomical
hypotheses) to a patient’s symptoms and
complaints.

There are many examples of the clinical
content validity of qEEG and normal control
groups in attention deficit disorder, attention
deficit=hyperactivity disorder, schizophrenia,
compulsive disorders, depression, epilepsy,
TBI, and a wide number of clinical groupings
of patients as reviewed by Hughes and John
(1999). In most of these studies an assortment
of clinical measures were correlated to a
variety of brain EEG sources related to the
disorder under study. One of the most con-
sistent and relevant findings is anatomical
localization related to different psychiatric
and psychological disorders, for example,
cingulate gyrus and depression, right parietal
lobe and spatial neglect, left angular gyrus
and dyslexia, and so on. QEEG anatomical
correlations with clinical disorders form the
foundation of modern day qEEG interpret-
ation, another example of content validity.
Since 1999, several hundred qEEG studies
demonstrate anatomical and clinical validity.
For example, all clinical LORETA qEEG
studies demonstrate anatomical content val-
idity in that there are no published studies

showing low localization accuracy when
using LORETA. The term ‘‘Low Resolution
Electromagnetic Tomography’’ refers to a
‘‘smearing’’ around the spatially accurate
maximum in the center of a spatial volume.
This is defined by the point-spread function
of the Laplacian spatial operator in LOR-
ETA, meaning that LORETA is spatially
accurate but with a smeared resolution like
a probability cloud. Clinical correlations
consistent with PET and SPECT and fMRI
are abundant in today’s scientific literature
(see the National Library of Medicine data-
base at https:==www.ncbi.nlm.nih.gov/sites/
entrez and see the section in this article
on Validity of LORETA for some specific
citations).

ANATOMICAL HYPOTHESIS
TESTING AND PLANNED QEEG

COMPARISONS

The best use of parametric statistics is to
form hypotheses prior to conducting an
analysis in a procedure referred to as
Planned Comparisons (Hayes, 1973). In this
manner, one does not need to resort to mul-
tiple comparisons that are performed only
when an experimenter isn’t sure what the test
is likely to yield and is unaware of possible
statistically significant differences. Being
unsure of possible statistically significant dif-
ference, it is not possible to form hypotheses,
and one then must resort to multiple com-
parisons, which have may yield high Type
II errors (false negatives) to reduce the Type
I errors (false positives) because of possible
false relationships between groups or
between variables.

Planned comparisons are more robust and
valid than multiple comparisons because
specific hypotheses are generated prior to
conducting statistical tests, which markedly
minimizes the probability of both Type I
and Type II errors. A complaint of the use
of qEEG is that there are a large number of
statistical tests, and one would expect 5% to
be significant by chance alone. The problem
with this argument is that the 5% by chance
must be random in space and in qEEG
features. The random chance argument is
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discarded, however, when there are focal ana-
tomical deviations that were predicted prior
to analysis. Additional content validity
occurs when the deviant qEEG findings are
located in anatomical regions known to be
linked to the patient’s symptoms and clinical
history. For example, the MRI uses approxi-
mately 10,000 voxels. One would expect 500
to be significant by chance at p< .05 if these
500 voxels are randomly distributed through-
out the volume. However, if 100 voxels are
statistically significant in the right parietal
lobe, which is where the brain insult was, then
the 5% significant multiple test argument is
not valid and must be discarded. The same
is true for the qEEG. For example, if one uses
planned comparisons and predicts that the
left parietal lobe will be deviant from normal
in a dyslexic child prior to recording EEG
and the qEEG shows many deviations from
normal in the left parietal region, then this
cannot be explained by chance alone. The
use of planned comparisons is especially

valuable when using LORETA source locali-
zation methods because thousands of voxels
are involved. An example, of planned com-
parisons is in Figure 9. Here the surface
qEEG analyses showed focal deviation from
normal in the right hemisphere in a patient
that was struck with a bat near to his right
parietal lobe. The sources of the right parietal
lobe deviations from normal are then pre-
dicted to appear in particular Brodmann
areas prior to launching LORETA. Once
LORETA is launched then the frequency
and anatomical hypotheses can be tested to
determine their accuracy and validity.

PREDICTIVE VALIDITY AND qEEG

Predictive validity is sometimes referred to
as ‘‘criterion validity’’ and has a close
relationship to hypothesis testing by subject-
ing the measure to an independent test of its
ability to predict clinical measures such as

FIGURE 9. Example of ‘‘planned comparisons’’ using hypothesis creation prior to launching LORETA. Note.
Content and construct validity are present because the patient was hit on the right parietal lobe and the right
parietal lobe shows deviant EEG activity (e.g., >2 SD). Further construct validity is established by LORETA
analyses that confirm anatomical hypotheses based on the surface EEG locations and frequencies of
deviance.
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severity of injury or intelligence, attention,
executive function, and so on. Nunnally
(1978) gave a useful definition of predictive
validity: ‘‘When the purpose is to use an
instrument to estimate some important form
of behavior that is external to the measuring
instrument itself, the latter being referred to
as criterion-validity’’ (p. 88). For example,
one ‘‘validates’’ a written driver’s license test
by hypothesizing that it accurately predicts
how well a group of persons can operate an
automobile. If the driving test fails to predict
driving competence, then the test must be
rejected or replaced. In the case of TBI,
one ‘‘validates’’ the qEEG by showing that
it accurately predicts severity of TBI as mea-
sured by hospital admission scores such as
the Glasgow Coma Score or length of coma
or in other independent tests such as neuro-
psychological tests and so on (Hughes &
John, 1999).

FALSE POSITIVE AND FALSE
NEGATIVE ERROR RATES OF qEEG:
EXAMPLE OF CONTENT VALIDITY
IN TRAUMATIC BRAIN INJURY

Peer-reviewed scientific publications of
608 mild TBI patients compared to 108
age-matched normal participants demon-
strated, in independent cross-validations, an
average false positive rate approximately
5% and an average false negative rate of
approximately 10% to 15% (Thatcher et al.,
1989). Similar levels of sensitivity and speci-
ficity were reported in a series of inde-
pendent and replicated qEEG studies of
TBI for the detection of a pattern consistent
with traumatic brain injury as a causal agent
(Leon-Carrion et al., 2008b; Thatcher et al.,
1991; Thatcher, North, et al., 2001; Thorn-
ton, 1999; Thornton & Carmody, 2005).
Obtaining a content-valid measure of any
phenomenon involves at least three inter-
related steps: (a) One must be able to specify
the full domain of content that is relevant,
(b) one must be able to identify the selection
of relevant measures from the larger universe
of possible measures with the understanding
that over sampling is usually necessary, and
(c) one must be able to test the content

validity of the measuring instrument and=
or be able to cite the peer reviewed literature
in which the content-validity of the qEEG
had been tested. As stated by Cronbach
(1977), ‘‘One validates, not a test, but an
interpretation of data arising from a specified
procedure’’ (p. 447). This distinction is cru-
cial because it is quite possible for a measur-
ing instrument to be relatively valid for
measuring one kind of phenomenon but
entirely invalid for assessing other phenom-
ena. The purpose of qEEG discriminant
functions is not to derive a diagnosis because
the diagnosis should be based on the
patient’s clinical history and symptoms and
complaints. QEEG discriminant functions
are designed to further evaluate the extent,
locations, and severity of the EEG patterns
that are present in individuals already diag-
nosed with a disorder.

QEEG involves the measurement of a
relatively large number of electrical processes
some of which may be affected by a TBI. For
example, animal studies and imaging studies
in humans have demonstrated that maximal
damage to the brain following TBI occurs
at the interface between the brain and the
skull bone (Ommaya, 1968, 1995; Ommaya
& Hirsch, 1971). Another primary and com-
mon injury to the brain due to TBI are
‘‘shear’’ forces in which rapid acceleration=
deceleration events result in different brain
parts moving at different rates; for example,
the gray matter moves faster and further
than the white matter, consequently stretch-
ing axonal fibers, and so on (Ommaya,
1968). Thus, a content valid qEEG measure
of TBI should be capable of measuring elec-
trical activity in frontal and temporal lobes
where the brain-to-skull forces are greatest.
Similarly, a content valid qEEG test of TBI
must be capable of measuring EEG phase
and EEG coherence, which reflect the axonal
conduction velocities and long-distance cor-
tical communication linkages (Thatcher,
Biver, McAlaster, et al., 1998; Thatcher,
Biver, et al., 2001; Thatcher et al., 1989). If
these measures are omitted, then the test is
not valid for the same reason that a test of
arithmetic is invalid if it omits addition and
subtraction. Over the years there is reason-
able consistency of qEEG findings in TBI
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across studies which can be summarized by
(a) reduced power in the higher frequency
bands (8–40Hz), which is linearly related to
the magnitude of injury to cortical gray mat-
ter; (b) increased slow waves in the delta fre-
quency band (1–4Hz) in the more severe
cases of TBI, which is linearly related to
the magnitude of cerebral white matter
injury; (c) changes in EEG coherence and
EEG phase delays, which are linearly related
to the magnitude of injury to both the gray
matter and the white matter, especially in
frontal and temporal lobes (Thatcher, 2008).

QEEG CONSTRUCT VALIDITY

Construct validity is concerned with the
validity of empirical measures and the
hypothesis testing of theoretical concepts.
As Carmines and Zeller (1979) stated, ‘‘Con-
struct validity is concerned with the extent to
which a particular measure relates to other
measures consistent with theoretically
derived hypotheses concerning the concepts
that are being measured’’ (p. 23) Construct
validity typically involves three steps: (a)
the theoretical relationship between the
concepts themselves must be specified and
testable hypotheses stated; (b) the empirical
relationship between the measures of the
concepts must be examined; and (c) the
empirical evidence must be interpreted in
terms of how it affirms, rejects, or clarifies
the construct validity of the particular
measure.

For example, in qEEG measures of TBI,
one hypothesis is that rapid acceleration=
deceleration contuses (bruises) brain tissue,
especially where the brain sits on the bony
skull vault (Ommaya, 1968, 1995), another
theory is that damage to neuronal mem-
branes will result in reduced ionic flow and
reduced amplitude of the EEG and high
frequencies and a shift in frequency toward
the theta and delta frequencies (lower
frequency ranges). These two theoretical
hypotheses regarding which qEEG measures
would be expected to change following
TBI have been tested and confirmed in the
peer reviewed scientific literature (Cao,
Tutwiler, & Slobounov, 2008; Leon-Carrion

et al., 2008a, 2008b; Randolph & Miller,
1998; Thatcher, Biver, Camacho, et al., 1998;
Thatcher, Biver, McAlaster, et al., 1998;
Thatcher, North, et al., 2001; Thatcher
et al., 1991; Thatcher et al., 1989; Thornton,
1999; Thornton & Carmody, 2005).

The qEEG is also used for prognoses in
the neurointensive care unit. Fabregas et al.
(2004) reported a cross-validation perform-
ance error of 3.06% (95% confidence inter-
val) for predicting recovery from coma.
Similar accuracy of predicting recovery of
consciousness was reported by others
(Buzea, 1995; Claassen, 2000; Hyllienmark
& Amark, 2007; Jordan, 1993; Kane, Moss,
Curry, & Butler, 1998; Scheuer, 2002; Shields
et al., 2007; Thatcher et al., 1991). Jordan
(1993) reported that qEEG can impact medi-
cal decision-making in 81% of the monitored
patients, and Claassen, Baeumer, and Hansen
(2000) reported that qEEG findings influ-
enced therapeutic management with decisive
decisions on many occasions.

Figure 10 is an example of construct val-
idity of the qEEG in the measurement of
TBI in which correlations of MRI were used
to test the null hypothesis¼ 0, about damage
to the average concentration of ionic chan-
nels in a volume of cortex that produces
EEG (Thatcher, Biver, Camacho, et al.,
1998; Thatcher, Biver, et al., 2001; Thatcher,
Biver, McAlaster, et al., 1998).

In Figure 10, construct validity of qEEG
was tested by examining the hypothesized
relationship between the integrity of gray
matter membranes using the MRI and the
amplitude and coherence of the EEG. The
hypothesis predicted reduced connectivity
and a decline in amplitude of the EEG
related to decreased integrity of neural mem-
branes. The results of the construct validity
tests of the qEEG in TBI were shown as
valid as reported in peer-reviewed publica-
tions (Thatcher, Biver, Camacho, et al.,
1998; Thatcher, Biver, et al., 2001; Thatcher,
Biver, McAlaster, et al., 1998). These same
studies also tested content validity by corre-
lating the independent MRI measures with
selected qEEG measures. Finally, predictive
validity was also tested by correlations with
neuropsychological test scores, which covar-
ied with both the qEEG and the MRI in a
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predictable manner. A similar cross-
validation study was performed by Korn,
Golan, Melamed, Pascual-Marqui, and
Friedman (2005) showing significant correla-
tions between LORETA current source
activity and SPECT scans in TBI patients.

VALIDITY OF A LORETA qEEG
NORMATIVE DATABASE

There are more than 795 peer-reviewed
journal articles on the use of LORETA for
the identification of the three-dimensional
sources of the EEG in many different clinical
populations. Because different regions in the
brain are involved in different functional sys-
tems, the reliability and validity of LORETA
is established by the degree to which accurate
localization is demonstrated and by repeat-
ability across participants and across experi-
ments. It is easy to demonstrate content
validity by showing that different samples
of EEG yield the same localization and=or
that a particular local event in the EEG

corresponds to an expected source of that
event. For example, alpha spindles maximum
in O1 and O2 are localized to the occipital
cortex by LORETA and not somewhere
unexpected (e.g., right temporal lobe, etc.).

The reliability and validity of LORETA
source localization can be demonstrated
using mathematical simulations and stan-
dard tests in Systat and SPSS as well as by
determining that the distribution of current
sources is represented by a Gaussian distri-
bution. To the extent the individual variables
are Gaussian distributed, the mathematics of
parametric statistics are valid and useful.
Thus, the first step in evaluating the validity
of a LORETA normative database is to test
and establish that the current sources are
Gaussian distributed. Figure 11 shows the
distribution of current source densities after
log10 transform in 1Hz frequency bands
from 1 to 9Hz. It also shows that a reason-
able approximation to a Gaussian distri-
bution was achieved by the log10 transform.
The distribution of current source densities
with the Box-Cox transform were essentially

FIGURE 10. An example of construct validity of the quantitative EEG (QEEG) to correlate with the magnetic
resonance imaging (MRI) in the estimate of traumatic brain injury. Note. Source: Adapted from Thatcher,
Biver, Camacho, et al. (1998) and Thatcher, Biver, McAlaster, et al. (1998), reprinted with permissions.
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the same as for the log10 and therefore are
not displayed.

Standard cross-validation methods can
also be used to establish reliability and val-
idity. That is, the classification of normal
subjects as not being normal by a leave-one-
out cross-validation procedure or by a direct
cross-validation procedure provides an esti-
mate of the false positives and false negatives
of the normative database.

Table 4 shows the skewness and kurtosis
of the log10 transformed data and the percen-
tages of Z scores at �2 SD and �3 SD for
each of the 1Hz frequency bands for the
eyes-closed condition for linked ears refer-
ence. The sensitivities ranged from 95.64%
at 2 SD to 99.75% at 3 SD. Average skew-
ness is 0.29 and average kurtosis is 0.68
Thus, gaussianity can be approximated at a
frequency resolution of 1Hz. The results of
a leave-one-out cross-validation are pub-
lished in Thatcher et al. (2005b, 2005c).

Another method of establishing content
and construct validity of a LORETA norma-
tive database is to test the accuracy of the

database using patients with confirmed
pathologies where the location of the pathol-
ogy is known by other imaging methods
(e.g., CT scan or MRI or PET, etc.). Validity
is estimated by the extent that there is a high
correspondence between the location of the
confirmed pathology and the location of
the three-dimensional sources of the EEG
that correspond to the location of the path-
ology. Here is a partial list of studies show-
ing concordance validity with fMRI and
LORETA (Brookings, Ortigue, Grafton, &
Carlson, 2009; Esposito, Aragri, et al.,
2009; Esposito, Mulert, et al., 2009;
Mobascher, Brinkmeyer, Warbrick, Musso,
Wittsack, Saleh, et al., 2009; Mobascher,
Brinkmeyer, Warbrick, Musso, Wittsack,
Stoermer, et al., 2009; Schulz et al., 2008;
Yoshioka et al., 2008) and between PET
and LORETA (Horacek et al., 2007; Hu
et al., 2006; Kopeček et al., 2005; Pizzagalli
et al., 2004; Ti�sslerová, Horáček, Brunovský,
& Kopeček, 2005; Zumsteg, Wennberg,
Treyer, Buck, & Wieser, 2005) and between
SPECT and LORETA (Korn et al., 2005).

FIGURE 11. The distribution of the Z scores of the current source density LORETA values at 1Hz resolution.
The y-axis is the number or count and the x-axis is the Z score, defined as the mean—each value in each of
the 2,394 pixels divided by the standard deviation. Note. Source: Thatcher, North, and Biver (2005c), reprinted
with permission.
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Figure 12 shows an example of the EEG
from an epilepsy patient in which maximal
epileptic discharges are present in the left
temporal, left parietal, and left occipital
regions. Content validity of LORETA is
established by the fact that the maximum
amplitude of epileptic activity was in the
left temporal lobe lead (T5) at 3Hz as mea-
sured by the FFT and the Z scores from
the scalp surface. The sources were localized
to Brodmann area 22 or left superior tem-
poral gyrus and Brodmann area 13 of the
left insular cortex.

LORETA is low resolution electromag-
netic tomography (est. 2–4 cm resolution)
so precise millimeter localization of epileptic
foci is beyond the resolution of it. Nonethe-
less, verification of the surface EEG with
three-dimensional source currents allows
one to hypothesize the expected brain
regions based on the surface EEG. In this
case, the hypothesis, based upon the surface
EEG, that there is a source in the left tem-
poral regions (Brodmann areas were pre-
dicted before-hand) was confirmed.

Figure 13 (top) shows an example of the
EEG from a TBI patient with a right hemi-
sphere hematoma. The maximum amplitude
of slow waves (1–6Hz) was in the right pre-
frontal (C4), right parietal (P4), and right
occipital (O2) regions as measured by the
FFT and the Z scores from the scalp surface.

Figure 13 (bottom) shows the Z scores in
LORETA slices in the right hemisphere
hematoma patient as being consistent with
the surface EEG deviation from normal
because they were in the right hemisphere
and near to the area of maximal damage.
The maximum Z scores were present in the
right postcentral gyrus at 5Hz and were
localized to Brodmann area 43 in the right
postcentral gyrus as well as Brodmann areas
13 (right insular cortex) and 41 (right trans-
verse temporal gyrus).

Figure 14 (top) shows an example of the
EEG from a right hemisphere stroke patient.
The maximum Z scores from the scalp EEG
were in the right anterior frontal regions (F4
& Fp2) at 23Hz. It can be seen that the
maximum Z scores were present in the right

FIGURE 12. Top is the EEG from a patient with Left Temporal Lobe epilepsy where the maximum spike and
waves are present in T5, O1, P3 and T3. The FFT power spectrum and the corresponding surface EEG Z
scores are shown in the top right side. Bottom, are the left and right hemisphere displays of the maximal Z
scores using LORETA. It can be seen that only the left temporal lobe has statistically significant Z values.
Planned comparisons and hypothesis testing based on the frequency and location of maximal deviation from
normal on the surface EEG are confirmed by the LORETA Z score normative analysis. Source: Thatcher,
North, and Biver (2005c), reprinted with permission.
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frontal regions at 23Hz and the Key Insti-
tute Talairach Atlas were maximally loca-
lized to Brodmann area 9 (right inferior
frontal gyrus) as well as Brodmann area 6
(right frontal precentral gyrus). This is
another example of validation of a LOR-
ETA Z score normative database in which
three-dimensional hypotheses are formed
(and thus planned comparisons) based on
the surface EEG and the hypothesis is then
tested using LORETA.

CONSTRUCT VALIDITY OF A
LORETA NORMATIVE DATABASE
BASED ON THE SMOOTHNESS AT

1HZ RESOLUTION AND
REGIONS OF INTEREST

Figure 15 is a graph of the rank order of Z
scores for different 1Hz frequency bands
from 1 to 10Hz for the 2,394 current source

values in the right hemisphere hematoma
patient. A smooth distribution of Z scores
with maxima near to the location of the
confirmed injury is expected if parametric
statistics using LORETA are valid, an
example of construct validity. It can be seen
that the rank ordering of the Z scores is
smooth and well behaved at each 1Hz fre-
quency analysis with maximum Z score devi-
ation at 2–6Hz which is the same frequency
band in which the surface EEG was most
deviant from normal (see Figure 13). A
smooth rank ordering of Z scores is expected
if parametric statistical analysis is valid.

RELIABILITY DEFINED

Reliability is the extent to which an
experiment, test, or any measuring pro-
cedure yields the same result on repeated
trials. Researchers and clinicians would be

FIGURE 13. Top is the EEG from a patient with a right hemisphere hematoma where the maximum slows
waves are present in C4, P4 and O2. The Fast Fourier Transform (FFT) power spectrum from 1 to 30Hz
and the corresponding Z scores of the surface EEG are shown in the right side of the EEG display. Bottom
are the left and right hemisphere displays of the maximal Z scores using LORETA. It can be seen that only
the right hemisphere has statistically significant Z values. Planned comparisons and hypothesis testing
based on the frequency and location of maximal deviation from normal on the surface EEG are confirmed
by the LORETA Z score normative analysis. Source: Thatcher, North, and Biver (2005c), reprinted with
permission.
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FIGURE 14. Top is the EEG from a patient with a right frontal lobe stroke where the maximum slows waves
are present in F4 and Fp2. The FFT power spectrum from 1 to 30Hz and the corresponding Z scores of the
surface EEG are shown in the right side of the EEG display. Bottom are the left and right hemisphere displays
of the maximal Z scores using LORETA. It can be seen that only the right hemisphere has statistically signifi-
cant Z values. Planned comparisons and hypothesis testing based on the frequency and location of maximal
deviation from normal on the surface EEG are confirmed by the LORETA Z score normative analysis. Source:
Thatcher, North, and Biver (2005c), reprinted with permission.

FIGURE 15. Evaluation of the smoothness of the Z scores in Figure 13 for frequencies 1 to 10Hz. The
LORETA current source values were rank-ordered for each single hertz frequency. The y-axis is Z scores
and the x-axis is the number of gray matter pixels from 1 to 2,394. Source: Thatcher, North, and Biver
(2005c), reprinted with permission.
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unable to satisfactorily draw conclusions,
formulate theories, or make claims about
the generalizability of their research without
the agreement of independent and replicable
observations nor to be able to replicate
research procedures, or use research tools
and procedures that yield consistent
measurements. The measurement of any
phenomenon always contains a certain
amount of chance error. The null hypothesis
in any test of reliability is where reliability is
0, that is, repeated measurements of the same
phenomenon never duplicate each other and
they are not consistent from measurement to
measurement. The Type I and Type II errors
inherent in the reliability of a sample of digi-
tal EEG and=or qEEG can be measured in
different ways. An acceptable level of
reliability depends on the intended appli-
cation of the method and on the tolerance
of error.

There are various ways to measure
reliability such as (a) the retest method
(stability over time), (b) alternative-form
method, (c) internal consistency, and (d)
split-halves method (Carmines & Zeller,
1979). The particular method of computing
reliability depends on the circumstances
and=or personal choice. It is possible to have
a measure that has high reliability but low
validity, that is, one that is consistent in get-
ting wrong information or is consistent in
missing the mark. It is also possible for
low reliability and low validity, that is,
inconsistent and never on target. Test–retest
reliability,’’ also called ‘‘stability reliability,’’
is a commonly used method of reliability
testing in qEEG and is generally defined as
the agreement of measuring instruments
over time. Alternative-form reliability is
when different measures provide similar
results; for example, EEG coherence and
EEG phase lock duration or coherences ver-
sus comodulation, and so on. To determine
stability, a measure or test is repeated on
the same participants at different points in
time. Results are compared and correlated
with the initial test to give a measure of
stability and to detect changes. The test–
retest reliability statistic is a good method
to detect drowsiness when comparing the
beginning of the EEG recording to the end

of a lengthy recording with eyes closed.
For example, if there is no dramatic change
in state between the beginning and end of
the recording, then one would expect high
test–retest reliability (e.g., >0.9). On the
other hand, if a patient is drowsy or sleeping
near the end of the recording, then one
would expect the test–retest reliability
between the beginning of the record to be
low (e.g., <0.9).

RELIABILITY OF EEG
AUTOPOWER SPECTRUM

The autopower spectrum is the part of the
power spectrum that measures the amount of
energy in a complex wave form at each fre-
quency. The units are in microvolts squared
per cycle per second ormV2=Hz. Amplitude
or magnitude is simply the square root of
power and the same reliability measures are
used for both power and amplitude. The
scientific literature demonstrating high
reliability (e.g., > 0.9) of quantitative EEG
is diverse and quite large and can be read
by visiting the National Library of Medi-
cine’s database at https://www.ncbi.nlm.
nih.gov/sites/entrez?db=pubmed; use the
search terms ‘‘EEG and Reliability’’ and
there are 368 citations, and a quick review
of the abstracts shows that the vast majority,
if not all, of these studies are qEEG studies
and demonstrate high test–retest reliability
of the qEEG. Next is a small but representa-
tive sample of some of the studies demon-
strating high reliability with sample lengths
as short as 20 s (Arruda et al., 1996; Burgess
& Gruzelier, 1993; Chabot, Merkin,
Wood, Davenport, & Serfontein, 1996;
Corsi-Cabrera, Solis-Ortiz, & Guevara,
1997; Duffy, Hughes, Miranda, Bernad, &
Cook, 1994; Fernández et al., 1993; Gasser,
Bacher, & Steinberg, 1985; Gasser et al.,
1987; Hamilton-Bruce, Boundy, & Purdie,
1991; Harmony et al., 1993; John, Prichep,
& Easton, 1987; John, Prichep, Fridman, &
Easton, 1988; Lund, Sponheim, Iacono, &
Clementz, 1995; McEvoy, Smith, & Gevins,
2000; Näpflin, Wildi, & Sarnthein, 2007,
2008; Pollock, Schneider, & Lyness, 1991;
Salinsky, Oken, & Morehead, 1991; Towers

Technical Corner 145

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
W
N
E
U
 
J
o
u
r
n
a
l
 
o
f
 
N
e
u
r
o
t
h
e
r
a
p
y
]
 
A
t
:
 
0
1
:
2
7
 
8
 
J
u
n
e
 
2
0
1
0



& Allen, 2009; Van Albada, Rennie, &
Robinson, 2007).

Gasser et al. (1985) concluded that ‘‘20 sec
of activity are sufficient to reduce adequately
the variability inherent in the EEG’’ (p. 312).

Salinski et al. (1991)) concluded, ‘‘Corre-
lation coefficients for broad band features
averaged 0.92 over the 5min retest interval
and 0.84 over the 12–16’’ and ‘‘coefficients
based on 60 sec recordsweremarginally higher
than those of 40 or 20 sec records’’ (p. 382).

Corsi-Cabrera et al. (1997) concluded,
‘‘The within-subject stability was assessed
calculating multiple correlation coefficients
between all EEG features of the eleven ses-
sions of each subject: R-values ranged from
0.85 to 0.97’’ (p. 382).

Pollock et al. (1991) concluded, ‘‘The gener-
ally higher reliabilities of absolute, as opposed
to relative, amplitude measures render them
preferable in clinical research’’ (p. 20).

EEG spectral stability over a 1-year
period was recently studied by Näpflin and
colleagues with test–retest reliability greater
than 0.9, and they concluded that qEEG
intraindividual reliability is very high:

Out of all 2400 pairwise comparisons
99.3% were correct, with sensitivity

87.5% and specificity 99.5%. The
intra-individual stability is high com-
pared to the inter-individual variation.
Thus, interleaved EEG-fMRI measure-
ments are valid. Furthermore, longi-
tudinal effects on cognitive EEG can
be judged against the intra-individual
variability in subjects. (Näpflin et al.,
2008, p. 2519)

A recent study by Van Albada et al. (2007)
evaluated the variable contributions of
‘‘state’’ and ‘‘trait’’ by conducting test–retest
reliability measures of the qEEG recorded
from participant each week for 6 weeks and
some participants for as long as 1 year and
concluded, ‘‘About 95% of the maximum
change in spectral parameters was reached
within minutes of recording time, implying
that repeat recordings are not necessary to
capture the bulk of the variability in EEG
spectra’’ (p. 279).

In general, the test–retest reliability of
qEEG is an exponential function of sample
length in which 20-s epochs are approxi-
mately 0.8 reliable, 40 s approx. 0.9 reliable,
and 60-s asymptotes at approximately 0.95
reliability. It is easy to test the reliability of
qEEG for one’s self as shown in Figure 16.

FIGURE 16. An example of visual EEG traces, quantitative EEG, Split-Half reliabilities and test–retest reliabil-
ities on the same screen at the same. Note. Panel to the left are the EEG traces, top right panel is the FFT
power spectrum from 1 to 30Hz and bottom right panel are Z scores from 1 to 30Hz.
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RELIABILITY OF EEG COHERENCE

As mentioned previously, coherence is
itself a statistical measure of reliability
because it is a measure of the stability of
phase differences between two EEG time
series. If the phase difference is unreliable,
that is, phase differences are randomly
changing from time sample to time sample,
then coherence is 0. If the phase differences
are unchanging, then coherence is 1. High
test–retest reliability of EEG coherence has
been reported over the years when coherence
is correctly computed even though more stat-
istical samples are often required to obtain
statistical sufficiency. If regions of the brain
are weakly coupled or disconnected, then
coherence has low values within a subject as
well as low test–reretest reliability across
experiments and participants as expected. If
regions of the brain are strongly coupled and
coherence exhibits statistically significant
values then coherence typically also exhibits
high test–retest reliability (the greater the
coherence then the more within-session and
between-session reliability by definition).
Adey,Walter, andHendrix (1961) were among
the first to measure the test–retest reliability of
EEG coherence with values greater than 0.8.
Subsequently, high retest reliability of EEG
coherence (0.8–0.95) was reported by Chabot
et al. (1996); Corsi-Cabrera, Galindo-Vilchis
del-Rı́o-Portilla, Arce, and Ramos-Loyo
(2007); Gasser et al. (1987); Harmony et al.
(1993); John (1977); John et al. (1987);
Thatcher, Krause, and Hrybyk (1986), and
Thatcher, Beaver, et al. (2003). Gudmondsson,
Runarsson, Sigurdsson, Eiriksdottir, and
Johnsen (2007) reported low test–retest
reliability of coherence because of an invalid
computation due to the use of an average
reference. If the authors used a common
reference and coherence was low (e.g.,
<0.2), then this means that two brain regions
are reliably disconnected. If the reader finds
any study that claims that coherence has low
reliability, examine the Methods section and
see if the authors used an average reference,
a Laplacian reference, or ICA to create a
new time series and if so, then dismiss the
study because they used an invalid method
of measuring coherence in the first place.

Remember, reliability is irrelevant if the
measure is not valid to begin with.

SUMMARY

The fact that qEEG meets high standards
of reliability and validity is demonstrated by
hundreds of peer-reviewed journal articles, a
few of which are cited in this review. The
critics of qEEG are those that rely solely
on eyeball examination of the EEG traces
and are biased against and opposed to the
use of computers to improve the accuracy,
validity, and reliability of the electroence-
phalogram (Nuwer, 1997). The American
Academy of Neurology position paper
(Nuwer, 1997) categorized qEEG as ‘‘experi-
mental’’ for a wide range of clinical disorders
with the blanket assertion that qEEG is
‘‘unreliable.’’ However, they did not cite
any studies to refute the scientific literature
that demonstrates high reliability and val-
idity. It is the responsibility of those that
use qEEG technology to respond to false
claims by citing facts and citing the scientific
literature when ever possible.
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