Math 1497 - Calculus II Spring 2022 - Homework 10

Week 12: Apr. 11 - Apr. 15, 2022

pg. 759, \#21 and 23.
Find the magnitude ofthe following:

$$
\# 21 \quad \vec{v}=\langle 8,15\rangle \quad \# 23 \quad \vec{v}=-\vec{i}-5 \vec{j}
$$

pg. $759, \# 27$.
Using vector operations find the following:

$$
\begin{gathered}
\text { (a) } \frac{2}{3} \vec{u} \quad \text { (b) } 3 \vec{v} \quad(c) \vec{v}-\vec{u} \quad \text { (d) } 2 \vec{u}+5 \vec{v} \\
\vec{u}=\langle 4,9\rangle, \quad \vec{v}=\langle 2,-5\rangle
\end{gathered}
$$

pg. $759, \# 35$ and 37.
Find a unit vector in the direction of \vec{v} the following:

$$
\# 35 \quad \vec{v}=\langle 3,12\rangle \quad \# 37 \quad \vec{v}=\left\langle\frac{3}{2}, \frac{5}{2}\right\rangle
$$

pg. 777, \#3 and 7.
In the following find (a) $\vec{u} \cdot \vec{v} \quad$ (b) $\vec{u} \cdot \vec{u} \quad$ (c) $\|\vec{v}\|^{2} \quad$ (d) $(\vec{u} \cdot \vec{v}) \vec{v} \quad$ (e) $\vec{u} \cdot(\overrightarrow{3 v})$

$$
\begin{array}{ll}
\# 3 & \vec{u}=\langle 3,4\rangle, \quad \vec{v}=\langle-1,5\rangle \\
\# 7 & \vec{u}=\langle 2,-3,4\rangle, \quad \vec{v}=\langle 0,6,5\rangle
\end{array}
$$

pg. $777, \# 37$ and 39 .
Find the projection of \vec{u} onto \vec{v} and the orthogonal compliment for the following.
Draw all vectors.

$$
\begin{array}{lll}
\# 37 & \vec{u}=\langle 6,7\rangle, & \vec{v}=\langle 1,4\rangle \\
\# 39 & \vec{u}=\langle 2,3\rangle, & \vec{v}=\langle 5,1\rangle
\end{array}
$$

pg. $785, \# 7$ and 9.
Find the cross product $\vec{u} \times \vec{v}, \vec{v} \times \vec{u}$, and $\vec{v} \times \vec{v}$ for the following.

$$
\begin{aligned}
& \# 7 \quad \vec{u}=-2 \vec{i}+4 \vec{j}, \quad \vec{v}=3 \vec{i}+2 \vec{j}+5 \vec{k} \\
& \# 9 \quad \vec{u}=\langle 7,3,2\rangle, \quad \vec{v}=\langle 1,-1,5\rangle
\end{aligned}
$$

pg. 794, \#13, 19 and 23.
Find the equation of the line
\#13 through $(5,-3,-2)$ and $(-2 / 3,2 / 3,1)$
\#19 through $(2,3,4)$ and perpendicular to the plane $3 x+2 y-z=6$
\# 23 through $(2,1,2)$ and parallel to the line $x=-t, y=1+t, z=-2+t$
pg. 795, \#45, 49 and 51.
Find the equation of the plane
\#45 through $(0,0,0),(2,0,3)$ and $(-3,-1,5)$.
\#49 through $(1,2,3)$ and parallel to the plane $x y$ plane.

Due: Friday Apr. 15, 2022 by 4:00pm.

