Annual Drinking Water Quality Report #### VIENNA #### IL0870350 Annual Water Quality Report for the period of January 1 to December 31, 2022 This report is intended to provide you with important information about your drinking water and the efforts made by the water system to provide safe drinking water. The source of drinking water used by VIENNA is Surface Water For more information regarding this report contact: Name: Herb Hosfeldt or Dale Leggett Phone: 618-658-3821 Este informe contiene información muy importante sobre el agua que usted bebe. Tradúzcalo ó hable con alguien que lo entienda bien. ### Source of Drinking Water The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water include: - Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife. - Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming. - Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses. - Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems. - Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPAs Safe Drinking Water Hotline at (800) 426-4791. In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health. Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe prinking Water Hotline (800-426-4791). If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead. ## Source Water Information | Source Water Name | | Type of Water | Report Status | Location | |--|-----------------|---------------|---------------|-----------------------------------| | CC10-MASTER METER FROM MILLSTONE WDFF IL1515050 TP04 | | GW | EMERGENCY | EAST OF TOWN TOWARD INTERSTATE 24 | | IN70810 - BLOOMFIELD LAKE | 3.5MI NE VIENNA | SW | ACTIVE | 3.5 NORTHEAST OF VIENNA | | IN70811 - SIDE CHANNEL RESERVOI | R | SW | ACTIVE | NE EDGE OF VIENNA | ### Source Water Assessment We want our valued customers to be informed about their water quality. If you would like to learn more, please feel welcome to attend any of our regularly scheduled meetings. City Council meetings are scheduled the First and Third Wednesdays of the month at the Vienna City Hall, which is located at 205 North 4th stop by City Hall, or call our water operators at 618-658-3821. To view a summary version of the completed Source Water Assessments, including the Importance of website at http://www.epa.state.il.us/cgi-bin/wp/swap-fact-sheets.pl. Source of Water: The City of Vienna Illinois has (2) Raw Water sources. Drinking water for the City of Vienna, Facility #(IL0870350) is supplied by the Vienna community water supply (CWS). Bloomfield Lake and the Vienna City Reservoir are the sources of this RAW drinking water. The EPA considers all surface water supplies in Illinois. Mandatory treatment includes coagulation, sedimentation, filtration, and disinfection. Causes of pollution to the lake include and shoreline erosion. ### Water Quality Test Results na: Definitions: The following tables contain scientific terms and measures, some of which may require explanation. Ava: Regulatory compliance with some MCLs are based on running annual average of monthly samples. Level 1 Assessment: A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system. Level 2 Assessment: A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions. Maximum Contaminant Level or MCL: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology. Maximum Contaminant Level Goal or MCLG: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety. Maximum residual disinfectant level or The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a MRDL: disinfectant is necessary for control of microbial contaminants. Maximum residual disinfectant level The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not goal or MRDLG: reflect the benefits of the use of disinfectants to control microbial contaminants. not applicable. mrem: millirems per year (a measure of radiation absorbed by the body) ppb: micrograms per liter or parts per billion - or one ounce in 7,350,000 gallons of water. ppm: milligrams per liter or parts per million - or one ounce in 7,350 gallons of water. Treatment Technique or TT: A required process intended to reduce the level of a contaminant in drinking water. # Regulated Contaminants | Disinfectants and
Disinfection By-
Products | Collection
Date | Highest Level
Detected | L Range of Levels
Detected | MCLG | MCL | Units | Violation | Likely Source of Contamination | |---|--------------------|---------------------------|-------------------------------|-----------------------|----------|-------|-----------|--| | Chlorine | 12/31/2022 | 2.9 | 2.5 - 3.2 | MRDLG = 4 | MRDL = 4 | ppm | N | Water additive used to control microbes. | | Chlorite | 2022 | 0.75 | 0.4 - 0.75 | 0.8 | 1 | ppm | N | By-product of drinking water disinfection. | | Haloacetic Acids
(HAA5) | 2022 | 8 | 1.7 - 10 | No goal for the total | 60 | ppb | И | By-product of drinking water disinfection. | | Total Trihalomethanes
(TTHM) | 2022 | 5 | 0 - 1.1 | No goal for the total | 80 | ppb | N | By-product of drinking water disinfection. | | Inorganic
Contaminants | Collection
Date | Highest Level
Detected | Range of Levels
Detected | MCLG | MCL | Units | Violation | Likely Source of Contamination | | Barium | 2022 | 0.0267 | 0.0267 - 0.0267 | 2 | 2 | ppm | N | Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits. | | Fluoride | 2022 | 0.7 | 0.72 - 0.72 | 4 | 4.0 | ppm | N | Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories. | | Iron | 2022 | 0.1 | 0.142 - 0.142 | | 1.0 | ppm | N | This contaminant is not currently regulated by the USEPA. However, the state regulates. Erosion of natural deposits. | | Sodium | 2022 | 20 | 19.8 - 19.8 | | | ppm | N | Erosion from naturally occuring deposits. Used in water softener regeneration. | | Radioactive
Contaminants | Collection
Date | Highest Level
Detected | Range of Levels
Detected | MCLG | MCL | Units | Violation | Likely Source of Contamination | | Combined Radium
226/228 | 01/26/2021 | 0.07 | 0.07 - 0.07 | 0 | 5 | pCi/L | N | Erosion of natural deposits. | |---|------------|------|-------------|---|----|-------|---|------------------------------| | Gross alpha excluding radon and uranium | 01/26/2021 | 1.3 | 1.3 - 1.3 | 0 | 15 | pCi/L | N | Erosion of natural deposits. | ## Turbidity | | Limit (Treatment
Technique) | Level Detected | Violation | Likely Source of Contamination | | |--------------------------------|--------------------------------|----------------|-----------|--------------------------------|--| | Highest single measurement | 1 NTU | 0.28 NTU | N | Soil runoff. | | | Lowest monthly % meeting limit | 0.3 NTU | 100% | N | Soil runoff. | | Information Statement: Turbidity is a measurement of the cloudiness of the water caused by suspended particles. We monitor it because it is a good indicator of water quality and the effectiveness of our filtration system and disinfectants. ### Total Organic Carbon The percentage of Total Organic Carbon (TOC) removal was measured each month and the system met all TOC removal requirements set, unless a TOC violation is noted in the violations section. In 2021 the Illinois EPA conducted a sampling for Per- and Polyfluoroalkyl Substance (PFAS)for the City of Vienna community water supply. The samples were collected at the entry point to the distribution system. The Illinois EPA's sample analysis included a total of 18 PFAS. These contaminants were NOT present in the City of Vienna drinking water at concentrations greater than or equal to the MINIMUM reporting levels. Additional information regarding PFAS, the statewide PFAS investigation network, and the impact to public health can be found on the Illinois EPA PFAS webpage: www. 2. il lino is. gov/epa/topics/water-quality/pfas/Pages/pfas-statewide-investigation-network. as px.