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ABSTRACT
Improved prediction of the days available for � eld work, or � eld working days (FWDs), is an important consideration for adapting 
farming systems to increased weather variability. We developed modeling approaches to estimate robust soil moisture thresholds 
for FWDs. We used simulated soil moisture to train the model on the same type of data that would be used for FWD forecasting 
(prediction). � ese new models were tested against previously suggested thresholds for � eld workability. Model 1 used historical 
� eld work and weather records from three crop research centers in a logistic regression model. A soil moisture threshold of 1.10 times 
the plastic limit (1.10PL) was identi� ed. Model 2 identi� ed statewide soil moisture and temperature thresholds by optimizing the 
root mean square error of the predicted number of weekly statewide FWDs across a 52-yr data set. � e resulting thresholds of either 
0.88PL or 0.73FC (� eld capacity) and an average temperature requirement of at least 6°C yielded statistically smaller absolute errors 
for the state average FWDs and in eight of the nine crop reporting districts. � e Model 2 thresholds also eliminated systematic 
overprediction present in previous thresholds. � ese results demonstrate that immutable theoretical thresholds for FWDs based on 
� eld-measured soil moisture can be suboptimal for prediction at a larger spatial scale due to consistent bias.
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Weather	variation	is	a	key	determinant	of which 
days are suitable for fi eld work in mechanized crop produc-
tion systems (Apland, 1993; de Toro and Hansson, 2004; 
Rotz and Harrigan, 2005). Growing evidence of global cli-
mate change means the ability to predict fi eld working days 
(FWDs) could become more important as a tool to guide 
agricultural adaptation to new and potentially more extreme 
weather conditions (Intergovernmental Panel on Climate 
Change, 2007). Spatial variability inherent to climate change 
complicates drawing conclusions even between locations sepa-
rated by fewer than 100 km (Cooper et al., 1997; Kucharik et 
al., 2010). New methods must be robust enough to account 
for scales smaller than the current outputs of regional and 
global climate change models.

Th e core approach to FWD prediction has remained much 
the same since the introduction of soil moisture modeling to 
the topic in the 1970s (Link, 1968; Kish and Privette, 1973; 
Elliot et al., 1975). Soil moisture is assumed to be the primary 
infl uence on workability (Earl, 1997), whereby soil above a 
certain moisture threshold is considered unworkable. Common 
choices for the critical moisture threshold are either 90, 95, or 

100% of the soil gravimetric moisture at fi eld capacity (0.90, 
0.95, and 1.00FC, respectively) or the point at which the soil 
transitions from a semisolid to a plastic consistency, also known 
as 100% of the plastic limit (1.00PL). Th ese limits are related to 
the ability to either work the soil properly (such as in seedbed 
preparation) or avoid compaction, also known as traffi  cability 
(Rounsevell, 1993). Suitable thresholds are oft en site or soil 
specifi c (Rounsevell, 1993; deToro and Hansson, 2004), and 
no large spatial-scale validations of thresholds exist to our 
knowledge. Actual fi eld records have proven diffi  cult to use as 
a tool in model construction because the full range of workable 
conditions may not be represented by the particular days when 
work was required (Seeley, 1995). Current fi eld workability 
models also assume that the soil moisture threshold for a 
given soil is the same for all types of fi eld operations. De Toro 
and Hansson (2004) asserted that these oversimplifi cations 
in determining and simulating fi eld workability probably 
understate the consequences of years with extreme weather. 
Th e ability to accommodate such extremes will become more 
important given signifi cant changes in extreme weather noted 
by researchers both globally and within the United States 
(Groisman et al., 2001; Kunkel, 2003; Intergovernmental 
Panel on Climate Change, 2007).

Th e Intergovernmental Panel on Climate Change (2007) 
has concluded that the frequency of heavy precipitation events 
has probably increased in most areas of the planet. In the 
U.S. Midwest, annual precipitation has increased 5% since 
1960, and the amount of precipitation associated with the 
top 1% of daily events has increased 31% (Karl et al., 2009). 
About one-third of this increase can be attributed to heavier 
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spring precipitation (Karl et al., 2009). Projections indicate 
that further increases in winter and spring precipitation are 
likely (Wuebbles and Hayhoe, 2004). Furthermore, increases 
in winter precipitation can profoundly influence spring soil 
moisture levels in mid-latitude regions where thawing soils 
can account for the highest moisture levels observed in a year 
(Robock et al., 2000).

Maize (Zea mays L.) planting dates in the U.S. Midwest 
average 2 wk earlier than three decades ago despite greater 
spring precipitation during the same period (Kucharik, 2006). 
Early planting has become a necessity due to the high thermal 
time requirements for newer, late-maturing maize hybrids 
(Sacks and Kucharik, 2011). This represents a risk to future 
farmers, as Midwest precipitation projections show increasing 
volatility for early spring (Easterling et al., 2000; Wuebbles 
and Hayhoe, 2004; Kucharik, 2008). Given that many 
farmers purchase seed of specific cultivars in advance based 
on the previous year’s weather (Smit et al., 1997), an increase 
in spring weather extremes and variability could have a great 
economic impact on agricultural risk assessments through field 
workability.

Our goal of enhancing FWD prediction framed the central 
objective of this study: to develop and evaluate independent 
FWD estimation approaches based on statistical modeling of 
empirical management and environmental data. The methods 
differed in the spatial and temporal resolution of the data. We 
specifically set out to use simulated soil moisture, as opposed to 
field-measured soil moisture, to remove the disconnect between 
the soil moisture data used for model building and forecasting 
into the future. The first method developed was based on the 
statistical analysis of long daily time series of field records from 
Midwest crop research centers, whereas the second method was 
based on weekly USDA FWD reports.

MATERIALS AND METHODS
Field Working Day Data

Field records indicating on which days work was performed 
from three University of Illinois crop research centers were 
compiled as model training data. Daily information derived 
from field records included: date, type of field operation 
performed on that date, and the soil series worked that day. The 
three locations were the Northern Illinois Agronomy Research 
Center (NIARC) in Shabbona (41°51¢ N, 88°51¢ W); Crop 
Sciences Research and Education Center (CSREC) in Urbana 
(40°20¢ N, 88°14¢ W); and Dixon Springs Agricultural 
Research Center (DSAC) in Dixon Springs (37°26¢ N, 88°40¢ 
W) (Supplemental Fig. S1). Field records were available for 
NIARC from 1966 to 2009, for DSAC from 1976 to 2007, and 
for CSREC from 2000 to 2008. This amounted to 76 site-years 
of field records. The dominant soil series at each of the research 
farms were Flanagan silt loam (a fine, smectitic, mesic Aquic 
Argiudoll) at NIARC and CSRES and Grantsburg silt loam (a 
fine-silty, mixed, active, mesic Oxyaquic Fragiudalf) at DSAC 
(National Cooperative Soil Survey, 2012).

The weekly statewide average number of days reported 
available for field work was obtained from the National 
Agricultural Statistics Service (2011) Illinois crop progress 
and condition reports. These reports included the aggregated 
(i.e., which days were actually workable were not specified) 

weekly average number of days available for field work for the 
entire state of Illinois since 1959. Each of the state’s nine crop 
reporting districts reported its own weekly average number of 
field working days starting in 1980. The statewide FWDs were 
calculated as the average of FWDs of each district. The overall 
scope of the data assembled is extensive in both time and space. 
State average FWDs for 695 wk are reported and 420 wk of 
reported FWDs for each of the nine crop reporting districts 
formed the validation data set.

Daily Weather Data

Daily temperature and precipitation time series 
corresponding to field record intervals were obtained directly 
from the crop research centers. For statewide soil moisture 
reconstruction (see below), necessary weather parameters were 
obtained from the National Climatic Data Center (2012). 
Several weather stations were selected for each reporting 
district, based on data completeness (Supplemental Fig. S1). 
Selected stations generally contained <5% days with missing 
temperatures out of the total and as many continuous years 
as possible between 1959 and 2010. Any missing values 
were imputed using the following criteria: persistence of 
minimum and maximum temperature from the previous day 
and no precipitation. As a result of these imputation criteria, 
estimates of modeled soil moisture may be conservative. A 
total of 50 weather stations were included in the statewide soil 
moisture reconstruction and provide extensive latitudinal and 
longitudinal coverage of Illinois (Supplemental Fig. S1).

Soil Information

Soil properties used for estimating the plastic limit (PL) 
and field capacity (FC), as well as the inputs necessary for 
calculating daily soil moisture, were obtained from the 
National Cooperative Soil Survey (2012). Parameters for 
each soil included textural content of clay (C) and sand (S) 
percentages and organic matter percentage (OM).The field 
capacity of each soil was estimated using 33kPa (Saxton and 
Rawls, 2006): 
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The PL of each soil was estimated based on (Keller and Dexter, 
2012)
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Soil Moisture Estimation
A version of the Soil Temperature and Moisture model 

(STM2), modified to automatically perform multiyear batch 
runs, was used to estimate the 10-cm-depth daily soil moisture 
at each location and for each soil type (Spokas and Forcella, 
2009). This soil moisture model was chosen primarily due 
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to the low input requirements for both soil properties and 
weather, which included daily precipitation, minimum and 
maximum temperature, soil textural qualities and organic 
matter content. The model has also proven reliable despite 
these low input requirements (Schutte et al., 2008; Spokas 
and Forcella, 2009; Perreault et al., 2013). Location, elevation, 
a general climate classification, and estimated average wind 
speeds were also specified.

Statewide Soil Moisture Reconstruction

To recover the daily field workability information contained 
in the National Agricultural Statistics Service crop progress 
reports, daily soil moisture conditions at point locations across 
the state were reconstructed in two steps. First, the Laboratory 
Pedon Data Map available through the National Cooperative 
Soil Survey (2012) was used to identify measured soils 
representative of agricultural fields within a few kilometers of 
each weather station (see above). Between one and three soils 
were associated with each of the weather stations based on the 
availability of soil samples measuring the parameters needed 
for soil moisture estimation (see above), for a total of 97 soil–
weather combinations. Second, the daily weather time series 
and the corresponding soil properties were input to STM2 to 
reconstruct statewide daily soil moisture conditions at each 
weather station location from 1959 to 2010, a total of 5499 
different yearlong soil moisture time series. This collection 
of time series gives a simplified and approximate overview of 
statewide soil moisture conditions at particular points that 
span the state.

Model 1: Logistic Regression Field 
Workability Threshold

Logistic regression (Agresti, 2007) implemented in R (R 
Core Team, 2014) was used to analyze field records from 
the three crop research centers for the binary response work 
(whether or not field work was observed on each day between 
Day of Year 90 and 180, April–June). Other information 
collected or derived included estimated daily soil moisture, 
estimated PL, day of week, year, day of year, number of previous 
workdays observed in the same season, growing degree days, 
and type of field operation performed (tillage, planting, 
spraying, or fertilizing).

Using maximum likelihood methods (Burnham and 
Anderson, 2002), logistic regression models were fit individually 
to each research center’s record to avoid the confounding 
effects of management differences across sites. The approach 
assumed that additional predictors in the model captured 
the signal produced by management decisions (necessity to 
perform field work), leaving the field workability signal in the 
data to be captured by soil moisture. A binary representation 
of soil moisture (above or below a threshold value) was chosen 
over a continuous soil moisture variable due to better model 
performance. Soil moisture thresholds used to create the binary 
soil moisture variable at each site were determined by iterating 
through different threshold values and choosing the threshold 
from the model that had the lowest Akaike information criterion 
value (Burnham and Anderson, 2002). A final threshold was 
calculated as an average of the site-specific thresholds, weighted 
by the observed number of FWDs.

Model 2: Best Statewide Workability Threshold
Field workability thresholds were determined at 

the statewide scale, using the statewide soil moisture 
reconstruction (see above) from 1959 to 2010 and the 
associated statewide weekly reported FWDs. While the data 
used were specific to Illinois, the model could be performed 
at other spatial scales and locations with similar data. For 
example, the data used are freely available in crop progress 
and condition reports for most of the United States on the 
statewide and state crop reporting district levels (National 
Agricultural Statistics Service, 2011). To find the best 
thresholds (standardized by either PL or FC), an iterative 
optimization procedure was implemented in R (R Core Team, 
2014) to maximize the RMSE of predictions based on
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where j(t) is the indicator of whether Day t is workable, q(t) is 
the soil moisture on Day t, and l(t) is the air temperature on 
Day t.

This optimization could be performed at the crop district 
scale for improved performance, but we demonstrate it here 
at the statewide level for more easily interpretable results. In 
addition, our record for statewide FWDs begins 21 yr (from 
1959–1979) before reports at the crop district scale. An initial 
threshold was assumed so that each soil moisture time series 
in the soil moisture reconstruction was expressed as a series of 
0 or 1 values corresponding to no workability being predicted 
or a workable day predicted, respectively. Statewide FWDs 
were predicted as the average of the weekly number of FWDs 
predicted among all crop reporting districts, emulating the 
calculations in the National Agricultural Statistics Service 
reports. The average number of FWDs for each district was 
calculated as the average predicted number of FWDs among 
weather stations. The FWDs associated with each weather 
station were calculated as the average number of FWDs 
predicted among all the soils corresponding to that station. 
This ensured that no single weather time series had greater 
influence than any other within a district, regardless of the 
number of soil measurements available for that station. The 
root mean squared error (RMSE) of the predicted number 
of weekly FWDs compared with the reported FWDs 
was calculated at each step. The procedure was repeated, 
incrementing the threshold in terms of FC or PL by 0.01 in 
each step (Fig. 1a). After achieving a minimum RMSE based on 
soil moisture threshold, the same iterative procedure was used 
to further optimize RMSE by finding a temperature threshold 
with the soil moisture threshold held fixed (Fig. 1b).

Model Verification

Six threshold models were compared using the statewide soil 
moisture reconstruction. These included: 0.90FC, 1.00FC, and 
1.00PL (representing thresholds previously used in application 
studies), 1.10PL obtained by Model 1, and two optimal 
statewide thresholds derived from Model 2 with soil moisture 
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standardized by either FC or PL. The National Agricultural 
Statistics Service reports allow predictions to be verified 
for each of the nine crop reporting districts in the state in 
addition to the statewide average. The predictive performance 
of each threshold was measured using the same statewide soil 
moisture reconstruction across the entire period of the records. 
Differences in FWD prediction are introduced only by the 
different soil moisture thresholds for workability and the 
introduction of a temperature threshold for the two Model 2 
models. The two metrics for verifying FWD predictions from 
each threshold were RMSE and the bias (average deviation of 

prediction) from the National Agricultural Statistics Service 
reported weekly number of FWDs. The RMSE is a measure 
of the overall goodness of fit, while the average deviation is an 
indicator of systematic bias in the predictions.

RESULTS
A strong bias in weekly statewide FWD prediction was 

observed when using the 0.90FC, 1.00FC, 1.10PL (Model 1), 
and 1.00PL thresholds (Fig. 2). Furthermore, biases occurred in 
the same sign across all crop reporting districts, indicating that 
they are systematic. The positive bias for the 0.90FC, 1.00FC, 
1.10PL, and 1.00PL thresholds indicated overestimation of 
available field working days week by week. Model 1 does a poor 
job of identifying an accurate threshold for FWD availability 
when applied at the statewide or crop district scale.

The Model 2 thresholds of 0.88PL or 0.73FC and an average 
temperature of at least 6°C eliminated prediction biases at 
the statewide level (Fig. 2). At the crop reporting district level, 
predictions based on Model 2 thresholds had some biases, but 
the biases were generally low in magnitude across all districts 
and varied in sign. Some spatial patterns in prediction biases 
were observed, with a tendency toward slight overprediction in 
the southeast (East-Southeast and Southeast districts) portion 
of the state and a tendency for underprediction in the north 
(Northwest and Northeast districts) (Supplemental Table S1).

Statistical comparisons of thresholds were limited to the 
1.00PL and Model 2 thresholds due to their clear superiority 
over other thresholds (Table 1). While RMSE and bias are 
appropriate measures to summarize the overall predictive 
performance of each threshold, they do not allow for statistical 
testing. To attach statistical significance to the improvement 
in prediction, absolute prediction errors were compared 
using pairwise t-tests. Both optimized thresholds achieved 
statistically smaller absolute errors (corresponding to improved 
prediction) in eight of the nine crop reporting districts when 
compared with 1.00PL predictions (Table 1). Improvement 
in statewide prediction performance was >0.75 FWDs per 
week, which can be attributed to the elimination of systematic 
prediction biases. The 1.00PL threshold did perform as well 
as the optimized thresholds in the Southeast Crop Reporting 
District, but this appears to be the exception and not the rule. 
The improvement of optimized thresholds over the 0.90FC, 
1.00FC, and Model 1 thresholds was even greater. For instance, 

Fig.	1.	Iterative	optimization	of	root	mean	squared	error	(RMSE)	of	statewide	field	workability	predictions	over	soil	moisture	thresholds	scaled	by	soil	
plastic	limit	(PL)	and	daily	temperature	requirement	(°C).

Fig.	2.	Relationship	between	reported	and	predicted	weekly	statewide	
field	working	days	in	Illinois	(1959–2010)	for	six	different	threshold	
models	defined	as	coefficients	multiplied	by	soil	field	capacity	(FC)	
or	plastic	limit	(PL).	The	bottom	two	models	are	identified	by	an	
optimization	procedure	and	require	average	daily	temperature	to	be	at	
least	6°C.
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the RMSE in prediction was reduced by >1.5 FWDs per week 
using the optimized thresholds (Supplemental Table S1).

DISCUSSION
The evaluation of model performance in this study cautions 

against using established FWD thresholds without proper 
validation. Several factors complicate the reliability of these 
thresholds, including management decisions that affect soil 
moisture (i.e., tillage), the model used to simulate soil moisture, 
and the depth where soil moisture is measured. It is important 
to account for these differences for reliable risk assessments, 
which can depend on location and scale. This is especially 
true when projecting into the future, where a changed 
climate would invalidate retrospective studies of empirical 
FWD probabilities. As a solution to these complications, we 
investigated two new methods for obtaining a field workability 
threshold using empirical data sources that made few 
assumptions.

Model 1 used logistic regression on field records from three 
crop research centers located in Illinois for a combined 76 site-
years. The soil moisture threshold resulting from Model 1 had 
poor predictive performance at larger spatial scales and serves 
to highlight the difficulty of using observational field records 
to build field workability models. There are several reasons 
to expect inaccuracies from workability thresholds derived 
from field records. Seeley (1995) pointed out that the precise 
timing required for some research projects result in “forced 
workdays,” i.e., a day when soil is worked when it would usually 
be considered too wet. Second, days on which soils could be 
worked but were not because no work was required can account 
for a significant portion of the data. A final complication to 
prediction arises from precipitation events occurring on the 
boundaries between days (Rounsevell, 1993). The net result 
is a day that may be classified as unworkable based on a soil 
moisture threshold despite work being performed before rain 
occurred. These three phenomena are major sources of noise and 
complicate the identification of a threshold using field records.

Model 2 eliminates or controls for errors introduced by 
forced workdays and unworked workable days by training on 
data that report FWDs regardless of whether or not they were 
used. In addition, Model 2 uses a larger amount of data making 
it more robust to the influence of errors from precipitation 
events on the boundaries between days. The training data for 
Model 2 are specific to Illinois, but the model methodology 
of threshold identification through optimization should 
be applicable for different spatial scales and locations with 
similar data. For Illinois statewide FWDs using the STM2 

soil moisture model at the 10-cm depth, Model 2 identified 
workability thresholds of 0.88PL and 0.73FC, with an 
additional requirement of the average daily temperature being 
at least 6°C. These thresholds are quite close to the optimal 
soil moisture for tillage (0.90PL) identified by Mueller et al. 
(2003). This strengthens the conclusions reached by Model 2 
and the validity of the method. It also demonstrates that the 
National Agricultural Statistics Service classified workable 
days close to the optimal workability for tillage at the statewide 
scale. The recognition of temperature as a limiting factor in 
field workability in addition to soil moisture was particularly 
important in improving the total number of April FWDs 
predicted in a season. Errors were reduced by including the 
temperature consideration in the Model 2 threshold by as many 
as 9 d in some seasons (Supplemental Fig. S2). While including 
a temperature threshold clearly improved Model 2 prediction 
(Fig. 1b), it would also have improved the predictions of all the 
other thresholds if it had been included (Supplemental Fig. 
S3). This improved performance from including temperature, 
regardless of the soil moisture threshold used, highlights the 
importance of incorporating temperature into FWD models.

With or without the inclusion of a temperature threshold, 
previously used thresholds of 0.90 to 1.00FC led to excessive 
overprediction of FWDs at multiple spatial scales. Similarly, 
a 1.00PL threshold also tended to overpredict the availability 
of FWDs. The errors resulting from overprediction were 
especially prominent in April and May (Fig. 3a). This is 
especially important because this is the temporal window 
when many important maize and soybean [Glycine max (L.) 
Merr.] management practices typically occur in the state. 
In other words, this overprediction occurs at the time when 
FWDs are likely to have the greatest economic value. Figure 
3b shows that Model 2 still has this slight trend in error but 
also indicates that this optimized threshold is more reasonable 
for other operations because bias is reduced. Small biases also 
appeared spatially related in Model 2, with underprediction in 
the Northeast and Northwest districts and overprediction in 
the Southeast and East-Southeast districts. Errors in weather, 
soil, or both could account for these spatial patterns of bias 
given that we expect these inputs to have spatial structure. 
Nevertheless, these Model 2 prediction biases are quite small in 
comparison to biases introduced through other thresholds.

The primary utility of FWD prediction models is in risk 
assessment models. These models examine the relationship 
between management timing and factors such as changing 
climate (Cooper et al., 1997), machinery selection (Apland, 
1993), or simply year-to-year weather variability (Rounsevell, 

Table	1.	Comparison	of	pairwise	absolute	weekly	prediction	errors	between	the	three	best-performing	field	workability	models	for	Central	(C),	
Northeast	(NE),	Southeast	(SE),	Northwest	(NW),	West-Southwest	(WSW),	East-Southeast	(ESE),	and	West	(W)	Illinois	crop	reporting	districts	
and	statewide	from	1959	to	2010.	A	positive	number	indicates	that	the	first	threshold	performed	more	poorly.	

Threshold†	contrast
Mean	difference	in	pairwise	error

C NE SE SE NW WSW ESE E W State
1.00PL	vs.	0.88PL 0.80*** 0.78*** –0.14	ns 0.36*** 0.82*** 0.67*** 0.42*** 0.89*** 0.73*** 0.81***
1.00PL	vs.	0.73FC 0.74*** 0.76*** 0.07	ns 0.35*** 0.80*** 0.59*** 0.24** 0.52*** 0.71*** 0.79***
0.88PL	vs.	0.73FC –0.06*** –0.03ns 0.21*** –0.01	ns –0.02	ns –0.08*** –0.18*** –0.37*** –0.03	ns –0.02***
**	Significant	at	P	<	0.01;	ns,	not	significant	at	P	<	0.05.
***	Significant	at	P	<	0.001.
†	Thresholds	consist	of	a	coefficient	multiplied	by	either	field	capacity	(FC)	or	plastic	limit	(PL)	of	the	soil,	where	exceeding	the	threshold	indicates	no	field	work	can	take	
place.	The	1.00PL	threshold	is	a	theoretical	threshold	for	field	workability,	while	the	0.73FC	and	0.88PL	thresholds	were	determined	from	optimization	on	statewide	
reported	data	and	include	a	minimum	average	temperature	requirement	of	6°C.
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1993). An unbiased model is required to appropriately 
quantify these risks. Accurate estimation of FWDs in April 
and May is especially important because FWDs during this 
time are associated with planting operations. Planting date is 
an important yield-influencing factor for both soybean and 
maize, where losses are incurred when planting outside optimal 
time windows (Lauer, 2009). In particular, the optimal maize 
planting date for much of Illinois occurs in the middle of April 
(around 11–20 April). Based on field studies conducted in 
Illinois, planting completed 2 wk later (around 1 May) than the 
optimal window resulted in an approximately 5% decrease in 
yield, with an additional 0.06 Mg/ha (?1 bu/acre) decrease per 
additional day of delayed planting past 1 May (Nafziger, 2008). 
Furthermore, the yield loss per day accelerates as planting is 
further delayed (Lauer, 2009). While overprediction of FWDs 
in most years would not affect the modeled planting date with 
respect to this window, it could for more extreme years. At the 
statewide level, for weeks when >30% of the maize area was 
reportedly planted, there was an average of 7.7% of the area 
planted per workable days observed. As a result, even though 
the reduction in prediction bias achieved by Model 2 may 
appear small, it could account for a considerable percentage of 
the area planted in extremely wet years.

CONCLUSIONS
Reducing bias in FWD predictions can contribute to risk 

management in field crop production. In wet or cold seasons, 
erroneously predicted FWDs could appreciably affect modeled 
impacts by pushing planting operations outside of the optimal 
yield window. In such cases, bias in FWD estimation would 
understate economic risks. To provide a more accurate and 
unbiased assessment of the implications of climate change on 
crop production, researchers need to carefully consider the 
threshold for field workability. Validation using multisite and 
long-term data sources will be a required step for accurate 
future assessments of climate change impacts on field 
workability. If possible, thresholds should be determined with 
a robust data set using the same soil moisture model, locations, 
and spatial scale as the future projections. Temperature should 
also be considered to improve prediction accuracy. Choosing 
these thresholds using optimization based on observed FWDs 
represents a way of obtaining robust and accurate thresholds 
that eliminate systematic prediction bias.
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