EPSRC Thermoelectric Network UK Meeting, Feb. 2017

Electronic transport simulations for TE power factor in nanostructures

S. Foster¹

D. Chakraborty¹, M. Thesberg², H. Kosina², N. Neophytou¹

¹School of Engineering, University of Warwick, Coventry, U.K. ²Institute for Microelectronics, TU Vienna, Austria

General description of our group's work

Theoretical investigations of:

- > electronic
- > thermal
- > thermoelectric properties

in nanoscale materials and devices

Approach - Tools

Electronic structure (atomistic to continuum)

- 1) Tight-binding (sp³d⁵s*)
- 2) Valence Force Fields
- 3) Force Constants
- 4) Effective mass approx.
- 5) Etc...

graphene nanoribbon

<u>Transport</u> (ballistic to diffusive)

- 1) Quantum mechanical (NEGF)
- 2) Semiclassical L. Boltzmann
- 3) Monte Carlo
- 4) Landauer formalism

Geometries (1D-3D, non-uniform)

- 1) 3D geometry solvers
- 2) Nanocrystallines
- 3) Nanomeshes
- 4) Low-dimensional

Motivation - Very high thermoelectric power factors

Superlattices

Nanocrystalline materials

Multi-phase nanocomposites

Very high PF:

2-phase materials: 15 mW/K²m⁻¹ 3-phase materials: 22 mW/K²m⁻¹

(~7x compared to bulk Si)

improvement in σ and S

Neophytou *et* al., Nanotechnology 2013, Lorenzi *et* al, J. Electronic Materials 2014

Outline

- Non-Equilibrium Green's Function (NEGF):
 - Method
 - Example 1: Influence of variations in SLs
 - Example 2: Filtering in 1D vs 2D
 - Example 3: Nanocomposites
- Monte Carlo semiclassical simulator development:
 - Method
 - Self-consistency
 - Scaling to large geometries
 - Inclusion of quantum effects
- Conclusions

Non-Equilibrium Green's Function (NEGF)

nano-inclusions

superlattices

- Very powerful approach
- Can include scattering (decoherence)
- Can be computationally very expensive
- Captures the exact geometry and disorder

- Device Green's function:

$$G(E) = [(E+i0^{+})I - H - \Sigma_{1} - \Sigma_{2}]^{-1}$$

- Transmission:

$$T(E) = Trace(\Gamma_1 G \Gamma_2 G^+)$$

- TE coefficients:

$$I^{(j)} = \int_{-\infty}^{+\infty} \left(\frac{E - E_F}{k_B T} \right)^j T(E) \left(-\frac{\partial f}{\partial E} \right) dE$$

$$G = \left(\frac{2q^2}{h}\right)I^{(0)} \qquad [1/\Omega]$$

$$S = \left(-\frac{k_B}{q}\right) \frac{I^{(1)}}{I^{(0)}} \qquad [V/K]$$

Example 1a: Variation study in superlattices

- (1) Variation in V_B reduces PF
- (2) Variations in wells size, barrier width do not affect the PF

Example 1: Detrimental effect of tunneling

Quantum tunneling is detrimental to S and to the PF

Example 2: Filtering in 1D vs 2D

- (1) Variation in energy of current is larger in 1D
- (2) 1D Utilizes S of barriers and σ of wells better
- (3) 1D Utilizes energy filtering more effectively

Example 3: Nanocomposites – increase in S

Blue region: channel

- (1) Nano-inclusions improve S
- (2) As the domain size decreases, the increase in S is larger

Outline

- Non-Equilibrium Green's Function (NEGF):
 - Method
 - Example 1: Influence of variations in SLs
 - Example 2: Filtering in 1D vs 2D
 - Example 3: Nanocomposites
- Monte Carlo semiclassical simulator development:
 - Method
 - Self-consistency
 - Scaling to large geometries
 - Inclusion of quantum effects
- Conclusions

Monte Carlo method

Uniform channel

- ➤ Electrons distributed in the channel according to the Fermi distribution and the Density of States
- Allowed to disperse under the influence of the potential
- Scattering by acoustic and optical phonons, ionized impurities, etc.

Thermoelectric coefficients from MC

- Calculate the average energy of the current
- 2. $S = \frac{-I_{\Delta T} \cdot \Delta V}{I_{\Delta V} \cdot \Delta T}$ for arbitrary ΔV and ΔT
- 3. $S = \frac{-\Delta V}{\Delta T}$ for $I_{\Delta T} = I_{\Delta V}$

Simulations of superlattices in MC

Include all relevant scattering parameters (next Ionised Impurities)

Include self-consistent electrostatics

ELECTROSTATICS

TRANSPORT

Obtain the actual potential profile for specific doping distributions

Extension to 2D

- Extend to larger geometries, where NEGF cannot reach
- ➤ Envision 100nm x 1000nm domains
- Nano-inclusions of various sizes
- > Extend to nano-inclusions, grain boundaries dislocations, etc.
- Electron AND phonon transport

Incorporate quantum tunneling

Effect of tunnelling through a barrier

- Incorporate quantum tunneling
- Basic idea:
 - Solve 1D NEGF for simplified cases
 - Provide a probalitity of going through the barrier when an electron reaches a barrier in MC

Outline

- Non-Equilibrium Green's Function (NEGF):
 - Method
 - Example 1: Influence of variations in SLs
 - Example 2: Filtering in 1D vs 2D
 - Example 3: Nanocomposites
- Monte Carlo semiclassical simulator development:
 - Method
 - Self-consistency
 - Scaling to large geometries
 - Inclusion of quantum effects
- Conclusions

Conclusions

- Techniques for electronic transport in nanocomposites
- Quantum mechanical (NEGF)
- Semiclassical Monte Carlo
- Extend to large geometries
- Perform realistic simulations
- Incorporate all important transport effects

Acknowledgements:

Mischa Thesberg, Hans Kosina (TU Vienna group), Dario Narducci (Univ. Milan-Bicocca)

ERC StG: NANOthermMA