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General description of our group’s work
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Theoretical investigations of:

 electronic 

 thermal

 thermoelectric properties 

in nanoscale materials and devices



Approach - Tools
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1) Tight-binding (sp3d5s*)

2) Valence Force Fields

3) Force Constants

4) Effective mass approx.

5) Etc…

1) 3D geometry solvers

2) Nanocrystallines

3) Nanomeshes

4) Low-dimensional

Electronic structure

(atomistic to continuum)

Transport 

(ballistic to diffusive)

Geometries

(1D-3D, non-uniform)
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1) Quantum mechanical (NEGF)

2) Semiclassical – L. Boltzmann

3) Monte Carlo

4) Landauer formalism
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Motivation - Very high thermoelectric power factors

4
Neophytou et al., Nanotechnology 2013,

Lorenzi et al, J. Electronic Materials 2014

Very high PF:

2-phase materials: 15 mW/K2m-1

3-phase materials: 22 mW/K2m-1

(~7x compared to bulk Si)
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Simultaneous
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Multi-phase nanocomposites



Outline

 Non-Equilibrium Green’s Function (NEGF):

 Method
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Non-Equilibrium Green’s Function (NEGF)
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- TE coefficients:

- Device Green’s function:

- Transmission:
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Σ1 Σ2H+U+ΣS

 Very powerful approach

 Can include scattering (decoherence)

 Can be computationally very expensive

 Captures the exact geometry and disorder 
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Example 1a: Variation study in superlattices
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(1) Variation in VB reduces PF

(2) Variations in wells size, barrier width 

do not affect the PF



Example 1: Detrimental effect of tunneling
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Quantum tunneling is detrimental to S and to the PF

single barrier optimal case



Example 2: Filtering in 1D vs 2D
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(1) Variation in energy of current is larger in 1D

(2) 1D Utilizes S of barriers and σ of wells better

(3) 1D Utilizes energy filtering more effectively

1D Superlattice

2D Superlattice



Example 3: Nanocomposites – increase in S
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Transport 

direction

Red spots: nano-inclusions

(here they are barriers of Vb=0.3eV)

Blue region: channel

(1) Nano-inclusions improve S

(2) As the domain size decreases, 

the increase in S is larger 
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Monte Carlo method

 Electrons distributed in the channel according to the Fermi 

distribution and the Density of States 

 Allowed to disperse under the influence of the potential

 Scattering by acoustic and optical phonons, ionized impurities, etc.

Uniform channel Superlattice
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Thermoelectric coefficients from MC
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Simulations of superlattices in MC

Include all relevant 

scattering parameters

(next Ionised Impurities)
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Include self-consistent electrostatics

 Obtain the actual potential 

profile for specific doping 

distributions
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given n  Uscf

Poisson

given Uscf  n

Iterate until 
convergence

ELECTROSTATICS

TRANSPORT

(NEGF)

given n  Uscf

Poisson

given Uscf  n

Iterate until 
convergence

ELECTROSTATICS

TRANSPORT

(NEGF)



Extension to 2D

 Extend to larger geometries, where 

NEGF cannot reach

Envision 100nm x 1000nm domains  

 Nano-inclusions of various sizes

 Extend to nano-inclusions, grain 

boundaries dislocations, etc.

 Electron AND phonon transport   
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Incorporate quantum tunneling

 Incorporate quantum tunneling

 Basic idea: 
 Solve 1D NEGF for simplified cases

 Provide a probalitity of going through the barrier 

when an electron reaches a barrier in MC 
17

Effect of tunnelling through a barrier
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Conclusions

19

 Techniques for electronic transport in nanocomposites 

 Quantum mechanical (NEGF)

 Semiclassical Monte Carlo

 Extend to large geometries

 Perform realistic simulations

 Incorporate all important transport effects
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