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The MacDowell-Mansouri Extension: Addendum
J. D. Bjorken
I. Gauss-Bonnet Numerology: Some Derivations

We begin by deriving the formula for the “topological density n(t) (actually a constant) for deSitter
space. The problem is essentially keeping track of numerical factors.
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We have assumed in the above that the Riemann tensor, up to a normalization factor, has the form
appropriate to k = 0 FRW cosmology, with a(t) the FRW scale factor. In Petrov form, it is given as
follows:
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The variables g in the expression for the Lagrangian are the comoving FRW coordinates. The integral
of those coordinates over a comoving volume is independent of time. Therefore the time-dependent
volume V(t) scales as the cube of a(t) .

The structure of the Gauss-Bonnet term, up to its normalization, follows from its definition
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The problem is to make sure that the normalizations of the three terms in the Lagrangian are correct,
namely that
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We do this in three steps. The first is to recognize that the cosmological-constant term can be written as
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Here /1-( is the dark-energy density, related to the Hubble expansion rate (for pure deSitter space) by the
FRW equation.
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Next, normalization of the Einstein term can be determined by applying the variational principle to this
Lagrangian. First one makes an integration by parts on the Einstein term, along with discarding
temporarily the Gauss-Bonnet term, because it does not affect the equations of motion. The integration
by parts gives
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The equation of motion becomes

d i ’ o L
Zlac, aal= ¢, & +3C.&

-2 —



Ht

This equation is satisfied for the solution a(t) = @ , provided C EH = Ccc =3,

To determine the Gauss-Bonnet coefficient, we demand, as explained in the text, that the Lagrangian, as
given by the first equation in this addendum, must vanish when the equations of motion are satisfied.
This leads to the equation
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Therefore the density is given by
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With the input numbers,
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the output density is
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We here choose /\Qc = 200 MeV. Evidently the result is well on the infrared side of the QCD scale.
This occurs in large part because of the numerical coeffiecient (4 TC ) something not anticipated by
Zeldovich in 1967.



Il. Cosmology: Derivation of the Numbers

From the preceding formulae and the argument in the notes, it is straightforward to write down the

expression for the critical temperature. The missing ingredient is the Stefan-Boltzmann expression for
the temperature. It is
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Here g* expresses the effective number of degrees of freedom of the primordial soup at temperature
T. Therefore the equation for the critical temperature Te. becomes
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At the appropriate value of T, one finds from page 65 of Kolb and Turner a value g*
finally to

= 15 . This leads

I1l. Neutron Stars and the Like: More Numbers

The Riemann tensor for the general stationary Painleve-Gullstrand metric is remarkably simple (see
Fischer and Visser, arXiv 0205139, as well as Hamilton, arXiv 0411060, for good overviews):
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Here we have defined
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We therefore can read off the form of the Gauss-Bonnet term:
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We now consider a volume comoving with the Painleve-Gullstrand flow with dimensions
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As the box falls in toward the source, the distance between the floor and the ceiling increases, and is
given by
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Here [t is time independent, because the trajectory of the floor is obtained from that of the ceiling by
a time translation. Therefore
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Consequently, the GB AN(t) within this box is
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Dividing out the volume, we recover the expression described in the text, with its normalization
successfully matched to the deSitter-space limit.
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Once the source radius R is defined, we can solve for n(r) as function of radius:

N(r) = -—FL'- <—\f—)3 = —/ﬂ;”—-—( z\jg\(‘j/z

32w HE\ M 32T H?

(R (ﬁ,)%
16T H* M N 13 QB

The critical density, along with the critical distance r. from the center of the source is then
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The geetes mass and the scale factor for the radius of the source are defined as
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IV. Rift and Subduction Zones

The PG language used in the preceding section for the neutron star could also have been used for the
cosmological example. And the two descriptions can in principle be synthesized within the PG language,
just by using the PG formalism for the combined Schwarzschild-deSitter (Kottler) geometry. However
there is a distinction to be made. In the case of the dark energy problem, the PG velocity field
represented flow outward from the origin, while in the Schwarzschild problem it is natural (especially
when dealing with black holes) to use an inward-going flow. This problem has bothered me for a long
time. But in the context of classical Einstein general relativity, it has an easy solution (I thank Bill Unruh
for teaching me this). One simply uses two separate coordinate patches to cover the full spacetime. In
principle any spherical surface with arbitrary radius r will suffice in this regard as a boundary. Inside the
sphere, inflow is chosen; outside the sphere the outflow of the expanding universe is chosen. But there
is a natural choice (more on this later), which is where v’ = dv/dr vanishes.

With such a choice, it is easy to see that the curvature tensor is dominated outside the rift surface by
dark energy and is dominated inside the rift surface by the matter source. The two contributions to the
Riemann tensor R are additive, because R is linearin u and its derivatives, while u itself is additive;
recall
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When making coordinate patches as described above, one must take care that matching conditions are
satisfied. This boils down in this case to the statement that the Einstein tensor, and thereby the energy-
momentum tensor , should not be modified on the boundary surface. This is assured, because all we
have done is to reverse the sign of the velocity v in the interior region, and every component of the
Riemann tensoris evenin v.

Nevertheless, this patch seems to affect the interpretation we have made of the “topological density”
n(r, t), which is odd in v . The situation is depicted in the figures shown on the next page. By patching,
we succeed in keeping n positive-semidefinite for all radii, while an unpatched coordinatization would
exhibit a change of sign.

What this means, if anything, is totally unclear. Maybe this is evidence that this whole MM story line in
these notes is some kind of nonsense. | obviously choose not to jump to that conclusion, but pursue the
alternative. This surface from which the “topological charge” seems to emerge | will call a rift surface,
since it seems slightly akin to what happens deep underwater in the mid-Atlantic. It has curious
properties. For example, if one assigns an Unruh temperature to the acceleration of the PG flow
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then it vanishes on the rift surface, but does not change sign. Also, if one uses the loop quantum gravity
formalism (which is essentially the first-order formalism for gravity underlying the MM extension), the
triad of gauge potentials conjugate to the electric-field triad in that formalism becomes degenerate at

i



16
‘J_E; ﬁ \

. X i

P&JVG(/\&A?,, Mgmﬂ;(j\&ﬂ (LC .@(ovd

The PG flow in the presence of coordinate patching.



the rift surface and changes from a right-handed triad to a left-handed triad as one crosses the surface
unless one reverses the direction of flow. This occurs because the LQG triad describes the extrinsic
curvature tensor K, which in turn is defined in the PG description by the symmetric gradient of the PG
velocity field (see the Fischer-Visser paper, arXiv 0205139, for a good discussion of this). By construction,
K becomes degenerate on the rift surface.

I have no good idea of whether any of this means very much. In the context of classical GR, | doubt that
it does. But in the context of the quantum theory, or of the properties of the MM formalism that go
beyond the Einstein equations of motion, or of the possible interpretation of gravity (and other standard
model forces) as being emergent, there is in my opinion the possibility that this kind of thing has some
significance.

It is especially in the context of emergence, as exemplified by the analog systems for gravity found in
condensed matter phenomena, that | am tempted to think of the possibility that the rift suface (or a rift
zone surrounding the rift surface) might contain beyond-the-standard-model observable physics. If
gravitons are non-fundamental composite objects, and if sacred symmetries such as gauge invariance,
general covariance, and Lorentz invariance are only approximate, then perhaps one might somehow see
effects in that interesting region of spacetime. And it should be pointed out that the PG description
underlying the above argument is ubiquitous in condensed-matter analog-gravity descriptions.

From the point of view of astrophysics, the rift surface which divides dark-energy-dominated spacetime
from dark-matterdominated spacetime evolves with the cosmological evolution. In the past, at redshifts
of order one, small bubbles of deSitter spacetime started to emerge from the early state, which was
fully matter-dominated. In the future, after a few efolds of exponential dark-energy-driven expansion
have occurred; there will be isolated islands of gravitationally bound matter within a vast sea of deSitter
spacetime.’_'Therefore the rift-surface geometry will again consist of an ensemble of isolated bubbles
surrounding the matter islands. But at present we are in the midst of a “phase transition” characterized
by long-range connectivity of the rift surface. It is my impression that the piece of this rift surface that is
nearest to us is beyond the local group, some tens of megaparsecs away. But this is a rather uneducated
surmise on my part.

If “spacetime topology” is being produced at the rift surfaces, and flows away with the PG flow, where
does it end up? In the outward directions it simply ends up contributing to the deSitter vacuum
structure along with the dark energy density. The inward flow, say toward a neutron star, continues
until the critical Planckian density is reached, at which point we expect something new has to happen. In
the interpretation we have made, six extra dimensions of QCD scale “open up” in this region (i.e. must
be taken into account in the MM action), and the topology flows into those dimensions. Therefore such
spacetime regions, where the “topological density” n(r,t) becomes Planckian, might well be dubbed
“subduction zones”. Just as for the rift zone, this might (if we are very lucky) also be a spacetime region
where subtle, unexpected, beyond-the-standard-model phenomena occur.

There is a very good chance that the contents of this section are total nonsense. These words are meant
to be provocative, not explanatory.
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