## Math 2471 Calculus III - Sample Final Questions

1. Find the unit tangent and unit normal vector for $\vec{r}(t)=<t, \frac{1}{2} t^{2}>$.
2. (i) Prove the limits either exist or doesn't exist
(i) $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}+2 y^{2}}{x^{2}+y^{2}}$
(ii) $\lim _{(x, y) \rightarrow>(0,0)} \frac{x^{2} y^{4}}{x^{2}+y^{2}}$
3. Find the equation of the tangent plane to the given surface at the specified point

$$
x^{2} y+x z+y z^{2}=3, \quad P(1,2,-1)
$$

4. Find the directional derivative of $z=x^{2}+3 x y+y^{2}$ at $(1,1)$ in the direction of $<-3,4>$
5. Classify the critical points for $z=x^{2} y-x^{2}+y^{2}-18 y$.
6. Set up and evaluate an integral to calculate
(i) the volume bound by $z=0, \quad z=1-x^{2}-y^{2}$
(ii) the volume inside both $x^{2}+y^{2}+z^{2}=2, \quad x^{2}+y^{2}=1$
(ii) the surface area of $x+2 y+3 z=6, \quad x, y, z \geq 0$
7. Set of the triple integral $\iiint f(x, y, z) d V$ in both cylindrical and spherical coordinates for the volume inside the cone $z=\sqrt{x^{2}+y^{2}}$ bound by $z=1$
8. Is the following vector field conservative?

$$
\vec{F}=<y^{2}+3 y z, 2 x y+3 x z, 3 x y>
$$

If so, determine the potential function $f$ such that $\vec{F}=\vec{\nabla} f$. Use this to evaluate

$$
\int_{c}\left(y^{2}+3 y z\right) d x+(2 x y+3 x z) d y+3 x y d z>
$$

where $c$ is a curve that connects the points $(0,0,0)$ and $(1,2,3)$.
9. Evaluate the following line integrals:
(i) $\quad \int_{c} 2 x y d x+(x+1) d y$ where c is the counterclockwise direction around the square with vertice $(0,0),(1,0),(1,1)$ and $(0,1)$
(ii) $\quad \int_{c}(x-y) d x+(x+y) d y$ where c is clockwise direction around a circle of radius 2.
10. Verify Green's Theorem

$$
\oint_{c} P d x+Q d y=\iint_{R}\left(Q_{x}-P_{y}\right) d A
$$

where $\vec{F}=<3 x^{2} y, x^{3}+x>$ and $c$ the curve enclosing the area given by $y=x$ and $y=x^{2}$.
11. Evaluate the following surface integrals
(i) $\iint_{S} x y d S$ where $S$ is the portion of the plane $2 x+y+z=6$ in the first octant.
(ii) $\quad \iint_{S}(x+z) d S$ where $S$ is the portion of $y^{2}+z^{2}=9$ in the first octant between $x=0$ and $x=4$.
12. Verify the divergence theorem

$$
\iint_{S} \vec{F} \cdot \vec{n} d S=\iiint_{V} \nabla \cdot \vec{F} d V
$$

where $\vec{F}=<x+y z, y+x z, z+x y>$ and $V$ is the volume of the tetrahedron bound by $x+y+z=1$ and the planes $x=0, y=0$ and $z=0$.
13. Verify Stokes's theorem for

$$
\oint_{C} \vec{F} \cdot d \vec{r}=\iint_{S} \nabla \times \vec{F} \cdot \vec{n} d S
$$

where $\vec{F}=<x z-y, y z, 1>$ and $S$ is the surface of the paraboloid $z=1-x^{2}-y^{2}$ for $z \geq 0$ and $C$ is the curve where the paraboloid intersects the plane $z=0$.

