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Abstract

The simultaneous sparse approximation problem is condesiith recovering a set of multichan-
nel signals that share a common support pattern using inetenpr compressive measurements.
Multichannel modifications of greedy algorithms like orgjomal matching pursuit (OMP), as well
as convex mixed-norm extensions of the Lasso, have typitaén deployed for efficient signal
estimation. While accurate recovery is possible undenoedircumstances, it has been established
that these methods may all fail in regimes where traditiaudispace techniques from array pro-
cessing, notably the MUSIC algorithm, can provably succéegghinst this backdrop several recent
hybrid algorithms have been developed that merge a subgséiceation step with OMP-like pro-
cedures to obtain superior results, sometimes with thieafgjuarantees. In contrast, this paper
considers a completely different approach built upon Bayesompressive sensing. In particular,
we demonstrate that minor modifications of standard Bageaigorithms can naturally obtain the
best of both worlds backed with theoretical and empiricalpgut, surpassing the performance of
existing hybrid MUSIC and convex simultaneous sparse aqymation algorithms, especially when
poor RIP conditions render alternative approaches ineiféc

1 Introduction
Our starting point is the generative model
Y =®X, + €&, 1)

where® € R™™ is a dictionary of basis vectors that we assume to have/gmbrm,
X, € R™* is a matrix of unknown coefficients we would like to estimdtec R"*! is
an observed response matrix, afids noise. The objective is to estimate the unknown
generativeX, under the assumption that it is row-sparse, meaning thay maavs of X,
are equal to zero. The problem is compounded appreciabliidpdditional assumption
thatm > n, meaning the dictionarg is overcomplete. When = 1, this reduces to
the canonical sparse estimation of a coefficient vector mitistly zero-valued entries or
minimal ¢, norm [5]. In contrast, estimation of, with ¢t > 1 represents the more general
simultaneous sparse approximation problem [3, 18] rekevamumerous domains such as
compressive sensing and multi-task learning [9, 14, 19,@2hifold learning [16], array
processing [13], and functional brain imaging [1].

One possibility for estimating’, involves solving

min[|Y — @X|[5 + Ad(X), A>0, d(X)&) T|a.] > 0], 2



where the indicator functiof [||z| > 0] equals one ifjz| > 0 and is zero otherwise (here
||| is an arbitrary vector norm)d(X) penalizes the number of rows K that are not
exactly equal to zero; for nonzero rows there is no additipanalty for large magnitudes.
Moreover, it reduces to th& norm whent = 1, i.e., d(x) = |lx|o, or a count of the
nonzero elements in the vector Note that to facilitate later analysis, we defing as the
i-th column of matrixX while x;. represents theth row.

For theoretical inquiries, asymptotic regimes with> oo, or low-noise environments,
it is convenient to consider the limit as— 0, in which case (2) reduces to

m)gn d(X), stdX,=7oX. (3)
Unfortunately, solving (3) (or the relaxed version (2))aihxes a combinatorial search and
is therefore not tractable in practice. This has motivabtedkroader family of sparse pe-
nalized regression problems of the form

m)énZh (lzi]l2), St®X,=X, (4)

where h is a non-decreasing, typically concave functtorCommon examples include
h(z) = zP,p € (0,1] [15] andh(z) = log(z + a),a > 0 [2]. The parameters anda are
often heuristically selected on an application-specifgidaln particular, when(z) = z,
several theoretical results stipulate conditions whemgbyare guaranteed to recov&y
[6]. We refer to this variant as M-Lasso, for multiple-reepe vector Lasso. Alternatively,
greedy methods such as orthogonal matching pursuit (OMR) been adapted to handle
t > 1; this we likewise refer to as M-OMP.

However, curiously there remain important special casesrgrbomputingX is rel-
atively easy using conventional subspace techniquesnatigg in the array processing
community, and yet solving (4) or greedy pursuit methodsgar@ranteed to fail in pro-
ducing Xy. In brief, this failure is a consequence of under-utilizaggrelation information
in Y and ultimatelyX,. We review these special cases linked to the classical MWSIC
gorithm [7, 8] in Section 2, as well as hybrid methods that bora a subspace estimation
step akin to MUSIC with M-OMP-like procedures to obtain stigperesults, sometimes
with theoretical guarantees. While effective whksatisfies standard RIP conditions, we
have observed that the performance of these hybrids ndaesshdegrades substantially
outside of idealized conditions.

Section 3 then describes an alternative strategy for estigm&, which builds upon
multiple-response model Bayesian compressive sensin§)B; 20]. Here we motivate
an enhanced version of canonical Bayesian algorithms thah®tically compensates for
correlation structure X, without requiring a separate subspace estimation step@s-in
vious methods. In Section 4 we provide theoretical suppaygsesting that the resulting
modified cost function possesses quantifiable advantagadoth M-Lasso and optimal
MUSIC. Finally, Section 5 reviews related work, and latemauical experiments in Sec-
tion 6 corroborate our theoretical findings.

10ther row norms, such as tlig,, have been considered as well but are less prevalent.



2 Subspace Methods for Compressive Sensing

For convenience define = d(X,). To ensure estimation of|, is feasible we must then
havek < n. Moreover, we henceforth assume without loss-of-gerngrdiat: < £ and
rankY] = t. This is possible because the success or failure of all ithgs considered
herein only depends onY ". Therefore ift > k or ranKY] < ¢, we can equivalently
collapse the constraint setYo = ®X, whereY = US"/? € R @] with 7SV T equal
to the svd decomposition of.

We also will assume that spadd = n + 1, where matrixspark quantifies the smallest
number of linearly dependent columns [5]. Consequentéy/stiark condition is equivalent
to saying that each x n sub-matrix of® is full rank. This assumption is adopted for
simplicity and our conclusions generalize to other spatkes However, this is a relatively
weak condition anyway that will be satisfied almost surelyday dictionary generated
before column normalization as

®=A+¢€R, (5)

where A is an arbitrary matrix,R is a random matrix with iid elements drawn from any
continuous distribution, and> 0 is an arbitrarily small constant.

Now consider solving (3) using the MUSIC algorithm. In thegent context this in-
volves estimating the row-support &f, as follows. First let/ denote any orthonormal
basis for rang@’]. Thereforel —UU7 is a projection operator onto the orthogonal comple-
ment of rangg’]. We nextcompute theset={j € 1,...,m: |(I —UU")¢.|l2 < Ok},
whered,, is chosen such tha®)| = £, i.e., we are choosing the indeces of themallest
values of(1 — UU ")¢.;. Once the suppof? is computed in this wayX, can be estimated
usingX = @)Y, whered, denotes the columns df indexed by(.

Interestingly, in the special case where k& and given our spark assumption, MUSIC
is guaranteed to produce ah equal toX, [7]. This is because ranfé] = rangé®dq]
under the stated conditions, and therefgte— UU " )¢.;||» = 0iff j € Qo, the support of
Xy. Curiously though, solving (4) (or related M-OMP) do not ghténe same success.

Lemma 1. There will always exist dictionarie® with spark®| = n + 1 and coefficients
Xy with ¢ = k, such that the optimization problem (4) with any possiblevill have
minimizing solutions not equal t&,.

All proofs will be deferred to a subsequent journal pubimabecause of space consid-
erations. Note that the MUSIC algorithm reduces to a sintplesholding procedure when
t = 1. In fact, it is formally equivalent to selecting ttiebasis vectors such thgt ¢.; is
maximized, wher&” = y is now a vector. However, asapproacheg its performance
nears optimality, exceeding the performance of far moreperniterative optimization
procedures.

Ideally then we would like to maximally leverage the best oftbhsubspace techniques
like MUSIC and more typical multiple response compressesrsgg algorithms such that
we obtain optimal performance for all valuestofelative tok. Several recent methods
attempt just this, combining iterative, M-OMP-like greagydates with a subspace estima-
tion step [4, 10-12]. While these approaches can be intiexgbfeom different perspectives
and have subtle differences, the core concept is to estanagetain portion of the support,



generallyk — t elements, using something related to M-OMP, and then app$M to an
augmented subspace to obtain the finelements of the support.

Although results appear promising, and the core idea iegquimpelling, empirically
we have observed that these algorithms can all be sengitigertelation structure i@,
and regular M-Lasso can display superior performance iraiceregimes. To this end, we
motivate a simple alternative Bayesian algorithm that dessty merges the strengths of
both MUSIC and conventional compressive sensing techsituachieve state-of-the-art
performance with novel theoretical properties.

3 Revisiting Bayesian Compressive Sensing

Bayesian compressive sensing is built upon the probabihsbdel from [9, 20]. Here we
review the basic elements. We start with the Gaussian li&elil and prior distribution

p(Y|X) oc exp —%HY — ®X|%| and p(X;T) o exp [—%tr (XTl“lX)] (6)

respectively, whera is the noise variance (assumed to be known hereJ'asa diagonal
matrix of hyperparameters controlling the prior varian€each row ofX. Given thisl’,
the posterior distributiop(X|Y") is a Gaussian with mean

X=To" (\[ +eId") Y. 7)

Note that whem\ — 0, this X is feasible, i.e.y’ = ®X. The central estimation problem
then boils down to determininig, which can be accomplished using an empirical Bayesian
procedure. The basic idea is to integrate &uand solve

max [ p(Y[X)p(XT)AX, (8)
Once soméa™ is computed in this way, we can plug this value into (7) for estimate of
X,. If diagonal elements of thiE* are zero, then the corresponding rows'ofare also
necessarily zero.

Returning to connections with subspace methodsXlgte R*** denote the nonzero
rows of someX, which is necessarily full-rank by our previous assumgidbhas already
been demonstrated that i, has orthogonal rows, then (8) in the limit As— 0 has a
single stationary poirt* with sparsity profile matching the trug, [20]. But in general we
may expect thaf,.X, potentially possesses significant off-diagonal structditee most
natural way to compensate for such structure within theecdrdf this Bayesian model is
to reparameterize the likelihood function as

1
PYX50) o oxp | 5[V — @X W% ©)

whereV represents an unknown matrix that accounts for coeffictemttsire when we view
Zy & X,V as the new coefficient set that we wish to recover. We must oimily estimate
[ and¥ by maximizing the modified form of (8) with(Y'|X; ¥) replacingp(Y'|X).



Retracing back to our original objective of solving (3), ithie the limit asA — 0,
maximizing [ p(Y'|X; ¥)p(X;I')dX is equivalent to solving

lim min —210g/p(Y\X;\I/)p(X;F)dX = lim min L(T', V). (10)

A—0 T;T>0 A—0 T:I>0

The relevant cost function is defined as
L, 9) 24 [y (870) 7 YT (@007 + A1) + tlog [OT®T + Al| + nlog [w7 W]
(11)
after computing the required integral and discardingéwaht constants. Additionally, the
limit must be taken outside of the minimization in (10). Tleason we consider this limit
rather than simply\ = 0 is for technical reasons related to the situation wigré ' is no

longer full rank.
If we optimize first over, there exists a closed-form solution such that

vy = LyT (ereT 4 A1) Y. (12)
n
This can be determined by computing gradients, equatingrm and checking the requi-
site optimality conditions. Plugging this expression i(it@) we obtain the reduced equiv-
alent cost function

£(T) 2 Hlog [OT@T + A| + nlog|y T (@F” + A1) ™'y

, (13)

where parameter-independent terms have been removed. Adlgee in Section 4, this
penalty function has several desirable attributes reletcanddressing (3) wheh — 0.
While not our focus here, noisy variants can also prove g¥fecalthough theoretical study
is much more difficult because of the intrinsic non-convegitthe objective.

From a practical standpoint, a family of iterative reweiggtprocedures can be applied
to solveminrso £(I") for any value of\. Arguably the simplest is a form of iterative
reweighted least squares (IRLS) based upon a standardizadjon-minimization scheme
frequently used in BCS. This procedure can exploit onlyigbytsolving (11) for fixedW
at each iteration. The complete algorithm is as followstidhze ¥V = [ andI’ = [. Then
compute (7)Z = XU, and

SAT -ToT (A +3Id7) " ar. (14)
We then updaté' using

t
Ty = % > 2+ s (15)
7=1
Finally ¥ is updated via (12) and the process is repeated until coemeeg These iterations
are guaranteed to reduce or leave unchanged (13) at eveatiateand can even handle
A — 0 with appropriate use of the pseudo-inverse. However, fnleveonvergence to a
stationary point remains an outstanding issue. In thisrcegerative reweighted M-Lasso
implementations are more amenable to analysis, but we tefeto a subsequent journal
article. Regardless of implementational specifics, itigéty the nature of the underlying
Bayesian-inspired cost function that contributes to ¢iffecdeployment. We will consider

such issues both theoretically (Section 4) and empiri¢&iction 6).



4 Analysis

The cost functionZ(I"), and its predecessor in (11), are non-convex and seemirfgly d
cult to untangle. However, certain intrinsic propertieskenéhem notably appropriate for
solving (3), and in particular, speak to an intimate conioactvith the MUSIC algorithm.

Theorem 1. Assume spar®| = n + 1 and thatX, is a unique, optimal solution to (3).
Then if rankX,] = k = t, the problemim,_,, minr>¢ £(I") has a single stationary point
I'*, and this point satisfie§*® " (CIDF*CDT)Jr Y = X,.

This result implies that, in terms of successful recovery,oan enjoy performance at
least as good as the MUSIC algorithm operating in its optiregime ofk = ¢ (assuming
a convergent algorithm). Moreover, this occurs in a congyentegrated fashion unlike
previous algorithms. And even whenrc £, we nonetheless reap benefits of this integration
because it can be shown that the underlying augmented BGSwugion behaves as
though there are— 1 fewer support elements to estimate.

Additionally, if we minimize £(I") using an iterative reweighted M-Lasso algorithm
with guaranteed convergence to a stationary point, theamitoe shown that we will never
do worse that M-Lasso either. Hence MUSIC and M-Lasso perdmice can in some sense
be interpreted collectively as lower bounds on the perforceacf augmented BCS.

However, this alone does not ensure that thexistregimes where a provable perfor-
mance gain can be expected. In contrast, the following resladted to the cost function
from (11) can be applied towards this purpose:

Theorem 2. Assume thatd satisfies (5) and let;)[.X| denote the value of theth largest
¢, row-norm of a matrixX. Then there exists a setof— 2 constants; € (0, 1] such that,
forany Y = & X,V generated withl(X,) < n, ¥ invertible, and

7T(7;+1)[X0\I/] S I/ﬂl’(i) [Xog/], 1= 1, e — 2, (16)

the following two conditions will always hold:

(I) The problemlim,_,, minr>( L(I', ¥) has a single stationary poiht, and this point
satisfied™®" (6Td")" v = X 0.

(I X, will be the unique solution to (3).

This result actually applies to the original BCS cost fuoistiwhich is what (11) reduces
to whenW = [. Hence if we initialize with = I and the conditions of Theorem 2 hold,
and then we optimize only/ until convergence with a globally convergent algorithm, we
are guaranteed to learn an optim&l without ever needing to incorporate alyupdates to
conceivably avoid local minima. The advantage then of ttggvanted objective function
with generalV is that even if Theorem 2 does not hold with= I, it may hold at a later
iteration after? # [ has been updated using (12), allowing remaining local manim
potentially be avoided.

Importantly, Theorem 2 holds even whénexhibits arbitrarily strong correlation pat-
terns (by virtue of the influence of in (5)) and RIP conditions required by existing al-
gorithms do not apply. Moreover, neither M-Lasso nor MUSiG; any combination rule
which selects the better of the two, can achieve somethimgasi there will always exist



dictionaries® and coefficient matriceX, consistent with the stipulations of Theorem 2
such that failure is inevitable, including the special cadereV = [. Of course other
hybrid algorithms could be pieced together using MUSIC aifigérént penalty function
selections forh in (4). But it is completely unclear how to design attendgrdate rules to
guarantee anything similar to the augmented Bayesiaregiraliscussed herein.

This leaves the family of greedy hybrid algorithms proposejd, 10-12] for merging
with subspace methods. The drawback with these strategwesver is twofold. First, as
a baseline sparse estimation procedure, solving (4) isrgiynenore powerful than greedy
approaches like M-OMP, especially when the former is im@etad with convex iterative
reweighting procedures. Secondly, existing hybrid subsdgorithms, which update the
support in two separate steps, do not fully consider botlreffextive subspace af and
intermediate coefficient estimates all in an entirely iné¢gd fashion as witl (T").

5 Related Bayesian Analytical and Algorithmic Work

A result related to Theorem 2 has been demonstrated in th@aspase whereé = 1
[21]. However, this scenario is decidedly much simpler biseat can be shown that any
local minimum of £(I") or L(I", ¥) can be achieved witd(I') < nt. Therefore when
t = 1, this implies that we only need consider candidate localimmizersI’ associated
with basic feasible solutions, meaning solutions invajvait most. columns of® making
the corresponding sub-matrix & @ invertible given the implicit spark condition. It then
follows that relevant terms at each candidate local minioraveniently decouple, greatly
simplifying the analysis.

In contrast, witht > 1 we have no such luxury because it is not possible to rule @at lo
minimizers withd(I") > n, and hence we are forced to accommodate this more chalgngin
scenario via a different strategy. It is also important tgbhasize that just because the row-
norm scaling condition of Theorem 2 is satisfied does notyritpdt it will additionally be
satisfied when applied to each column individually. Therefwe cannot simply adopt the
original result from [21] in a column-wise fashion to repuoce Theorem 2.

Finally, from an algorithmic standpoint, [23] considemsmigar modifications of Bayesian
compressive sensing intended to address correlationg imtns of X. However, no theo-
retical justification is provided beyond what is already wndor the standard BCS frame-
work. Moreover, there is no discussion of the intimate catine with subspace methods
and the MUSIC algorithm.

6 Numerical Validation

Here we briefly describe some simulations that complemenpyious analytical find-
ings. In [4,10-12] a series of experiments are presentddi#raonstrate the efficacy of
hybrid subspace methods. However, the experimental cgondiare not necessarily chal-
lenging in the sense that for all caskess generated with iid Gaussian elements. In contrast,
for the experiments in this section we generéte= > | i~'a;b], wherea; andb; are

iid standardized Gaussian vectors of appropriate lengith tleen normalize each column
of the resulting dictionary. This selection ensures thaixhibits non-trivial correlations



among columns because of the scale factor.

Next we generate nonzero rows &f, as X, = Yo iluv,, whereu; andwv; are
again iid Gaussian. This implies th& X] should have significant off-diagonal elements,
which should favor subspace-based methods over convah@adgorithms like M-Lasso.
We fix m = 200, k = 20, andt € {4, 8,12, 16}. For each value of, we varyn from k + 1
to 100, noting thatk + 1 is the minimum number of measurements such that recovery of
Xy is even theoretically possible.

For evaluation purposes we compare augmented BCS (or AB@Isjegular BCS im-
plemented using IRLS, M-Lasso, and two hybrid compressawsing MUSIC algorithms.
While in reality these algorithms constitute a family wittany potential variations, we
choose two variants endorsed by the authors of [10-12]. iffely, we compare with
CS-MUSIC, where code was provided by the authors of [12],seglential CS-MUSIC,
with code from the authors of [10, 11]. Both algorithms wekeeg access to the true value
of k£ in all experiments. M-Lasso, BCS, and ABCS do not use prifarmation regarding
k.

Figure 1 displays the results averaged across 200 indepetnids, where the evalu-
ation metric is the frequency of trials where each respedalgorithm detects the correct
support ofXj,. In panel (a) we have the fewest number of snapsiicts4), and therefore
the conditions are least favorable for the hybrid subspasthods. Consequently M-Lasso
substantially outperforms both CS-MUSIC and sequentialMLESIC. In contrast, asg
increases from panels (a) through (b), the subspace ap@®acquire additional informa-
tion such that they eventually can outperform M-Lasso deslg The latter has difficulty
capitalizing on this additional ill-conditioned subspanérmation and hence M-Lasso
displays only marginal improvement froim= 4 to ¢t = 16.

Regarding ABCS and BCS, they both exhibit excellent pertoroe across all values of
t since they have an intrinsic mechanism for compensatingdoelations in®. However,
clearly ABCS is able to more thoroughly exploit subspacenmiation and correlations in
X, outperforming the other algorithms in all of the testing ditions.

We next conduct a similar experiment, except now werfix= 200, t = 10, and
k € {30,50}. We then vary, from k£ + 1 to £+ 100. Results are reported in Figure 2. Here
we observe that while BCS and ABCS performance is quite staise subspace methods,
and to some extent M-Lasso, degradé: andn jointly become larger.

7 Conclusions

Since the original proposal of sparse Bayesian learningriiigns [17], mounting evi-
dence has established that empirical Bayesian techniguekechighly effective for solv-
ing sparse linear inverse problems in the- 1 case. As we move to more diverse and
structured environments, including the models with rowrsfty considered here, the ef-
ficacy of sparse Bayesian estensions has not been fully shodel: This work elucidates
basic behaviors of BCS and its connection with subspaceodsthmotivating a targeted
enhancement. Although not our focus here, further modifinatto accommodate noisy
environments can be incorporated using developments &3} including the ability to
estimate the noise levalautomatically.
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Figure 1. Support recovery success rates as the number cluneeaents: is varied. Each curve
represents the average across 200 independent trial$.chsak we fixn = 200 andk = 20.
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