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Abstract

The simultaneous sparse approximation problem is concerned with recovering a set of multichan-
nel signals that share a common support pattern using incomplete or compressive measurements.
Multichannel modifications of greedy algorithms like orthogonal matching pursuit (OMP), as well
as convex mixed-norm extensions of the Lasso, have typically been deployed for efficient signal
estimation. While accurate recovery is possible under certain circumstances, it has been established
that these methods may all fail in regimes where traditionalsubspace techniques from array pro-
cessing, notably the MUSIC algorithm, can provably succeed. Against this backdrop several recent
hybrid algorithms have been developed that merge a subspaceestimation step with OMP-like pro-
cedures to obtain superior results, sometimes with theoretical guarantees. In contrast, this paper
considers a completely different approach built upon Bayesian compressive sensing. In particular,
we demonstrate that minor modifications of standard Bayesian algorithms can naturally obtain the
best of both worlds backed with theoretical and empirical support, surpassing the performance of
existing hybrid MUSIC and convex simultaneous sparse approximation algorithms, especially when
poor RIP conditions render alternative approaches ineffectual.

1 Introduction

Our starting point is the generative model

Y = ΦX0 + E , (1)

whereΦ ∈ R
n×m is a dictionary of basis vectors that we assume to have unitℓ2 norm,

X0 ∈ R
m×t is a matrix of unknown coefficients we would like to estimate,Y ∈ R

n×t is
an observed response matrix, andE is noise. The objective is to estimate the unknown
generativeX0 under the assumption that it is row-sparse, meaning that many rows of X0

are equal to zero. The problem is compounded appreciably by the additional assumption
that m > n, meaning the dictionaryΦ is overcomplete. Whent = 1, this reduces to
the canonical sparse estimation of a coefficient vector withmostly zero-valued entries or
minimal ℓ0 norm [5]. In contrast, estimation ofX0 with t > 1 represents the more general
simultaneous sparse approximation problem [3, 18] relevant in numerous domains such as
compressive sensing and multi-task learning [9, 14, 19, 22], manifold learning [16], array
processing [13], and functional brain imaging [1].

One possibility for estimatingX0 involves solving

min
X

‖Y − ΦX‖2F + λd(X), λ > 0, d(X) ,

m
∑

i=1

I [‖xi·‖ > 0] , (2)



where the indicator functionI [‖x‖ > 0] equals one if‖x‖ > 0 and is zero otherwise (here
‖x‖ is an arbitrary vector norm).d(X) penalizes the number of rows inX that are not
exactly equal to zero; for nonzero rows there is no additional penalty for large magnitudes.
Moreover, it reduces to theℓ0 norm whent = 1, i.e., d(x) = ‖x‖0, or a count of the
nonzero elements in the vectorx. Note that to facilitate later analysis, we definex·i as the
i-th column of matrixX whilexi· represents thei-th row.

For theoretical inquiries, asymptotic regimes witht → ∞, or low-noise environments,
it is convenient to consider the limit asλ → 0, in which case (2) reduces to

min
X

d(X), s.t.ΦX0 = ΦX. (3)

Unfortunately, solving (3) (or the relaxed version (2)) involves a combinatorial search and
is therefore not tractable in practice. This has motivated the broader family of sparse pe-
nalized regression problems of the form

min
X

∑

i

h (‖xi·‖2) , s.t.ΦX0 = ΦX, (4)

whereh is a non-decreasing, typically concave function.1 Common examples include
h(z) = zp, p ∈ (0, 1] [15] andh(z) = log(z + α), α ≥ 0 [2]. The parametersp andα are
often heuristically selected on an application-specific basis. In particular, whenh(z) = z,
several theoretical results stipulate conditions wherebywe are guaranteed to recoverX0

[6]. We refer to this variant as M-Lasso, for multiple-response vector Lasso. Alternatively,
greedy methods such as orthogonal matching pursuit (OMP) have been adapted to handle
t > 1; this we likewise refer to as M-OMP.

However, curiously there remain important special cases where computingX0 is rel-
atively easy using conventional subspace techniques originating in the array processing
community, and yet solving (4) or greedy pursuit methods areguaranteed to fail in pro-
ducingX0. In brief, this failure is a consequence of under-utilizingcorrelation information
in Y and ultimatelyX0. We review these special cases linked to the classical MUSICal-
gorithm [7, 8] in Section 2, as well as hybrid methods that combine a subspace estimation
step akin to MUSIC with M-OMP-like procedures to obtain superior results, sometimes
with theoretical guarantees. While effective whenΦ satisfies standard RIP conditions, we
have observed that the performance of these hybrids nonetheless degrades substantially
outside of idealized conditions.

Section 3 then describes an alternative strategy for estimating X0 which builds upon
multiple-response model Bayesian compressive sensing (BCS) [9, 20]. Here we motivate
an enhanced version of canonical Bayesian algorithms that automatically compensates for
correlation structure inX0 without requiring a separate subspace estimation step as inpre-
vious methods. In Section 4 we provide theoretical support suggesting that the resulting
modified cost function possesses quantifiable advantages over both M-Lasso and optimal
MUSIC. Finally, Section 5 reviews related work, and later numerical experiments in Sec-
tion 6 corroborate our theoretical findings.

1Other row norms, such as theℓ∞, have been considered as well but are less prevalent.



2 Subspace Methods for Compressive Sensing

For convenience definek , d(X0). To ensure estimation ofX0 is feasible we must then
havek < n. Moreover, we henceforth assume without loss-of-generality that t ≤ k and
rank[Y ] = t. This is possible because the success or failure of all algorithms considered
herein only depends onY Y ⊤. Therefore ift > k or rank[Y ] < t, we can equivalently
collapse the constraint set tõY = ΦX, whereỸ = US1/2 ∈ R

n×rank[Y ] with USV ⊤ equal
to the svd decomposition ofY .

We also will assume that spark[Φ] = n+ 1, where matrixspark quantifies the smallest
number of linearly dependent columns [5]. Consequently, the spark condition is equivalent
to saying that eachn × n sub-matrix ofΦ is full rank. This assumption is adopted for
simplicity and our conclusions generalize to other spark values. However, this is a relatively
weak condition anyway that will be satisfied almost surely for any dictionary generated
before column normalization as

Φ = A + ǫR, (5)

whereA is an arbitrary matrix,R is a random matrix with iid elements drawn from any
continuous distribution, andǫ > 0 is an arbitrarily small constant.

Now consider solving (3) using the MUSIC algorithm. In the present context this in-
volves estimating the row-support ofX0 as follows. First letU denote any orthonormal
basis for range[Y ]. ThereforeI−UUT is a projection operator onto the orthogonal comple-
ment of range[Y ]. We next compute the setΩ = {j ∈ 1, . . . , m : ‖(I −UU⊤)φ·j‖2 ≤ θk},
whereθk is chosen such that|Ω| = k, i.e., we are choosing the indeces of thek smallest
values of(I −UU⊤)φ·j. Once the supportΩ is computed in this way,X0 can be estimated
usingX̂ = Φ†

ΩY , whereΦΩ denotes the columns ofΦ indexed byΩ.
Interestingly, in the special case wheret = k and given our spark assumption, MUSIC

is guaranteed to produce an̂X equal toX0 [7]. This is because range[Y ] = range[ΦΩ]
under the stated conditions, and therefore‖(I − UU⊤)φ·j‖2 = 0 iff j ∈ Ω0, the support of
X0. Curiously though, solving (4) (or related M-OMP) do not share the same success.

Lemma 1. There will always exist dictionariesΦ with spark[Φ] = n + 1 and coefficients
X0 with t = k, such that the optimization problem (4) with any possibleh will have
minimizing solutions not equal toX0.

All proofs will be deferred to a subsequent journal publication because of space consid-
erations. Note that the MUSIC algorithm reduces to a simple thresholding procedure when
t = 1. In fact, it is formally equivalent to selecting thek basis vectors such thatyTφ·j is
maximized, whereY = y is now a vector. However, ast approachesk its performance
nears optimality, exceeding the performance of far more complex iterative optimization
procedures.

Ideally then we would like to maximally leverage the best of both subspace techniques
like MUSIC and more typical multiple response compressive sensing algorithms such that
we obtain optimal performance for all values oft relative tok. Several recent methods
attempt just this, combining iterative, M-OMP-like greedyupdates with a subspace estima-
tion step [4, 10–12]. While these approaches can be interpreted from different perspectives
and have subtle differences, the core concept is to estimatea certain portion of the support,



generallyk− t elements, using something related to M-OMP, and then apply MUSIC to an
augmented subspace to obtain the finalt elements of the support.

Although results appear promising, and the core idea is quite compelling, empirically
we have observed that these algorithms can all be sensitive to correlation structure inΦ,
and regular M-Lasso can display superior performance in certain regimes. To this end, we
motivate a simple alternative Bayesian algorithm that seamlessly merges the strengths of
both MUSIC and conventional compressive sensing techniques to achieve state-of-the-art
performance with novel theoretical properties.

3 Revisiting Bayesian Compressive Sensing

Bayesian compressive sensing is built upon the probabilistic model from [9, 20]. Here we
review the basic elements. We start with the Gaussian likelihood and prior distribution

p(Y |X) ∝ exp

[

−
1

2λ
‖Y − ΦX‖2F

]

and p(X ; Γ) ∝ exp

[

−
1

2
tr
(

X⊤Γ−1X
)

]

(6)

respectively, whereλ is the noise variance (assumed to be known here) andΓ is a diagonal
matrix of hyperparameters controlling the prior variance of each row ofX. Given thisΓ,
the posterior distributionp(X|Y ) is a Gaussian with mean

X̂ = ΓΦ⊤
(

λI + ΦΓΦ⊤
)−1

Y. (7)

Note that whenλ → 0, this X̂ is feasible, i.e.,Y = ΦX̂. The central estimation problem
then boils down to determiningΓ, which can be accomplished using an empirical Bayesian
procedure. The basic idea is to integrate outX and solve

max
Γ≥0

∫

p(Y |X)p(X ; Γ)dX. (8)

Once someΓ∗ is computed in this way, we can plug this value into (7) for ourestimate of
X0. If diagonal elements of thisΓ∗ are zero, then the corresponding rows ofX̂ are also
necessarily zero.

Returning to connections with subspace methods, letX̄0 ∈ R
k×t denote the nonzero

rows of someX0, which is necessarily full-rank by our previous assumptions. It has already
been demonstrated that if̄X0 has orthogonal rows, then (8) in the limit asλ → 0 has a
single stationary pointΓ∗ with sparsity profile matching the trueX0 [20]. But in general we
may expect that̄X0X̄

⊤
0 potentially possesses significant off-diagonal structure. The most

natural way to compensate for such structure within the context of this Bayesian model is
to reparameterize the likelihood function as

p(Y |X ; Ψ) ∝ exp

[

−
1

2λ
‖Y − ΦXΨ‖2F

]

, (9)

whereΨ represents an unknown matrix that accounts for coefficient structure when we view
Z0 , X0Ψ as the new coefficient set that we wish to recover. We must now jointly estimate
Γ andΨ by maximizing the modified form of (8) withp(Y |X ; Ψ) replacingp(Y |X).



Retracing back to our original objective of solving (3), then in the limit asλ → 0,
maximizing

∫

p(Y |X ; Ψ)p(X ; Γ)dX is equivalent to solving

lim
λ→0

min
Ψ;Γ≥0

−2 log

∫

p(Y |X ; Ψ)p(X ; Γ)dX ≡ lim
λ→0

min
Ψ;Γ≥0

L(Γ,Ψ). (10)

The relevant cost function is defined as

L(Γ,Ψ) , tr
[

Y
(

Ψ⊤Ψ
)−1

Y ⊤
(

ΦΓΦ⊤ + λI
)−1

]

+ t log
∣

∣ΦΓΦ⊤ + λI
∣

∣+ n log
∣

∣Ψ⊤Ψ
∣

∣

(11)
after computing the required integral and discarding irrelevant constants. Additionally, the
limit must be taken outside of the minimization in (10). The reason we consider this limit
rather than simplyλ = 0 is for technical reasons related to the situation whereΦΓΦ⊤ is no
longer full rank.

If we optimize first overΨ, there exists a closed-form solution such that

Ψ⊤Ψ =
1

n
Y ⊤

(

ΦΓΦ⊤ + λI
)−1

Y. (12)

This can be determined by computing gradients, equating to zero, and checking the requi-
site optimality conditions. Plugging this expression into(11) we obtain the reduced equiv-
alent cost function

L(Γ) , t log
∣

∣ΦΓΦ⊤ + λI
∣

∣+ n log
∣

∣

∣
Y ⊤

(

ΦΓΦ⊤ + λI
)−1

Y

∣

∣

∣
, (13)

where parameter-independent terms have been removed. As wewill see in Section 4, this
penalty function has several desirable attributes relevant to addressing (3) whenλ → 0.
While not our focus here, noisy variants can also prove effective, although theoretical study
is much more difficult because of the intrinsic non-convexity of the objective.

From a practical standpoint, a family of iterative reweighting procedures can be applied
to solveminΓ≥0 L(Γ) for any value ofλ. Arguably the simplest is a form of iterative
reweighted least squares (IRLS) based upon a standard majorization-minimization scheme
frequently used in BCS. This procedure can exploit only partially solving (11) for fixedΨ
at each iteration. The complete algorithm is as follows. InitializeΨ = I andΓ = I. Then
compute (7),Ẑ = X̂Ψ, and

S , Γ− ΓΦ⊤
(

λI + ΦΓΦ⊤
)−1

ΦΓ. (14)

We then updateΓ using

Γii =
1

t

t
∑

j=1

ẑ2ij + sii. (15)

FinallyΨ is updated via (12) and the process is repeated until convergence. These iterations
are guaranteed to reduce or leave unchanged (13) at every iteration and can even handle
λ → 0 with appropriate use of the pseudo-inverse. However, provable convergence to a
stationary point remains an outstanding issue. In this regard iterative reweighted M-Lasso
implementations are more amenable to analysis, but we deferthis to a subsequent journal
article. Regardless of implementational specifics, it is largely the nature of the underlying
Bayesian-inspired cost function that contributes to effective deployment. We will consider
such issues both theoretically (Section 4) and empirically(Section 6).



4 Analysis

The cost functionL(Γ), and its predecessor in (11), are non-convex and seemingly diffi-
cult to untangle. However, certain intrinsic properties make them notably appropriate for
solving (3), and in particular, speak to an intimate connection with the MUSIC algorithm.

Theorem 1. Assume spark[Φ] = n + 1 and thatX0 is a unique, optimal solution to (3).
Then if rank[X0] = k = t, the problemlimλ→0minΓ≥0 L(Γ) has a single stationary point

Γ∗, and this point satisfiesΓ∗Φ⊤
(

ΦΓ∗Φ⊤
)†
Y = X0.

This result implies that, in terms of successful recovery, we can enjoy performance at
least as good as the MUSIC algorithm operating in its optimalregime ofk = t (assuming
a convergent algorithm). Moreover, this occurs in a completely integrated fashion unlike
previous algorithms. And even whent < k, we nonetheless reap benefits of this integration
because it can be shown that the underlying augmented BCS cost function behaves as
though there aret− 1 fewer support elements to estimate.

Additionally, if we minimizeL(Γ) using an iterative reweighted M-Lasso algorithm
with guaranteed convergence to a stationary point, then it can be shown that we will never
do worse that M-Lasso either. Hence MUSIC and M-Lasso performance can in some sense
be interpreted collectively as lower bounds on the performance of augmented BCS.

However, this alone does not ensure that thereexist regimes where a provable perfor-
mance gain can be expected. In contrast, the following result related to the cost function
from (11) can be applied towards this purpose:

Theorem 2. Assume thatΦ satisfies (5) and letπ(i)[X ] denote the value of thei-th largest
ℓ2 row-norm of a matrixX. Then there exists a set ofn− 2 constantsνi ∈ (0, 1] such that,
for any Y = ΦX0Ψ generated withd(X0) < n, Ψ invertible, and

π(i+1)[X0Ψ] ≤ νiπ(i)[X0Ψ], i = 1, . . . , n− 2, (16)

the following two conditions will always hold:
(I) The problemlimλ→0minΓ≥0 L(Γ,Ψ) has a single stationary pointΓ∗, and this point

satisfiesΓ∗Φ⊤
(

ΦΓΦ⊤
)†
Y = X0Ψ.

(II) X0 will be the unique solution to (3).

This result actually applies to the original BCS cost function, which is what (11) reduces
to whenΨ = I. Hence if we initialize withΨ = I and the conditions of Theorem 2 hold,
and then we optimize onlyΓ until convergence with a globally convergent algorithm, we
are guaranteed to learn an optimalX0 without ever needing to incorporate anyΨ updates to
conceivably avoid local minima. The advantage then of the augmented objective function
with generalΨ is that even if Theorem 2 does not hold withΨ = I, it may hold at a later
iteration afterΨ 6= I has been updated using (12), allowing remaining local minima to
potentially be avoided.

Importantly, Theorem 2 holds even whenΦ exhibits arbitrarily strong correlation pat-
terns (by virtue of the influence ofA in (5)) and RIP conditions required by existing al-
gorithms do not apply. Moreover, neither M-Lasso nor MUSIC,nor any combination rule
which selects the better of the two, can achieve something similar: there will always exist



dictionariesΦ and coefficient matricesX0, consistent with the stipulations of Theorem 2
such that failure is inevitable, including the special casewhereΨ = I. Of course other
hybrid algorithms could be pieced together using MUSIC and different penalty function
selections forh in (4). But it is completely unclear how to design attendant update rules to
guarantee anything similar to the augmented Bayesian strategy discussed herein.

This leaves the family of greedy hybrid algorithms proposedin [4, 10–12] for merging
with subspace methods. The drawback with these strategies however is twofold. First, as
a baseline sparse estimation procedure, solving (4) is generally more powerful than greedy
approaches like M-OMP, especially when the former is implemented with convex iterative
reweighting procedures. Secondly, existing hybrid subspace algorithms, which update the
support in two separate steps, do not fully consider both theeffective subspace ofY and
intermediate coefficient estimates all in an entirely integrated fashion as withL(Γ).

5 Related Bayesian Analytical and Algorithmic Work

A result related to Theorem 2 has been demonstrated in the special case wheret = 1
[21]. However, this scenario is decidedly much simpler because it can be shown that any
local minimum ofL(Γ) or L(Γ,Ψ) can be achieved withd(Γ) ≤ nt. Therefore when
t = 1, this implies that we only need consider candidate local minimizersΓ associated
with basic feasible solutions, meaning solutions involving at mostn columns ofΦ making
the corresponding sub-matrix ofΦ⊤Φ invertible given the implicit spark condition. It then
follows that relevant terms at each candidate local minima conveniently decouple, greatly
simplifying the analysis.

In contrast, witht > 1 we have no such luxury because it is not possible to rule out local
minimizers withd(Γ) > n, and hence we are forced to accommodate this more challenging
scenario via a different strategy. It is also important to emphasize that just because the row-
norm scaling condition of Theorem 2 is satisfied does not imply that it will additionally be
satisfied when applied to each column individually. Therefore we cannot simply adopt the
original result from [21] in a column-wise fashion to reproduce Theorem 2.

Finally, from an algorithmic standpoint, [23] considers similar modifications of Bayesian
compressive sensing intended to address correlations in the rows ofX. However, no theo-
retical justification is provided beyond what is already known for the standard BCS frame-
work. Moreover, there is no discussion of the intimate connection with subspace methods
and the MUSIC algorithm.

6 Numerical Validation

Here we briefly describe some simulations that complement our previous analytical find-
ings. In [4, 10–12] a series of experiments are presented that demonstrate the efficacy of
hybrid subspace methods. However, the experimental conditions are not necessarily chal-
lenging in the sense that for all casesΦ is generated with iid Gaussian elements. In contrast,
for the experiments in this section we generateΦ =

∑n
i=1 i

−1aib
⊤
i , whereai andbi are

iid standardized Gaussian vectors of appropriate length, and then normalize each column
of the resulting dictionary. This selection ensures thatΦ exhibits non-trivial correlations



among columns because of thei−1 scale factor.
Next we generate nonzero rows ofX0 asX̄0 =

∑n
i=1 i

−1uiv
⊤
i , whereui andvi are

again iid Gaussian. This implies thatX̄0X̄
⊤
0 should have significant off-diagonal elements,

which should favor subspace-based methods over conventional algorithms like M-Lasso.
We fix m = 200, k = 20, andt ∈ {4, 8, 12, 16}. For each value oft, we varyn from k + 1
to 100, noting thatk + 1 is the minimum number of measurements such that recovery of
X0 is even theoretically possible.

For evaluation purposes we compare augmented BCS (or ABCS) with regular BCS im-
plemented using IRLS, M-Lasso, and two hybrid compressive sensing MUSIC algorithms.
While in reality these algorithms constitute a family with many potential variations, we
choose two variants endorsed by the authors of [10–12]. Specifically, we compare with
CS-MUSIC, where code was provided by the authors of [12], andsequential CS-MUSIC,
with code from the authors of [10, 11]. Both algorithms were given access to the true value
of k in all experiments. M-Lasso, BCS, and ABCS do not use prior information regarding
k.

Figure 1 displays the results averaged across 200 independent trials, where the evalu-
ation metric is the frequency of trials where each respective algorithm detects the correct
support ofX0. In panel (a) we have the fewest number of snapshots (t = 4), and therefore
the conditions are least favorable for the hybrid subspace methods. Consequently M-Lasso
substantially outperforms both CS-MUSIC and sequential CS-MUSIC. In contrast, ast
increases from panels (a) through (b), the subspace approaches acquire additional informa-
tion such that they eventually can outperform M-Lasso decisively. The latter has difficulty
capitalizing on this additional ill-conditioned subspaceinformation and hence M-Lasso
displays only marginal improvement fromt = 4 to t = 16.

Regarding ABCS and BCS, they both exhibit excellent performance across all values of
t since they have an intrinsic mechanism for compensating forcorrelations inΦ. However,
clearly ABCS is able to more thoroughly exploit subspace information and correlations in
X̄0 outperforming the other algorithms in all of the testing conditions.

We next conduct a similar experiment, except now we fixm = 200, t = 10, and
k ∈ {30, 50}. We then varyn from k+1 to k+100. Results are reported in Figure 2. Here
we observe that while BCS and ABCS performance is quite stable, the subspace methods,
and to some extent M-Lasso, degrade ask andn jointly become larger.

7 Conclusions

Since the original proposal of sparse Bayesian learning algorithms [17], mounting evi-
dence has established that empirical Bayesian techniques can be highly effective for solv-
ing sparse linear inverse problems in thet = 1 case. As we move to more diverse and
structured environments, including the models with row-sparsity considered here, the ef-
ficacy of sparse Bayesian estensions has not been fully understood. This work elucidates
basic behaviors of BCS and its connection with subspace methods, motivating a targeted
enhancement. Although not our focus here, further modifications to accommodate noisy
environments can be incorporated using developments from [23], including the ability to
estimate the noise levelλ automatically.
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(a) t = 4
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(b) t = 8
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(c) t = 12
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(d) t = 16

Figure 1: Support recovery success rates as the number of measurementsn is varied. Each curve
represents the average across 200 independent trials. In all cases we fixm = 200 andk = 20.
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