
Junior 2014 Solutions
1. Call a triangle simple if each of its sides has length 4, 6, or 8. Find all different simple triangles.

Solution. There are a total of 10 possible triplets that forms distinct triangles. However, by the triangle
inequality, only 9 of them form non-degenerate triangles.

(4, 4, 4)
(6, 6, 6)
(8, 8, 8)
(4, 4, 6)
(4, 6, 6)
(4, 8, 8)
(4, 6, 8)
(6, 6, 8)
(6, 8, 8)

2. In the following, there are 8 possible paths to spell the word MATH:

M
A A
T T T

H H H H

In each move you can only go up or down by one row. Determine the number of paths that spell the
word LEVEL in the following

L
E E

V V V
E E
L

Solution. There are four orientations to view the word LEVEL. In each orientation there are 6 paths.
Therefore, there are 24 paths. Each path follows the pattern of the Pascal’s triangle. For example,
starting from the top L and going to the bottom L gives

1
1 1
1 2 1
3 3
6

3. In the Fibonacci sequence, 1, 1, 2, 3, 5, . . ., each term after the second is the sum of the previous two
terms. How many of the first 100 terms of the Fibonacci sequence are odd?

Solution. The sequence follows the pattern of odd, odd, even, odd, odd, even, odd, odd, even, ...
In the first 100, terms, there are a total of 33 repetitions of odd, odd, even plus one more odd as the
100th term. Therefore, there are (33)(2) + 1 = 67 odd terms.

4. Four people A, B, C, D are enrolled in some number of courses. A is taking 8 courses and B is taking 5
courses. It is known that A is taking more courses than anyone else and B is taking less courses than
anyone else. It is also known that exactly three of these four people are enrolled in each math course.
How many courses are offered?
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Solution. Since the number of courses taken by C or D is greater than 5 and less than 8, then
the number of courses taken by C and D is either 12, 13, or 14. Therefore, the total number of courses
taken by A, B, C, and D is 25, 26, or 27. Since the sum of the number of people throughout all the
courses is a multiple of 3, the total number of courses taken by the four people must be 27. Therefore,
there are 27

3 = 9 courses.

5. Out of six children, exactly two were known to have been stealing apples. But who? Helen said
“Christine and George”. Jane said “Donald and Tom”. Donald said “Tom and Christine”. George said
“Helen and Christine”. Christine said “Donald and Jane”. Tom couldn’t be found. Four of the children
actually named one of the culprits but lied about the other. The fifth child lied about both. Who stole
the apples?

Solution. First, we organize the give information.
Accuser Accused
Christine Donald, Jane
Donald Christine, Tom
George Christine, Helen
Helen Christine, George
Jane Donald, Tom

Assume George is guilty. Since George is guilty, then Christine is not since no one tells the truth about
both. Since Christine is not guilty, then exactly one of Tom or Helen must be guilty, otherwise both
Donald and George have lied about both. Regardless of whether it is Tom or Helen that is guilty,
either Donald or George lied about both. Christine has also lied about both. This is not possible since
only one of the five children lied about both. Therefore, George is innocent.
Helen is also named exactly once. If we assume that Helen is guilty, a similar argument leads to a
contradiction. Therefore, Helen is innocent.
If Christine was not guilty, then George and Helen lied about both. Since this is not possible, Christine
is guilty.
If Donald is guilty, then every child told the truth once. Since this is not possible, Donald is innocent.
This leaves only Jane, who must be the second guilty child. Therefore, Christine and Jane stole the
apples.
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Senior 2014 Solutions
1. A sequence {an} is defined recursively by

a1 = 1, a2 = 4, and an = 2an−1 − an−2 + 2 for n ≥ 3

Find the closed form formula for an.

Solution 1. By testing the first few terms, we see that an = n2. We can prove that this is true
by using induction on n.
Base Case: n = 1, 2 are true because 12 = 1 and 22 = 4
Induction hypothesis: Let k ≥ 2. Assume that ai = i2 for all 1 ≤ i ≤ k.
Induction step: We have the following:

ak+1 = 2ak − ak−1 + 2
= 2k2 − (k − 1)2 + 2
= k2 + 2k + 1
= (k + 1)2

Therefore, by induction, the result follows.

Remark. Other than guessing the formula, it is possible to actually solve this recurrence relation.
For example, you can set bn = an − an−1 to see that bn is a linear. This means that an must be mod-
eled with a quadratic. Another method is to use generating functions. Note that the usual method of
solving recurrence, where you start by solving for the roots of x2− 2x + 1, does not work here because
that method only work for linear recurrence without a constant term.

2. Let x and y be positive integers satisfying

xy = 2014x + 2014y

Prove that x ≤ 4058210.

Solution. First, write the equation as
1

2014 = 1
x

+ 1
y

Observe that we must have y ≥ 2015 or else x will be negative. Assume that x > 4058210 =
(2014)(2015), then

1
y

= 1
2014 −

1
x

>
1

2014 −
1

(2014)(2015) = 1
2015

Therefore, y < 2015, which is a contradiction.

Remark. Depending on how you arrange the initial equation, there are various ways to analyze the
equation to get the result.

3. In a convex quadrilateral, the lengths of the diagonals are 100 and 1. Given that the perimeter is an
integer, find all possible perimeters.

Solution. Let the vertices be A, B, C, D. Let O be the intersection of the two diagonals. By tri-
angular inequality, we have

|AB|+ |BC| > 100
|CD|+ |DA| > 100

Therefore, |AB|+ |BC|+ |CD|+ |DA| > 200. By triangular inequality, we have

|AO|+ |OB| > |AB|
|BO|+ |OC| > |BC|
|CO|+ |OD| > |CD|
|DO|+ |OA| > |DA|
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Therefore, |AB|+ |BC|+ |CD|+ |DA| < 202. Since the perimeter is an integer, it must be 201.

Remark. It is possible to analyze this by looking at degenerate cases. However, you must clearly
explain why they provide the minimum and maximum possible perimeter.

4. Determine if there exists a polynomial f with integer coefficients such that

f(3) = 1, f(5) = 3, and f(7) = 9

Solution. If such a polynomial exists then there must also be a polynomial such that f(−2) = 1,
f(0) = 3, and f(2) = 9. We can write f as

f(x) =
n∑

i=0
anxn

Note that a0 = 3. We have the following computation

f(−2) + f(2) =
k∑

n=0
an(−2)n +

n∑
i=0

an2n

=
k∑

n=0
an((−2)n + 2n)

=
k∑

n=0,n even
an(22n)

= 6 +
k∑

n=2,n even
an(22n)

= 10

Therefore,

4 =
k∑

n=2,n even
an(22n)

If k ≥ 2, then the right hand side is divisible by 16, but the left hand side is not. Therefore, this is not
possible.
If k = 1, then f(x) = a1x + 3. This is not possible because the y coordinates are not evenly spaced.
If k = 0, then f(x) = 3, which is not possible.
Therefore, no such polynomial exist.

Remark. If you do not apply the initial transformation, you can analyze f(7)− f(5) + f(3)− f(5) to
find the contradiction.

5. Find all non-negative integer solutions to x!y! = z!.

Solution. The solutions are

{(x, y, z) : x = z = 1, y ∈ Z≥0}
∪ {(x, y, z) : x = z = 0, y ∈ Z≥0}
∪ {(x, y, z) : x = 0, z = 1, y ∈ Z≥0}
∪ {(x, y, z) : x = 1, z = 0, y ∈ Z≥0}
∪ {(x, y, z) : x = z, y = 0}
∪ {(x, y, z) : x = z, y = 1}

To see that there are no more solutions, assume that x ≥ 2 and y ≥ 2, then we have

x! < x!2 ≤ x!y! = z!

4



Claim. There exists a prime p such that x! < p! < x!2
Proof. Let q be the largest prime less than or equal to x. Then x!2 must be divisible by q2. Since x! is
only divisible by q and not q2, then (2q)! ≤ x!2. By Bertrand’s Postulate, there exists a prime p such
that q < p < 2q. Thus, q! < p! < (2q)!. Since q was the largest prime less than or equal to x, we must
have p > x. Therefore, x! < p! < x!2.

By the claim, we know that there exists a prime p such that x! < p! < x!y! = z! Therefore, p
must divide z. This means that p must divide x!y!, which is not possible. Therefore, there are no more
solutions.

Remark. It is possible to solve this problem with induction.
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