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Abstract

Sparse linear (or generalized linear) models combine alatdrlikelihood func-
tion with a sparse prior on the unknown coefficients. Theserpican conve-
niently be expressed as a maximization over zero-mean aasgssith different
variance hyperparameters. Standard MAP estimation (Tyipwadlves maximiz-
ing over both the hyperparameters and coefficients, whilerapirical Bayesian
alternative (Type 1) first marginalizes the coefficientslahen maximizes over
the hyperparameters, leading to a tractable posterioappation. The under-
lying cost functions can be related via a dual-space framefvom [22], which
allows both the Type | or Type |l objectives to be expresseeltimer coefficient
or hyperparmeter space. This perspective is useful because analyses or ex-
tensions are more conducive to development in one space otller. Herein we
consider the estimation of a trade-off parameter balarspagsity and data fit. As
this parameter is effectively a variance, natural estimsa¢xist by assessing the
problem in hyperparameter (variance) space, transitipmatural ideas from Type
Il to solve what is much less intuitive for Type I. In contrdst analyses of update
rules and sparsity properties of local and global solutiassvell as extensions to
more general likelihood models, we can leverage coefficspatce techniques de-
veloped for Type | and apply them to Type Il. For example, #flisws us to prove
that Type ll-inspired techniques can be successful reaqoyaparse coefficients
when unfavorable restricted isometry properties (RIPY leafailure of popular
¢ reconstructions. It also facilitates the analysis of Typ@hen non-Gaussian
likelihood models lead to intractable integrations.

1 Introduction

We begin with the likelihood model

y =%z +e, 1)
where® € R™ ™ is a dictionary of unit/s-norm basis vectorsg € R™ is a vector of unknown
coefficients we would like to estimatg, € R is the observed signal, ards noise distributed as
N (€;0, AI) (later we consider more general likelihood models). In m@mractical situations where
large numbers of features are present relative to the sdimension, the problem of estimatiag
giveny becomes ill-posed. A Bayesian framework is intuitively @ging for formulating these
types of problems because prior assumptions must be inigah whether explicitly or implicitly,
to regularize the solution space.

Recently, there has been a growing interest in models thplognsparse priorg(x) to encourage
solutionsz with mostly small or zero-valued coefficients and a few lavganrestricted values, i.e.,
we are assuming the generativés a sparse vector. Such solutions can be favored by using

p(x) 1:[exp [—%g(fm)] = 1:[exp [—%h (wf)] 7 @)

with & concave and non-decreasing [0nco) [15,[16]. Virtually all sparse priors of interest can
be expressed in this manner, including the popular Laptadieffreys, Student’s and generalized



Gaussian distributions. Roughly speaking, the ‘more ceeida the more sparse we expecto be.
For example, withi(z) = z, we recover a Gaussian, which is not sparse at all, whitg¢ = /=
gives a Laplacian distribution, with characteristic hetails and a sharp peak at zero.

All sparse priors of the forni.{2) can be conveniently franmetkims of a collection of non-negative

latent variables or hyperparameters: [y, ..., v,,]" for purposes of optimization, approximation,
and/or inference. The hyperparameters dictate the steiofithe prior via
p(x) = ]:[p(xiL p(w:) = max N'(wi; 0, %) (%), 3)

wherey(v;) is some non-negative function that is sometimes treatedhgpgexprior, although it will
not generally integrate to one. For the purpose of obtaigpagse point estimates of which will
be our primary focus herein, models with latent variablespariors are frequently handled in one
of two ways. First, the latent structure afforded by (3) offa very convenient means of obtaining
(possibly localymaximum a posterio(MAP) estimates ofc by iteratively solving
x2

(1) = argmin —logp(y|z)p(z) = arg min iy — o3 + /\zz: [7 +logyi + f(vi)|, (4)
where f(y;) £ —2log (V) andx ) is commonly referred to as Bype | estimator. Examples
include minimumé,-norm approache$|[4, 111, [16], Jeffreys prior-based methodsetimes called
FOCUSS[[7| Bl 9], algorithms for computing the basis puréBR) or Lasso solutiori [6, 16, 18],
and iterative reweighte€i methods|[3].

Secondly, instead of maximizing over bathand~ as in [4), Type |l methods first integrate out
(marginalize) the unknowss and then solve the empirical Bayesian problem [19]

Yun = argmgxp('rly) = argmgX/p(ylw)HN(m;O,%)so(%)dfm

m
= argmin y'S, Y+ log Sy + D f(n), (5)
i=1
wherex, £ A + ®T'¢” andT' £ diagy]. Once~;y) is obtained, the conditional distribution
p(x|y; 1)) is Gaussian, and a point estimate fonaturally emerges as the posterior mean

xr) =E [zly;vin] = Tan®" (M + T ;1)@") 'y, (6)
Pertinent examples include sparse Bayesian learning anefiévance vector machine (RVM) [19],
automatic relevance determination (ARD)|[14], methodddarning overcomplete dictionaries [8],
and large-scale experimental design [17].

While initially these two approaches may seem vastly d#fiferboth can be directly compared using
a dual-space view [22] of the underlying cost functions. fiet) this involves expressing both the
Type | and Type |l objective solely in terms of eitheor v as reviewed in Sectidd 2. The dual-space
view is advantageous for several reasons, such as estaglnnections between algorithms, de-
veloping efficient update rules, or handling more generah{Gaussian) likelihood functions. In
Sectior B8, we utilizey-space cost functions to develop a principled method fobsimy the trade-
off parameten (which accompanies the Gaussian likelihood model and &afigialances sparsity
and data fit) and demonstrate its effectiveness via sinmmati Sectiofi]4 then derives a new Type
[I-inspired algorithm inz-space that can compute maximally sparse (minifgalorm) solutions
even with highly coherent dictionaries, proving a resultdlastered dictionaries that previously has
only been shown empirically [21]. Finally, Sectibh 5 levgea duality to address Type || methods
with generalized likelihood functions that previously weendered untenable because of intractable
integrals. In general, some tasks and analyses are easiedéntake iny-space (Sectionl 3), while
others are more transparentanspace (Sectiorid 4 afdl 5). Here we consider both with theafoall
advancing the proper understanding and full utilizatiothefsparse linear model.

2 Dual-Space View of the Sparse Linear Model

Type | is based on a natural cost functiomirspacep(x|y), while Type Il involves an analogous
function iny-spacep(v|y). The dual-space view defines a correspondirgpace cost function for
Type | and ac-space cost function for Type Il to complete the symmetry.



Typell in z-Space: Using the relationship
1
Y%, 'y =min 1|y - oz + 2" T2 )

as in [22], it can be shown that the Type Il coefficients frons@isfyx ;) = argming L(;1)(x),
where

L () £ |y — x|+ Agirn (), (8)
and

72
gan(@) = min > = log |2y + > f0n). ©)
This reformulation of Type Il inc-space is revealing for multiple reasons (Sectldns 4[andlI5 wi
address additional reasons in detail). For many applicatif the sparse linear model, the primary
goal is simply a point estimate that exhibits some degregaifsity, meaning many elementsf
near zero and a few relatively large coefficients. This nexgLa penalty functiog(x) that is concave
and non-decreasing ie®> = [z7,...,22]7. In the context of Type I, any prigi(x) expressible via
(2) will satisfy this condition by definition; such priorseasaid to bestrongly super-Gaussiaand
will always have positive kurtosis [15]. Regarding Typeldécause the associateespace penalty
@) is represented as a minimum of upper-bounding hypeeglaith respect ta:? (and the slopes
are all non-negative give > 0), it must therefore be concave and non-decreasing ifi].

For compression, interpretability, or other practicab@ss, it is sometimes desirable to haxactly
sparsepoint estimates, with many (or most) elementsafqual to exactly zero. This then necessi-
tates a penalty functiog(z) that is concave and non-decreasinguin2 [|z1|, ..., |z,,|]7, a much
stronger condition. In the case of Type lléks v + f(v) is concave and non-decreasing)inthen
g(x) = >, g(z;) satisfies this condition. The Type Il analog, which emergegibther inspection
of (@) stipulates that if

log [Sy] + Y f(v:) =log AT ®T® + T +log T + > f() (10)
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is a concave and non-decreasing functionyotthen g ;) (x) will be a concave, non-decreasing
function of |x|. For this purpose it is sufficient, but not necessary, thae a concave and non-
decreasing function. Note that this is a somewhat stronggeria than Type | since the first term
on the righthand side of (10) (which is absent from Type l)dsially convex iny. Regardless, it is
now very transparent how Type Il may promote sparsity akifiyjoe I.

The dual-space view also leads to efficient, convergentrititgos such as iterative reweightéd
minimization and its variants as discussed.in [22]. Howgweitding on these ideas, we can demon-
strate here that it also elucidates the original, widelyligppupdate procedures developed for im-
plementing the relevance vector machine (RVM), a popul@eTy method for regression and clas-
sification that assumef(y) = 0 [19]. In fact these updates, which were inspired by a fixepo
heuristic from [12], have been widely used for a number of&3@gn inference tasks without any
formal analyses or justificatidh.The dual-space formulation can be leveraged to show thaethe
updates are in fact executing a coordinate-wise, iterativemax procedure in search of a saddle
point. Specifically we have the following result (all proai® in the supplementary material):

Theorem 1. The original RVM update rule from [19, Equation (16)] is eeplent to a closed-form,
coordinate-wise optimization of

(11)

z;y=0 2=0

2
min max [|y — dx|2 + Z (x_L + 2 log’yi) —9(2)
7\

overz, v, andz, whered(z) is the convex conjugate functionl [1] bfg |\ + ®diagexp(u)]®7 |
with respect tau.

IAlthough a more recent, step-wise variant of the RVM has &fwn to be substantially fastér [20],
the original version is still germane since it can easily kemrded to handle more general structured sparsity
problems. The step-wise method cannot without introdueitidjtional approximation$ [10].



Type | in -Space: Similar methodology and the expansionyﬁE;ly can be used to express

the Type | optimization problem iry-space, which serves several useful purposes. 4Lgt =
arg min~o L) (7), with

L) 2 y'syy +log|D + Y f(n). (12)

i=1

Then the Type | coefficients obtained froinh (4) satisfy

-1
zry =Tn®" (M +el(ne") y. (13)

SectiorB will usey-space cost functions to derive well-motivated approafdrdsarning the trade-
off parameten.

3 Choosing the Trade-off Parameter\

The trade-off parameter is crucial for obtaining good eates ofx. In general, if\ is too large,
& — 0; too small andt is overfitted to the noise. In practice, either expensivesnalidation or
some heuristic procedure is often required. However, tsxagan be interpreted as a variance, it is
useful to address its estimationdnspace, in which existing unknowns (i.&), are also variances.

Learning A with Typel: Consider the Type | cost functiafy ;) (). The data-dependentterm can be
shown to be a convex, non-increasing functiorypivhich encourages each elementto be large. The
second term is a penalty factor that regulates the sizg df is here that a convenient regularizer
for A\ can be incorporated.

This can be accomplished as follows. Firstwe expapdiay, = >0, vi¢.i 0% +3.7_; deje]
where¢.; denotes the-th column of® ande; is a column vector of zeros with &"in the j-th
location. Thus we observe thatis embedded in the data-dependent term in the exact sanierfash
as eachy;. This motivates a penalty oxwith similar correspondence, leading to the objective

Y8y + ) flogyi + f()] + Y llog A+ f(N)]

i=1 j=1

E(I) (77 )‘>

Y'Y+ llogys + ()] + nlog A+ nf(N). (14)

i=1

While admittedly simple, this construction is appealingdugse, regardless of how eagtlis penal-
ized, \ is penalized in a proportional manner, so bgthnd A have a properly balanced chance of
explaining the observed data. This is important becauseptimal A will be highly dependent on
both the true noise levednd crucially, the particular sparse prior assumgd) (as reflected by).

For analysis or implementational purposes, we may conygity, \) back tox-space, with\-
dependency now removed. It can then be shown that soliingni) A fixed to the value that
minimizes [(14), is equivalent to solving

1
r;nng(:cz) +ng <%|u||2> , St y=%x+u. (15)

If 2, andu, minimize [15), then we can demonstrate usngd [15] that teesponding\ estimate,
which also minimized(14), is given by. = dh(z)/0=z evaluated at = 1/n||u.|3. Note that if we
were just performing maximum likelihood estimation'ofiiven.., the optimal value would reduce
to simply \. = 1/n|u.||3, with no influence from the prior om. This is a fundamental weakness.

Solving (1%), or equivalenthyf{14), can be accomplishechgsimple iterative reweighted least
squares, or ify is concave irjz;|, an iterative reweighted second-order-cone (SOC) mirdtiun.

Learning A with Typell: The same procedure can be adopted for Type Il yielding teefoaction
L) =y"S) y +1og S, + Y () +nf ), (16)
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where we note that, unlike in the Type | case aboveldféased term is already naturally balanced
between\ and~ by virtue of the symmetric embedding k. It is important to stress that this
Type Il prescription for learning is not the same as originally proposed in the literature fqrer

Il models of this genre. In this context(;) is interpreted a hyperprior o, and an equivalent
distribution is assumed on the noise variancémportantly, these assumptions leave out the factor
of n in (I8), and so an asymmetry is created.

Simulation Examples: Empirical tests help to illustrate the efficacy of this pedare. As in many
applications of sparse reconstruction, here we are onlgamed with accurately estimating
whose nonzero entries may have physical significance @grgce localization [16], compressive
sensingl([2], etc.), as opposed to predicting new valuag ofherefore, automatically learning the
value of \ is particularly relevant, since cross-validation is oftest possiblé Simulations are
helpful for evaluation purposes since we then have accebkg toue sparse generating vector.

Figure[1 compares the estimation performance obtained himizing (I3) with two different se-
lections forg: g(x) = [|z||5 = >_, |z:|?, with p = 0.01 andp = 1.0. Data generation proceeds
as follows: We create a random0 x 50 dictionary®, with /5-normalized, iid Gaussian columns.
x is randomly generated with 10 unit Gaussian nonzero elesn&w then computg = ¢x + e,
wheree is iid Gaussian noise producing an SNR)dB. To determine what values lead to optimal
performance we solvé&l(4) with the approprigtever a range of fixed values (0~* to 10') and
then compute the error betwegrandz. The minimum of this curve reflects the best performance
we can hope to achieve when learnikdplindly. In Figure[dl Top) we plot these curves for both
Type | methods averaged over 1000 independent trials.

Next we solve[(I5), which produces an estimate of hotnd\. We mark with an+’ the learned

A versus the corresponding error@fIn both cases the learned (averaged across trials) perform
just as well as if we knew the optimal value a priori. Resufisng other noise levels, problem di-

mensions: andm, sparsity leveldz||o, and sparsity penaltigsare similar. See the supplementary
material for more examples.

Figure[1 Botton) shows the average sparsity of estimatess quantified by thé, norm ||z||o,
across\ values (x|, returns a count of the number of nonzero elements)inThe +' indicates
the average sparsity of eaghfor the learned\ as before. In general, thigy o) penalty produces
a much sparser estimate, very near the true valyec@ff = 10 at the optimal\. The/; penalty,
which is substantially less concave/sparsity-inducitif,sets some elements to exactly zero, but
also substantially shrinks nonzero coefficients in achig\a similar overall reconstruction error.
This highlights the importance of learning\avia a penalty that is properly matched to the prior on
x: if we instead tried to force a particular sparsity valuetfiis case 10), then thg solution would

be very suboptimal. Finally we note that maximum likelihdML) estimation ofA performs very
poorly (not shown), except in the special case where the Mimase is equivalent to solving (1L4)
as occurs wherf(v) = 0 (seel[6]). The proposed method can be viewed as adding apledc
hyperprior on\, properly matched tp(x), that compensates for this shortcoming of standard ML.

Type Il A estimation has been explored elsewhere for the speciabdase f () = 0 [19], which
renders the factor of in (I6) irrelevant; however, for other selections we havenfib this factor

to improve performance (not shown). For space consideratie have focused our attention here
on Type |, which has frequently been noted for not lendinglfiterell to A estimation (or related
parameters) [6, 13]. In fact, the symmetry afforded by thal-dpace perspective reveals that Type
| is just as natural a candidate for this task as Type Il, ang beapreferred in high-dimensional
settings where computational resources are at a premium.

4 Maximally Sparse Estimation

With the advent of compressive sensing and other relatelitagipns, there has been growing inter-
est in findingmaximally sparseignal representations from redundant dictionanies$t n) [3}5].
The canonical form of this problem involves solving

xo £ argmin||z|lp, Sty=ox. a7)

2For example, in non-stationary environments, the valueotii e and A may be completely different for
any newy, which then necessitates that we estimate both jointly.
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Figure 1: Left Normalized mean-squared error (MSE) given {iyc — &||3/||x[|2) (where the
average is across 1000 trials) plotted versder two different Type | approaches. Each blagk *
represents the estimated valueofaveraged across trials) and the associated MSE produdied wi
this estimate. In both cases the estimated value achiegdewulest possible MSE (it can actually
be slightlylower than the curve because its value is allowed to fluctuate frahto trial). Right
Solution sparsityj|||o versusA. Even though they both lead to similar MSE, thg 1) penalty
produces a much sparser estimate at the opthwalue.

While (I17) is NP-hard, whenever the dictionarysatisfies aestricted isometry propert§RIP) [2]

or a related structural assumption, meaning that dlagh|, columns of® are sufficiently close
to orthonormal (i.e., mutually uncorrelated), then rejmigdy with ¢; in (I7) leads to a convex
problem with an equivalent global solution. Unfortunatedyvever, in many situations (e.g., feature
selection, source localization) these RIP equivalencéitions are grossly violated, implying that
the/; solution may deviate substantially fromng.

An alternative is to instead replade17) with minimizatafr(8) and then take the limit as — 0.
(Note that the extension to the noisy case with> 0 is straightforward, but analysis is more
difficult.) In this regime the optimization problem redud¢es

x(rp) = /P_}mo argmwin gan(x), sty = dx. (18)

If log |X,| + >°, f(vi) is concave, theri (18) can be minimized using reweigliteatinimization.
With initial weight vectorw(®) = 1, the(k + 1)-th iteration involves computing

wk D) a9(11) (z)
0|

L (kD)

(19)

. k
«arg min E wz( )|ac,-|,
TrYy=ow 3 rz=x(k+1)

With f(y) = 0, iterating [219) will provably lead to an estimatexf that is as good or better than the
£y solution [21], in particular whe® has highly correlated columns. Additionally, the assuppti
f(7) = 0 leads to a closed-form expression for the weight§t"). Let

—1 q
ni(x;a,q) = [cﬁj; (a[—i— <I>|X(k+1)|2<I>T) ¢.i] , (20)

where| X (*+1| denotes a diagonal matrix withth diagonal entry given bwgk“) |. Thenw(+1)

can be computed via;fk“) = n;(x;0,1/2), Vi. It remains unclear however in what circum-
stances this type of update can lead to guaranteed impraoieroeif the functions);(x;0,1/2)
are even the optimal choice. We will now demonstrate thatéstain selections of andgq, we
can guarantee that reweightédusingn; (x; «, q) is guaranteed to recovey, exactly if @ is drawn
from what we call alustered dictionary model

Definition 1. Clustered Dictionary ModelLlet o .. denote any dictionary such thét mini-
mization succeeds in solving{|17) for dlkcyllo < d. Let @Eﬁffr) denote any dictionary obtained

by replacing each column @S’QCW with a “cluster” of m; basis vectors such that the angle be-
tween any two vectors within a cluster is less than seme(. We also define the cluster support



Qo C {1,2,...,m} as the set of cluster indices wherepy has at least one nonzero element.

Finally, we assume that the resultimé‘(ffr) is such that everyt x n submatrix is full rank.

Theorem 2. For any sparse vectar, and any dictionary@ﬁ‘(f;f) obtained from the clustered
dictionary model withe sufficiently small, reweighted; minimization using weights; (x; A, q)
with someg > 1 and « sufficiently small will recoverr, exactly provided thatQ,| < d,
Z,L.EQO m; < n, and within each clustér € ), the coefficients do not sum to zero.

Theoreni2 implies that even thoughmay fail to find the maximally sparse, because of severe
RIP violations (high correlations between groups of ditéity columns as dictated lyead directly

to a poor RIP), a Type ll-inspired method can still be sudtgs#loreover, because whenevir
does succeed, Type Il will always succeed as well (assummegraighted’; implementation), the
converse (RIP violation leading to Type Il failure but detfailure) can never happen. Recent work
from [21] has argued that Type Il may be useful for addrestiegsparse recovery problem with
correlated dictionaries, and empirical evidence is predishowing vastly superior performance on
clustered dictionaries. However, we stress that no repuitang global convergence to the correct,
maximally sparse solution have been shown before in the @afstuctured dictionaries (except
in special cases with strong, unverifiable constraints ceffimient magnitudes [21]). Moreover,
the proposed weighting strategy(x; A, ¢) accomplishes this without any particular tuning to the
clustered dictionary model under consideration and thetyiholds in many other cases as well.

5 Generalized Likelihood functions

Type | methods naturally accommodate alternative likedthfunctions. We simply must replace the
guadratic data fit term froni(4) with some preferred functod then coordinate-wise optimization
may proceed provided we have an efficient means of computiwegighted/,-norm penalized
solution. In contrast, generalizing Type Il is substahtiedore complicated because it is no longer
possible to compute the marginalizatibh (5) or the posteligtributionp(x|y; v;1)). Therefore, to
obtain a tractable estimaig ;) additional heuristics are required. For example, the Rvaasifier
from [19] employs a Laplace approximation for this purposewever, it is not clear what cost
function is being minimized nor rigorous properties of tisdreated solutions.

Fortunately, the duat-space view provides a natural mechanism for generalifiadpasic Type Il
methodology to address alternative likelihood functiamgimore principled manner. In the case
of classification problems, we might want to replace the Giandikelihoodp(y|x) implied by (1)
with a multivariate Bernoulli distributiop(y|x) o log[—¥(y, )] wherey(y, ) is the function

Y (y, @) £ (y;log [o(x)] + (1 — y;) log [1 — o;()]) - (21)
J
Herey; € {0,1} ando;(x) £ 1/[14exp(¢] )], with ¢»;. denoting thej-th row of ®. This function
may be naturally substituted into thespace Type Il cost functioi](8) giving us the candidate
penalized logistic regression function

min Y (y,x) + Agn (). (22)

Importantly, recasting Type Il classification usiagspace in this way, with its attendant well-
specified cost function, facilitates more concrete analysee below) regarding properties of global
and local minima that were previously rendered inaccesdiBcause of intractable integrals and
compensatory approximations. Moreover, we retain a tiginnection with the original Type ||
marginalization process as follows.

Consider the strict upper bound on the functify, «) (obtained by a Taylor series approximation
and a Hessian bound) given by

Uy, x) < Ty, x,v) 2y, v)+ (v-z) OTt+1/8w—x) D (v =),  (23)

wheret = [ti,...,t,]T with t; £ y; — o;(v). This bound holds for al with equality
whenwv = x. Using this result we obtain the lower bound on the margiikalihood given by

[ log[—¢(y, x)]p(x)dx > [log[—n(y,z,v)|p(x)dz. The dual-space framework can then be used
to derive the following result:



Theorem 3. Minimization of (22) withA = 4 is equivalent to solving

max /exp [-7(y, z,v)] H/\/’(m;o,%)go(%)dxi (24)

v;y=0

and then computing ;) by plugging the resulting into (G).

Thus we may conclude thdi (22) provides a principled appnasion to [5) when a Bernoulli like-
lihood function is used for classification purposes. In eigl tests on benchmark data sets (see
supplementary material) using~) = 0, it performs nearly identically to the original RVM (which
also implicitly assumeg(y) = 0), but nonetheless provides a more solid theoretical joatifin

for Type Il classifiers because of the underlying similagtand identical generative model. But
while the RVM and its attendant approximations are diffitolanalyze,[(2R) is relatively transpar-
ent. Additionally, for other sparse priors, or equivalgmtiher selections fof, we can still perform
optimization and analyze cost functions without any coajygrequirements on the impligi{x).

Theorem 4. If log |X,| 4+ >, f(v:) is a concave, non-decreasing functiomofas will be the case
if fis concave and non-decreasing), then every local optimuf@4)fis achieved at a solution with
at mostn nonzero elements iy and thereforec ;). In contrast, if— log p(x) is convex, ther (24)
can be globally solved via a convex program.

Despite the practical success of the RVM and related Bayésthniques, and empirical evidence of
sparse solutions, there is currently no proof that the staheariants of these classification methods
will always produce exactly sparse estimates. Thus Thedrpnovides some analytical validation
of these types of classifiers.

Finally, if we take [2R) as our starting point, we may natlyrabnsider modifications tailored to
specific sparse classification tasks (that may or may nadbrateexplicit connection with the original
Type Il probabilistic model). For example, suppose we wdikd to obtain a maximally sparse
classifier, where regularization is provided by, penalty. Direct optimization is combinatorial
because of what we call tiigobal zero attraction propertyWhenever any individual coefficient
goes to zero, we are necessarily at a local minimum with @dpehis coefficient because of the
infinite slope (discontinuity) of thé, norm at zero. Howevel_(22) can be modified to approximate
the ¢y without this property as follows.

Theorem 5. Consider the Type ll-inspired minimization problem
2
Noa . i T
@,% = arg min ¢ (y,z) + o § s log |ap] 4 @O | (25)

which is equivalent to(32) withf (y) = 0 whena; = ay = A. For somer; andas sufficiently
small (but not necessarily equal), the sugpoftz will match the support ofirg ming, ¢ (y, ) +
M|z||o- Moreover, [[2b) doerot satisfy the global zero attraction property.

Thus Type Il affords the possibility of mimicking thig norm in the presence of generalized like-
lihoods but with the advantageous potential for drastjcfgiver local minima. This is a direction
for future research. Additionally, while here we have faadi®ur attention on classification via
logistic regression, these ideas can presumably be exdendwther likelihood functions provided
certain conditions are met. To the best of our knowledgelenddready demonstrably successful
in an empirical setting, Type Il classifiers and other reldayesian generalized likelihood models
have never been analyzed in the context of sparse estineagioe have done in this section.

6 Conclusion

The dual-space view of sparse linear or generalized linestets naturally allows us to transition
x-space ideas originally developed for Type | and apply thefype Il, and conversely, appty-
space techniques from Type Il to Type I. The resulting synyr@tomotes a mutual understanding
of both methodologies and helps ensure that they are notutildzd.

3Supportrefers to the index set of the nonzero elements.
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