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Abstract

Sparse linear (or generalized linear) models combine a standard likelihood func-
tion with a sparse prior on the unknown coefficients. These priors can conve-
niently be expressed as a maximization over zero-mean Gaussians with different
variance hyperparameters. Standard MAP estimation (Type I) involves maximiz-
ing over both the hyperparameters and coefficients, while anempirical Bayesian
alternative (Type II) first marginalizes the coefficients and then maximizes over
the hyperparameters, leading to a tractable posterior approximation. The under-
lying cost functions can be related via a dual-space framework from [22], which
allows both the Type I or Type II objectives to be expressed ineither coefficient
or hyperparmeter space. This perspective is useful becausesome analyses or ex-
tensions are more conducive to development in one space or the other. Herein we
consider the estimation of a trade-off parameter balancingsparsity and data fit. As
this parameter is effectively a variance, natural estimators exist by assessing the
problem in hyperparameter (variance) space, transitioning natural ideas from Type
II to solve what is much less intuitive for Type I. In contrast, for analyses of update
rules and sparsity properties of local and global solutions, as well as extensions to
more general likelihood models, we can leverage coefficient-space techniques de-
veloped for Type I and apply them to Type II. For example, thisallows us to prove
that Type II-inspired techniques can be successful recovering sparse coefficients
when unfavorable restricted isometry properties (RIP) lead to failure of popular
ℓ1 reconstructions. It also facilitates the analysis of Type II when non-Gaussian
likelihood models lead to intractable integrations.

1 Introduction

We begin with the likelihood model
y = Φx+ ǫ, (1)

whereΦ ∈ R
n×m is a dictionary of unitℓ2-norm basis vectors,x ∈ R

m is a vector of unknown
coefficients we would like to estimate,y ∈ R

n is the observed signal, andǫ is noise distributed as
N (ǫ; 0, λI) (later we consider more general likelihood models). In manypractical situations where
large numbers of features are present relative to the signaldimension, the problem of estimatingx
giveny becomes ill-posed. A Bayesian framework is intuitively appealing for formulating these
types of problems because prior assumptions must be incorporated, whether explicitly or implicitly,
to regularize the solution space.

Recently, there has been a growing interest in models that employ sparse priorsp(x) to encourage
solutionsx with mostly small or zero-valued coefficients and a few largeor unrestricted values, i.e.,
we are assuming the generativex is a sparse vector. Such solutions can be favored by using

p(x) ∝
∏

i

exp

[

−1

2
g(xi)

]

=
∏

i

exp

[

−1

2
h
(

x2i
)

]

, (2)

with h concave and non-decreasing on[0,∞) [15, 16]. Virtually all sparse priors of interest can
be expressed in this manner, including the popular Laplacian, Jeffreys, Student’st, and generalized
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Gaussian distributions. Roughly speaking, the ‘more concave’ h, the more sparse we expectx to be.
For example, withh(z) = z, we recover a Gaussian, which is not sparse at all, whileh(z) =

√
z

gives a Laplacian distribution, with characteristic heavytails and a sharp peak at zero.

All sparse priors of the form (2) can be conveniently framed in terms of a collection of non-negative
latent variables or hyperparametersγ , [γ1, . . . , γm]T for purposes of optimization, approximation,
and/or inference. The hyperparameters dictate the structure of the prior via

p(x) =
∏

i

p(xi), p(xi) = max
γi≥0
N (xi; 0, γi)ϕ(γi), (3)

whereϕ(γi) is some non-negative function that is sometimes treated as ahyperprior, although it will
not generally integrate to one. For the purpose of obtainingsparse point estimates ofx, which will
be our primary focus herein, models with latent variable sparse priors are frequently handled in one
of two ways. First, the latent structure afforded by (3) offers a very convenient means of obtaining
(possibly local)maximum a posteriori(MAP) estimates ofx by iteratively solving

x(I) = argmin
x

− log p(y|x)p(x) = arg min
x;γ�0

‖y − Φx‖22 + λ
∑

i

[

x2i
γi

+ log γi + f(γi)

]

, (4)

wheref(γi) , −2 logϕ(γi) andx(I) is commonly referred to as aType I estimator. Examples
include minimumℓp-norm approaches [4, 11, 16], Jeffreys prior-based methodssometimes called
FOCUSS [7, 6, 9], algorithms for computing the basis pursuit(BP) or Lasso solution [6, 16, 18],
and iterative reweightedℓ1 methods [3].

Secondly, instead of maximizing over bothx andγ as in (4),Type II methods first integrate out
(marginalize) the unknownx and then solve the empirical Bayesian problem [19]

γ(II) = argmax
γ

p(γ|y) = argmax
γ

∫

p(y|x)
∏

i

N (x; 0, γi)ϕ(γi)dxi

= argmin
γ

yTΣ−1
y y + log |Σy|+

m
∑

i=1

f(γi), (5)

whereΣy , λI + ΦΓΦT andΓ , diag[γ]. Onceγ(II) is obtained, the conditional distribution
p(x|y;γ(II)) is Gaussian, and a point estimate forx naturally emerges as the posterior mean

x(II) = E
[

x|y;γ(II)

]

= Γ(II)Φ
T
(

λI +ΦΓ(II)Φ
T
)−1

y. (6)
Pertinent examples include sparse Bayesian learning and the relevance vector machine (RVM) [19],
automatic relevance determination (ARD) [14], methods forlearning overcomplete dictionaries [8],
and large-scale experimental design [17].

While initially these two approaches may seem vastly different, both can be directly compared using
a dual-space view [22] of the underlying cost functions. In brief, this involves expressing both the
Type I and Type II objective solely in terms of eitherx orγ as reviewed in Section 2. The dual-space
view is advantageous for several reasons, such as establishing connections between algorithms, de-
veloping efficient update rules, or handling more general (non-Gaussian) likelihood functions. In
Section 3, we utilizeγ-space cost functions to develop a principled method for choosing the trade-
off parameterλ (which accompanies the Gaussian likelihood model and essentially balances sparsity
and data fit) and demonstrate its effectiveness via simulations. Section 4 then derives a new Type
II-inspired algorithm inx-space that can compute maximally sparse (minimalℓ0 norm) solutions
even with highly coherent dictionaries, proving a result for clustered dictionaries that previously has
only been shown empirically [21]. Finally, Section 5 leverages duality to address Type II methods
with generalized likelihood functions that previously were rendered untenable because of intractable
integrals. In general, some tasks and analyses are easier toundertake inγ-space (Section 3), while
others are more transparent inx-space (Sections 4 and 5). Here we consider both with the goalof
advancing the proper understanding and full utilization ofthe sparse linear model.

2 Dual-Space View of the Sparse Linear Model

Type I is based on a natural cost function inx-space,p(x|y), while Type II involves an analogous
function inγ-space,p(γ|y). The dual-space view defines a correspondingγ-space cost function for
Type I and ax-space cost function for Type II to complete the symmetry.
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Type II in x-Space: Using the relationship

yΣ−1
y y = min

x

1

λ
‖y − Φx‖22 + xTΓ−1x (7)

as in [22], it can be shown that the Type II coefficients from (6) satisfyx(II) = argminx L(II)(x),
where

L(II)(x) , ‖y − Φx‖22 + λg(II)(x), (8)

and

g(II)(x) , min
γ�0

∑

i

x2i
γi

+ log |Σy|+
∑

i

f(γi). (9)

This reformulation of Type II inx-space is revealing for multiple reasons (Sections 4 and 5 will
address additional reasons in detail). For many applications of the sparse linear model, the primary
goal is simply a point estimate that exhibits some degree of sparsity, meaning many elements ofx̂
near zero and a few relatively large coefficients. This requires a penalty functiong(x) that is concave
and non-decreasing inx2 , [x21, . . . , x

2
m]T . In the context of Type I, any priorp(x) expressible via

(2) will satisfy this condition by definition; such priors are said to bestrongly super-Gaussianand
will always have positive kurtosis [15]. Regarding Type II,because the associatedx-space penalty
(9) is represented as a minimum of upper-bounding hyperplanes with respect tox2 (and the slopes
are all non-negative givenγ � 0), it must therefore be concave and non-decreasing inx2 [1].

For compression, interpretability, or other practical reasons, it is sometimes desirable to haveexactly
sparsepoint estimates, with many (or most) elements ofx equal to exactly zero. This then necessi-
tates a penalty functiong(x) that is concave and non-decreasing in|x| , [|x1|, . . . , |xm|]T , a much
stronger condition. In the case of Type I, iflog γ + f(γ) is concave and non-decreasing inγ, then
g(x) =

∑

i g(xi) satisfies this condition. The Type II analog, which emerges by further inspection
of (9) stipulates that if

log |Σy|+
∑

i

f(γi) = log
∣

∣λ−1ΦTΦ+ Γ−1
∣

∣+ log |Γ|+
∑

i

f(γi) (10)

is a concave and non-decreasing function ofγ, theng(II)(x) will be a concave, non-decreasing
function of |x|. For this purpose it is sufficient, but not necessary, thatf be a concave and non-
decreasing function. Note that this is a somewhat stronger criteria than Type I since the first term
on the righthand side of (10) (which is absent from Type I) is actually convex inγ. Regardless, it is
now very transparent how Type II may promote sparsity akin toType I.

The dual-space view also leads to efficient, convergent algorithms such as iterative reweightedℓ1
minimization and its variants as discussed in [22]. However, building on these ideas, we can demon-
strate here that it also elucidates the original, widely applied update procedures developed for im-
plementing the relevance vector machine (RVM), a popular Type II method for regression and clas-
sification that assumesf(γ) = 0 [19]. In fact these updates, which were inspired by a fixed-point
heuristic from [12], have been widely used for a number of Bayesian inference tasks without any
formal analyses or justification.1 The dual-space formulation can be leveraged to show that these
updates are in fact executing a coordinate-wise, iterativemin-max procedure in search of a saddle
point. Specifically we have the following result (all proofsare in the supplementary material):

Theorem 1. The original RVM update rule from [19, Equation (16)] is equivalent to a closed-form,
coordinate-wise optimization of

min
x;γ�0

max
z�0

[

‖y − Φx‖22 +
∑

i

(

x2i
γi

+ zi log γi

)

− ϑ(z)
]

(11)

overx, γ, andz, whereϑ(z) is the convex conjugate function [1] oflog
∣

∣λI +Φdiag[exp(u)]ΦT
∣

∣

with respect tou.

1Although a more recent, step-wise variant of the RVM has beenshown to be substantially faster [20],
the original version is still germane since it can easily be extended to handle more general structured sparsity
problems. The step-wise method cannot without introducingadditional approximations [10].
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Type I in γ-Space: Similar methodology and the expansion ofyTΣ−1
y y can be used to express

the Type I optimization problem inγ-space, which serves several useful purposes. Letγ(I) ,

argminγ�0 L(I)(γ), with

L(I)(γ) , yTΣ−1
y y + log |Γ|+

m
∑

i=1

f(γi). (12)

Then the Type I coefficients obtained from (4) satisfy

x(I) = Γ(I)Φ
T
(

λI +ΦΓ(I)Φ
T
)−1

y. (13)

Section 3 will useγ-space cost functions to derive well-motivated approachesfor learning the trade-
off parameterλ.

3 Choosing the Trade-off Parameterλ

The trade-off parameter is crucial for obtaining good estimates ofx. In general, ifλ is too large,
x̂ → 0; too small and̂x is overfitted to the noise. In practice, either expensive cross-validation or
some heuristic procedure is often required. However, becauseλ can be interpreted as a variance, it is
useful to address its estimation inγ-space, in which existing unknowns (i.e.,γ) are also variances.

Learning λ with Type I: Consider the Type I cost functionL(I)(γ). The data-dependent term can be
shown to be a convex, non-increasing function ofγ, which encourages each element to be large. The
second term is a penalty factor that regulates the size ofγ. It is here that a convenient regularizer
for λ can be incorporated.

This can be accomplished as follows. First we expandΣy viaΣy =
∑m

j=1 γiφ·iφ
T
·i+

∑n

j=1 λeje
T
j ,

whereφ·i denotes thei-th column ofΦ andej is a column vector of zeros with a ‘1’ in the j-th
location. Thus we observe thatλ is embedded in the data-dependent term in the exact same fashion
as eachγi. This motivates a penalty onλ with similar correspondence, leading to the objective

L(I)(γ, λ) , yTΣ−1
y y +

m
∑

i=1

[log γi + f(γi)] +

n
∑

j=1

[logλ+ f(λ)]

= yTΣ−1
y y +

m
∑

i=1

[log γi + f(γi)] + n logλ+ nf(λ). (14)

While admittedly simple, this construction is appealing because, regardless of how eachγi is penal-
ized,λ is penalized in a proportional manner, so bothγ andλ have a properly balanced chance of
explaining the observed data. This is important because theoptimalλ will be highly dependent on
both the true noise level,and crucially, the particular sparse prior assumedp(x) (as reflected byf ).

For analysis or implementational purposes, we may convertL(I)(γ, λ) back tox-space, withλ-
dependency now removed. It can then be shown that solving (4), with λ fixed to the value that
minimizes (14), is equivalent to solving

min
x,u

∑

i

g(xi) + ng

(

1√
n
‖u‖2

)

, s.t. y = Φx+ u. (15)

If x∗ andu∗ minimize (15), then we can demonstrate using [15] that the correspondingλ estimate,
which also minimizes (14), is given byλ∗ = ∂h(z)/∂z evaluated atz = 1/n‖u∗‖22. Note that if we
were just performing maximum likelihood estimation ofλ givenx∗, the optimal value would reduce
to simplyλ∗ = 1/n‖u∗‖22, with no influence from the prior onx. This is a fundamental weakness.

Solving (15), or equivalently (14), can be accomplished using simple iterative reweighted least
squares, or ifg is concave in|xi|, an iterative reweighted second-order-cone (SOC) minimization.

Learning λ with Type II: The same procedure can be adopted for Type II yielding the cost function

L(II)(γ, λ) = yTΣ−1
y y + log |Σy|+

∑

i

f(γi) + nf(λ), (16)
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where we note that, unlike in the Type I case above, thelog-based term is already naturally balanced
betweenλ andγ by virtue of the symmetric embedding inΣy. It is important to stress that this
Type II prescription for learningλ is not the same as originally proposed in the literature for Type
II models of this genre. In this context,ϕ(γi) is interpreted a hyperprior onγi, and an equivalent
distribution is assumed on the noise varianceλ. Importantly, these assumptions leave out the factor
of n in (16), and so an asymmetry is created.

Simulation Examples: Empirical tests help to illustrate the efficacy of this procedure. As in many
applications of sparse reconstruction, here we are only concerned with accurately estimatingx,
whose nonzero entries may have physical significance (e.g.,source localization [16], compressive
sensing [2], etc.), as opposed to predicting new values ofy. Therefore, automatically learning the
value ofλ is particularly relevant, since cross-validation is oftennot possible.2 Simulations are
helpful for evaluation purposes since we then have access tothe true sparse generating vector.

Figure 1 compares the estimation performance obtained by minimizing (15) with two different se-
lections forg: g(x) = ‖x‖pp =

∑

i |xi|p, with p = 0.01 andp = 1.0. Data generation proceeds
as follows: We create a random100× 50 dictionaryΦ, with ℓ2-normalized, iid Gaussian columns.
x is randomly generated with 10 unit Gaussian nonzero elements. We then computey = Φx + ǫ,
whereǫ is iid Gaussian noise producing an SNR of0dB. To determine whatλ values lead to optimal
performance we solve (4) with the appropriateg over a range of fixedλ values (10−4 to 101) and
then compute the error betweenx andx̂. The minimum of this curve reflects the best performance
we can hope to achieve when learningλ blindly. In Figure 1 (Top) we plot these curves for both
Type I methods averaged over 1000 independent trials.

Next we solve (15), which produces an estimate of bothx andλ. We mark with an ‘+’ the learned
λ versus the corresponding error ofx̂. In both cases the learnedλ’s (averaged across trials) perform
just as well as if we knew the optimal value a priori. Results using other noise levels, problem di-
mensionsn andm, sparsity levels‖x‖0, and sparsity penaltiesg are similar. See the supplementary
material for more examples.

Figure 1 (Bottom) shows the average sparsity of estimatesx̂, as quantified by theℓ0 norm ‖x̂‖0,
acrossλ values (‖x‖0 returns a count of the number of nonzero elements inx). The ‘+’ indicates
the average sparsity of eacĥx for the learnedλ as before. In general, theℓ(0.01) penalty produces
a much sparser estimate, very near the true value of‖x‖0 = 10 at the optimalλ. Theℓ1 penalty,
which is substantially less concave/sparsity-inducing, still sets some elements to exactly zero, but
also substantially shrinks nonzero coefficients in achieving a similar overall reconstruction error.
This highlights the importance of learning aλ via a penalty that is properly matched to the prior on
x: if we instead tried to force a particular sparsity value (inthis case 10), then theℓ1 solution would
be very suboptimal. Finally we note that maximum likelihood(ML) estimation ofλ performs very
poorly (not shown), except in the special case where the ML estimate is equivalent to solving (14)
as occurs whenf(γ) = 0 (see [6]). The proposed method can be viewed as adding a principled
hyperprior onλ, properly matched top(x), that compensates for this shortcoming of standard ML.

Type II λ estimation has been explored elsewhere for the special casewheref(γ) = 0 [19], which
renders the factor ofn in (16) irrelevant; however, for other selections we have found this factor
to improve performance (not shown). For space considerations we have focused our attention here
on Type I, which has frequently been noted for not lending itself well to λ estimation (or related
parameters) [6, 13]. In fact, the symmetry afforded by the dual-space perspective reveals that Type
I is just as natural a candidate for this task as Type II, and may be preferred in high-dimensional
settings where computational resources are at a premium.

4 Maximally Sparse Estimation

With the advent of compressive sensing and other related applications, there has been growing inter-
est in findingmaximally sparsesignal representations from redundant dictionaries (m ≫ n) [3, 5].
The canonical form of this problem involves solving

x0 , argmin
x

‖x‖0, s.t.y = Φx. (17)

2For example, in non-stationary environments, the value of bothx andλ may be completely different for
any newy, which then necessitates that we estimate both jointly.
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Figure 1: Left: Normalized mean-squared error (MSE) given by
〈

‖x− x̂‖22/‖x‖2
〉

(where the
average is across 1000 trials) plotted versusλ for two different Type I approaches. Each black ‘+’
represents the estimated value ofλ (averaged across trials) and the associated MSE produced with
this estimate. In both cases the estimated value achieves the lowest possible MSE (it can actually
be slightlylower than the curve because its value is allowed to fluctuate from trial to trial). Right:
Solution sparsity‖x̂‖0 versusλ. Even though they both lead to similar MSE, theℓ(0.01) penalty
produces a much sparser estimate at the optimalλ value.

While (17) is NP-hard, whenever the dictionaryΦ satisfies arestricted isometry property(RIP) [2]
or a related structural assumption, meaning that each‖x0‖0 columns ofΦ are sufficiently close
to orthonormal (i.e., mutually uncorrelated), then replacing ℓ0 with ℓ1 in (17) leads to a convex
problem with an equivalent global solution. Unfortunatelyhowever, in many situations (e.g., feature
selection, source localization) these RIP equivalence conditions are grossly violated, implying that
theℓ1 solution may deviate substantially fromx0.

An alternative is to instead replace (17) with minimizationof (8) and then take the limit asλ → 0.
(Note that the extension to the noisy case withλ > 0 is straightforward, but analysis is more
difficult.) In this regime the optimization problem reducesto

x(II) = lim
λ→0

argmin
x

g(II)(x), s.t.y = Φx. (18)

If log |Σy| +
∑

i f(γi) is concave, then (18) can be minimized using reweightedℓ1 minimization.
With initial weight vectorw(0) = 1, the(k + 1)-th iteration involves computing

x(k+1) ← arg min
x: y=Φx

∑

i

w
(k)
i |xi|, w(k+1) ← ∂g(II)(x)

∂|xi|

∣

∣

∣

∣

x=x(k+1)

. (19)

With f(γ) = 0, iterating (19) will provably lead to an estimate ofx0 that is as good or better than the
ℓ1 solution [21], in particular whenΦ has highly correlated columns. Additionally, the assumption
f(γ) = 0 leads to a closed-form expression for the weightsw(k+1). Let

ηi(x;α, q) ,

[

φT
·i

(

αI +Φ|X(k+1)|2ΦT
)−1

φ·i

]q

, (20)

where|X(k+1| denotes a diagonal matrix withi-th diagonal entry given by|x(k+1)
i |. Thenw(k+1)

can be computed viaw(k+1)
i = ηi(x; 0, 1/2), ∀i. It remains unclear however in what circum-

stances this type of update can lead to guaranteed improvement nor if the functionsηi(x; 0, 1/2)
are even the optimal choice. We will now demonstrate that forcertain selections ofα andq, we
can guarantee that reweightedℓ1 usingηi(x;α, q) is guaranteed to recoverx0 exactly ifΦ is drawn
from what we call aclustered dictionary model.

Definition 1. Clustered Dictionary Model:Let Φ(d)
uncorr denote any dictionary such thatℓ1 mini-

mization succeeds in solving (17) for all‖x0‖0 ≤ d. Let Φ(d,ǫ)
corr denote any dictionary obtained

by replacing each column ofΦ(d)
uncorr with a “cluster” ofmi basis vectors such that the angle be-

tween any two vectors within a cluster is less than someǫ > 0. We also define the cluster support
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Ω0 ⊂ {1, 2, . . . ,m} as the set of cluster indices wherebyx0 has at least one nonzero element.

Finally, we assume that the resultingΦ(d,ǫ)
corr is such that everyn× n submatrix is full rank.

Theorem 2. For any sparse vectorx0 and any dictionaryΦ(d,ǫ)
corr obtained from the clustered

dictionary model withǫ sufficiently small, reweightedℓ1 minimization using weightsηi(x;λ, q)
with someq ≥ 1 andα sufficiently small will recoverx0 exactly provided that|Ω0| ≤ d,
∑

i∈Ω0
mi ≤ n, and within each clusterk ∈ Ω0 the coefficients do not sum to zero.

Theorem 2 implies that even thoughℓ1 may fail to find the maximally sparsex0 because of severe
RIP violations (high correlations between groups of dictionary columns as dictated byǫ lead directly
to a poor RIP), a Type II-inspired method can still be successful. Moreover, because wheneverℓ1
does succeed, Type II will always succeed as well (assuming areweightedℓ1 implementation), the
converse (RIP violation leading to Type II failure but notℓ1 failure) can never happen. Recent work
from [21] has argued that Type II may be useful for addressingthe sparse recovery problem with
correlated dictionaries, and empirical evidence is provided showing vastly superior performance on
clustered dictionaries. However, we stress that no resultsproving global convergence to the correct,
maximally sparse solution have been shown before in the caseof structured dictionaries (except
in special cases with strong, unverifiable constraints on coefficient magnitudes [21]). Moreover,
the proposed weighting strategyηi(x;λ, q) accomplishes this without any particular tuning to the
clustered dictionary model under consideration and thus likely holds in many other cases as well.

5 Generalized Likelihood functions

Type I methods naturally accommodate alternative likelihood functions. We simply must replace the
quadratic data fit term from (4) with some preferred functionand then coordinate-wise optimization
may proceed provided we have an efficient means of computing aweightedℓ2-norm penalized
solution. In contrast, generalizing Type II is substantially more complicated because it is no longer
possible to compute the marginalization (5) or the posterior distributionp(x|y;γ(II)). Therefore, to
obtain a tractable estimatex(II) additional heuristics are required. For example, the RVM classifier
from [19] employs a Laplace approximation for this purpose;however, it is not clear what cost
function is being minimized nor rigorous properties of the estimated solutions.

Fortunately, the dualx-space view provides a natural mechanism for generalizing the basic Type II
methodology to address alternative likelihood functions in a more principled manner. In the case
of classification problems, we might want to replace the Gaussian likelihoodp(y|x) implied by (1)
with a multivariate Bernoulli distributionp(y|x) ∝ log[−ψ(y,x)] whereψ(y,x) is the function

ψ (y,x) ,
∑

j

(yj log [σj(x)] + (1− yj) log [1− σj(x)]) . (21)

Hereyj ∈ {0, 1} andσj(x) , 1/[1+exp(φT
j·x)], withφj· denoting thej-th row ofΦ. This function

may be naturally substituted into thex-space Type II cost function (8) giving us the candidate
penalized logistic regression function

min
x

ψ (y,x) + λg(II)(x). (22)

Importantly, recasting Type II classification usingx-space in this way, with its attendant well-
specified cost function, facilitates more concrete analyses (see below) regarding properties of global
and local minima that were previously rendered inaccessible because of intractable integrals and
compensatory approximations. Moreover, we retain a tight connection with the original Type II
marginalization process as follows.

Consider the strict upper bound on the functionψ(y,x) (obtained by a Taylor series approximation
and a Hessian bound) given by

ψ(y,x) ≤ π(y,x,v) , ψ(y,v) + (v − x)
T
ΦT t+ 1/8 (v − x)

T
ΦTΦ (v − x) , (23)

where t = [t1, . . . , tn]
T with tj , yj − σj(v). This bound holds for allv with equality

whenv = x. Using this result we obtain the lower bound on the marginal likelihood given by
∫

log[−ψ(y,x)]p(x)dx ≥
∫

log[−π(y,x,v)]p(x)dx. The dual-space framework can then be used
to derive the following result:
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Theorem 3. Minimization of (22) withλ = 4 is equivalent to solving

max
v;γ�0

∫

exp [−π(y,x,v)]
∏

i

N (x; 0, γi)ϕ(γi)dxi (24)

and then computingx(II) by plugging the resultingγ into (6).

Thus we may conclude that (22) provides a principled approximation to (5) when a Bernoulli like-
lihood function is used for classification purposes. In empirical tests on benchmark data sets (see
supplementary material) usingf(γ) = 0, it performs nearly identically to the original RVM (which
also implicitly assumesf(γ) = 0), but nonetheless provides a more solid theoretical justification
for Type II classifiers because of the underlying similarities and identical generative model. But
while the RVM and its attendant approximations are difficultto analyze, (22) is relatively transpar-
ent. Additionally, for other sparse priors, or equivalently other selections forf , we can still perform
optimization and analyze cost functions without any conjugacy requirements on the implicitp(x).

Theorem 4. If log |Σy|+
∑

i f(γi) is a concave, non-decreasing function ofγ (as will be the case
if f is concave and non-decreasing), then every local optimum of(24) is achieved at a solution with
at mostn nonzero elements inγ and thereforex(II). In contrast, if− log p(x) is convex, then (24)
can be globally solved via a convex program.

Despite the practical success of the RVM and related Bayesian techniques, and empirical evidence of
sparse solutions, there is currently no proof that the standard variants of these classification methods
will always produce exactly sparse estimates. Thus Theorem4 provides some analytical validation
of these types of classifiers.

Finally, if we take (22) as our starting point, we may naturally consider modifications tailored to
specific sparse classification tasks (that may or may not retain an explicit connection with the original
Type II probabilistic model). For example, suppose we wouldlike to obtain a maximally sparse
classifier, where regularization is provided by a‖x‖0 penalty. Direct optimization is combinatorial
because of what we call theglobal zero attraction property: Whenever any individual coefficientxi
goes to zero, we are necessarily at a local minimum with respect to this coefficient because of the
infinite slope (discontinuity) of theℓ0 norm at zero. However, (22) can be modified to approximate
theℓ0 without this property as follows.

Theorem 5. Consider the Type II-inspired minimization problem

x̂, γ̂ = arg min
x;γ�0

ψ (y,x) + α1

∑

i

x2i
γi

+ log
∣

∣α2I +ΦΓΦT
∣

∣ (25)

which is equivalent to (22) withf(γ) = 0 whenα1 = α2 = λ. For someα1 andα2 sufficiently
small (but not necessarily equal), the support3 of x̂ will match the support ofargminx ψ (y,x) +
λ‖x‖0. Moreover, (25) doesnot satisfy the global zero attraction property.

Thus Type II affords the possibility of mimicking theℓ0 norm in the presence of generalized like-
lihoods but with the advantageous potential for drastically fewer local minima. This is a direction
for future research. Additionally, while here we have focused our attention on classification via
logistic regression, these ideas can presumably be extended to other likelihood functions provided
certain conditions are met. To the best of our knowledge, while already demonstrably successful
in an empirical setting, Type II classifiers and other related Bayesian generalized likelihood models
have never been analyzed in the context of sparse estimationas we have done in this section.

6 Conclusion

The dual-space view of sparse linear or generalized linear models naturally allows us to transition
x-space ideas originally developed for Type I and apply them to Type II, and conversely, applyγ-
space techniques from Type II to Type I. The resulting symmetry promotes a mutual understanding
of both methodologies and helps ensure that they are not underutilized.

3Supportrefers to the index set of the nonzero elements.
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