
Gastrointestinal stromal tumours (GISTs) are the most 
common mesenchymal tumour of the gastrointestinal 
tract. Studies across the world show remarkably consistent 
annual incidences of 11 to 19.6 per million population1–4, 
corresponding to between 3,300 and 6,000 new cases per 
year in the United States. Following surgical resection, 
GISTs often recur locally, spread diffusely throughout the 
serosal surfaces of the abdomen and/or metastasize to  
the liver. Advanced disease is associated with metastases 
to distant sites, including to the lung and bone. Prior to the 
advent of targeted therapies, the prognosis for advanced 
GISTs was poor owing to their inherent resistance to both 
chemotherapy and radiation therapy5.

During the past decade, GISTs have served as an 
important model in the emerging field of molecularly 
targeted therapies for solid tumours. The nearly simulta-
neous discovery of oncogenic kinase mutations in GISTs 
and the introduction of kinase inhibitor therapies has 
led to a rapid evolution in our understanding of these 
tumours and the biology that defines them.

This Review provides an overview of the exciting 
developments that have resulted from studies of the 
molecular pathology, pharmacology and oncology of 
GISTs. An emphasis is placed on the oncogenic muta-
tions that lead to GIST development, the relationship 
between these mutations and responses to new classes of 
targeted therapeutics, and the insights into GIST biology 
that have been gained from molecular studies.

Oncogenic mutations in GISTs
KIT. As first reported by two groups in 1998, 95% of GISTs 
are immunohistochemically positive for the receptor 

tyrosine kinase KIT (also known as CD117), and this 
remains a crucial diagnostic marker for these tumours. 
At the same time, Hirota and colleagues published their 
groundbreaking discovery of KIT mutations in GISTs6,7. 
It is now established that 70–80% of GISTs harbour a KIT 
gene mutation, that these mutations lead to the consti-
tutive activation of the kinase and that mutant KIT is a  
clinically important therapeutic target in GISTs.

KIT is a member of the type III receptor tyrosine kinase 
family that includes platelet-derived growth factor 
receptor-α (PDGFRA) and PDGFRB, as well as macro
phage colony-stimulating-factor receptor (CSF1R) 
and Fl cytokine receptor (FLT3)8. Binding of the KIT 
ligand, stem cell factor (SCF) to KIT results in receptor  
homodimerization and kinase activation9.

Oncogenic KIT mutations result in ligand-independent 
kinase activation (FIG. 1). The most common mutations 
in KIT affect the juxtamembrane domain that is encoded 
by exon 11. Two-thirds of GISTs harbour mutations in 
exon 11, which disrupt the normal juxtamembrane sec-
ondary structure that prevents the kinase activation loop 
from swinging into the active conformation10. These 
mutations include in-frame deletions, insertions and 
substitutions, or combinations of these11. The deletions 
are associated with a shorter progression-free and over-
all survival in comparison to the other exon 11 muta-
tions12–18. In particular, deletions involving codon 557 
and/or codon 558 are associated with malignant 
behaviour19–21.

Aside from exon 11 mutations, between 7% and 10% 
of GISTs have a mutation in an extracellular domain 
that is encoded by exon 9 (REF. 22). These mutations 
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are thought to mimic the conformational change that 
the extracellular KIT receptor undergoes when SCF 
is bound23. Importantly, the kinase domain in exon 
9‑mutant KIT is essentially the same as in wild-type 
KIT, and this has an effect on inhibitor sensitivity. Also 
important is that these mutations occur in tumours that 
arise in the small and large intestine, but they are rarely 
seen in gastric GISTs, and their gene expression profile 
differs from that of exon 11‑mutant tumours24.

Mutations in the activation loop (which is encoded by 
exon 17) of the kinase are uncommon, and they stabilize 
the active conformation25. Primary mutations, such as 
K642E in the ATP-binding region (encoded by exon 13), 
are also uncommon25. The biological basis of kinase 
activation by this mutation is unknown, but it is specu-
lated that it interferes with the normal autoinhibitory 
function of the juxtamembrane domain.

The functional importance of KIT mutations in GIST 
development is supported by several lines of evidence. 
First, phosphorylated KIT is almost always detect-
able in GIST tumour extracts26. Second, mutant KIT is 
oncogenic, supporting the growth of stably transfected  
BA/F3 cells in nude mice6,26. Third, when expressed in 
transfected cell lines, mutant forms of KIT show consti-
tutive kinase activity in the absence of SCF, as evidenced 
by autophosphorylation and the activation of down-
stream signalling pathways6,27,28. Finally, mice engineered 
to express KIT with mutations of the type that are found 
in human GISTs can develop GIST-like tumours29,30. This 
histological picture is similar to that seen in individuals 
with inherited KIT-activating mutations31,32.

Tumour extracts from KIT-mutant GISTs demon-
strate evidence of activation of downstream signal-
ling pathways, including the MAPK pathway (which 
consists of RAF, MEK and MAPK), the PI3K–AKT 
pathway and signal transducer and activator of tran-
scription 3 (STAT3)26,33–35 (FIG. 2). The MAPK pathway 
upregulates important transcriptional regulators such 
as MYC, ELK and CREB, and can stimulate the cell 
cycle through FOS. AKT activation through PI3K and 
3‑phosphoinositide-dependent protein kinase 1 (PDK1) 

leads to increased protein translation, downregulation 
of the cell cycle inhibitor p27 (also known as KIP1) and 
anti-apoptotic effects.

Recent studies show that ETS translocation vari-
ant 1 (ETV1) is an important driver of GIST-specific 
gene expression during tumorigenesis36. Transduction 
of an ETV1‑targeted short hairpin RNA (shRNA) into 
GIST cell lines resulted in growth inhibition and apopto-
sis, and the treatment of GIST cells with either a KIT or 
a MEK inhibitor markedly reduced ETV1 protein levels 
through proteasomal degradation. ETV1 transcription 
is increased by MAPK signalling through the downregu-
lation of the ETS family transcription suppressor capi-
cua (CIC)37. Thus, KIT signalling through the MAPK  
pathway maintains ETV1 activity.

Pharmacological studies have helped to dissect the 
relative importance of the pathways downstream of KIT. 
Despite the finding of ubiquitous MAPK activation in 
primary GISTs and GIST cell lines, targeted inhibition 
of MAPK with a MEK1 and MEK2 inhibitor (U0126) 
had inconsistent effects on GIST cell line proliferation 
(5–40% inhibition) and did not induce apoptosis. By 
contrast, PI3K inhibitors had a more marked effect on 
cellular proliferation (40–75% inhibition) and produced 
a threefold to fourfold induction in caspase activity. 
mTOR inhibitors were less effective than PI3K inhibi-
tors for reducing proliferation or for inducing apoptosis, 
suggesting that the crucial determinants of cell survival 
signalling are located downstream of PI3K but upstream 
of mTOR38.

As a negative feedback mechanism, on activation by 
SCF, signalling from wild-type KIT is quickly downregu-
lated by the endocytic uptake of the receptor from the 
cell surface, ubiquitylation and proteasome-mediated 
degradation. In addition to kinase activation, mutant 
forms of KIT have longer half-lives than wild-type KIT, 
perhaps partly owing to a stabilizing interaction with 
heat shock protein 90 (HSP90)39,40.

By immunohistochemistry, KIT is detectable at the 
surface of GIST cells, but strong staining is commonly 
observed in the cell cytoplasm and is sometimes con-
centrated in a perinuclear, dot-like pattern41. Xiang and 
colleagues42 have observed that KIT with an exon 17 
mutation (D816V) is concentrated in the Golgi of trans-
fected A375 cells42. Furthermore, mutant KIT that has 
been further modified with a Golgi-localization motif 
retains its ability to activate downstream signalling, 
raising the interesting possibility that signalling from 
mutant KIT can occur directly from the Golgi.

In general, GISTs are heterozygous for a given muta-
tion; however, in approximately 15% of tumours, the 
remaining wild-type KIT allele is lost, and this allele loss is 
associated with malignant behaviour32,43–45. In serial sam-
ples from individual patients, Chen and colleagues45 have 
provided evidence that this occurs through mitotic non-
disjunction, that is, a failure of separation during mitosis 
of a chromosome 4 pair bearing the wild-type KIT allele, 
thus leaving one daughter cell with a single chromosome 4 
bearing the mutant KIT allele (this is known as unipa-
rental monosomy). This correlated with increased mitotic 
activity and topoisomerase II expression45.

At a glance

•	Gastrointestinal stromal tumours (GISTs) are a family of tumours thought to arise from 
the interstitial cells of Cajal in the gastrointestinal tract. Recently, the putative stem 
and progenitor cells for GISTs have been identified.

•	Most GISTs have oncogenic mutations in either KIT or platelet-derived growth factor 
receptor-α (PDGFRA), and targeting these mutant proteins with kinase inhibitors is 
effective in patients with advanced disease. There is substantial evidence that these 
mutations are pathogenetic for the initiation of GISTs.

•	GISTs lacking KIT or PDGFRA mutations (known as wild-type GISTs) are a 
heterogeneous group, of which some have alterations in BRAF, RAS or in the genes of 
the succinate dehydrogenase complex.

•	Classification of GISTs on the basis of molecular defects is relevant to the clinical 
management of patients. Notably, the response to kinase inhibitor therapy is 
influenced by the primary kinase genotype.

•	Secondary mutations in KIT or PDGFRA eventually lead to drug resistance in most 
patients.

•	A subpopulation of GIST cells with stem cell-like characteristics may be less sensitive 
to kinase inhibitors, providing the seed for drug resistance.
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PDGFRA. Of the GISTs that lack KIT gene muta-
tions, a minority have high levels of phosphorylation of 
PDGFRA, as shown by immunoblotting of tumour sam-
ples. PDGFRA is a close homologue of KIT46, and is acti-
vated in GISTs that harbour mutations in the PDGFRA 
juxtamembrane domain (encoded by exon 12), the ATP-
binding domain (encoded by exon 14) or the activation 
loop (encoded by exon 18) (TABLE 1). Consistent with their 
extensive functional overlap, KIT and PDGFRA mutations 
are mutually exclusive in GISTs41,47,48.

Observations that support the importance of 
PDGFRA mutations in GIST are similar to those for KIT 
mutations. When expressed in transfected cell lines, 

mutant forms of PDGFRA have constitutive kinase 
activity in the absence of their ligand, PDGFA46,47, the 
activated downstream pathways are identical to those 
in KIT-mutant GISTs46,49 and PDGFRA is also stabi-
lized by HSP90 (REF. 50). In addition, both types of 
tumours are immunopositive for the markers discov-
ered on GIST 1 (DOG1; also known as anoctamin 1) 
and protein kinase C-θ (PKCθ)35,51,52. These markers 
are highly selective for GISTs rather than for other 
mesenchymal tumours. And, as discussed below, both 
genotypes are associated with cytogenetic changes that 
are distinctive for GIST46,53.

Despite these molecular similarities, most PDGFRA-
mutant GISTs show distinctive pathological features 
from those of KIT-mutant GISTs, including differences 
in gene expression profiles49,54, a striking predilection for 
the stomach, variable (sometimes negative) expression of 
KIT20,48,51,55–57 and a generally lower potential for malig-
nancy58,59. However, the reasons for these differences are 
currently unknown.

Other driver mutations. Between 10% and 15% of 
GISTs do not have a detectable mutation in either KIT 
or PDGFRA. In other respects these so-called ‘wild-type’ 
GISTs are clinically indistinguishable from KIT-mutant 
or PDGFRA-mutant GISTs, as they have an identical 
morphology, express high levels of KIT and occur any-
where in the gastrointestinal tract. Phosphorylated KIT 
is detectable in these tumours, suggesting that KIT is 
still activated35, but the mechanism of this activation 
is unclear. However, recent studies have revealed that 
wild-type GISTs are a heterogeneous group and display 
various oncogenic mutations (TABLE 1). For example, the 
BRAF V600E substitution that is common in papillary 
thyroid carcinoma and melanoma is present in up to 
13% of wild-type GISTs60. HRAS and NRAS gene muta-
tions also occur, but are much more rare (M.C.H. and 
C.L.C., unpublished observations). Because BRAF and 
the RAS proteins are constituents of the MAPK signal-
ling cascade, they can result in KIT-independent growth 
stimulation (FIG. 3a), and are possible causes of resistance 
to KIT and PDGFRA kinase inhibitors.

Defects in the succinate dehydrogenase (SDH) com-
plex of respiratory chain complex II have recently been 
identified in wild-type GISTs (FIG. 3b). This complex, 
which is comprised of four subunits (SDHA, SDHB, 
SDHC and SDHD), oxidizes succinate to fumarate 
as part of the mitochondrial Kreb’s cycle. Germline 
mutations in SDHB, SDHC or SDHD increase the risk 
not only of the development of GIST, but also of the 
development of paragangliomas (known as Carney–
Stratakis syndrome)61. Additionally, GISTs have been 
identified in patients with loss-of-function mutations 
in SDHA62. The tumours in affected patients show 
either loss of or somatic mutation (second hit) of the 
remaining wild-type allele. Interestingly, some wild-
type GISTs lacking an SDH gene mutation show either 
a marked reduction or an absence of SDHB protein 
expression by immunohistochemistry, and a corre-
sponding loss of respiratory chain complex II enzy-
matic activity61. However, SDHB, SDHC and SDHD 

Figure 1 | KIT and PDGFRA structure and mutations. KIT and platelet-derived 
growth factor receptor-α (PDGFRA) are type III receptor tyrosine kinases and share the 
same topology: an extracellular ligand-binding domain that is comprised of five  
immunoglobulin-like repeats, a transmembrane sequence, a juxtamembrane domain and 
a cytoplasmic kinase domain that is split by an insert; in the case of KIT the insert is 80 
amino acids in length. The activation of these receptors occurs through the binding of 
extracellular ligands that cause receptor dimerization. For KIT, the ligand is stem cell 
factor (SCF), whereas for PDGFRA, the ligand is PDGFA. Alternatively, oncogenic 
mutations in these receptors can cause ligand-independent receptor activation. The 
zoomed panels show the structures of part of the kinase and juxtamembrane domains  
of inactive KIT (left-hand side) and active KIT (right-hand side). Mutations in the 
juxtamembrane domain (shown in red), which is encoded by exon 11 of KIT or by exon 12 
of PDGFRA, allow receptor dimerization in the absence of ligand, thus resulting in a 
conformational change that relieves the suppression of the activation loop (shown in 
green) of the kinase domain. When the activation loop swings into an open position,  
the ATP-binding pocket is accessible to ATP, which serves as a phosphate donor for 
phosphorylation reactions that are catalysed by the kinase. Mutations in the activation 
loop (encoded by exon 17 of KIT or by exon 18 of PDGFRA) favour the active 
conformation of the kinase. Mutations in the extracellular domain of KIT (encoded by 
exon 9) are also thought to favour receptor dimerization. KIT crystal structures are 
reproduced, with permission, from REF. 130 © Natl Acad. Sci. USA (2009).
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mRNA levels are comparable to those in KIT-mutant 
GISTs, which suggests that SDHB downregulation 
occurs at the level of protein translation.

The tumorigenic mechanisms of SDH loss-of-function 
in GISTs remain to be studied, but it is possible that the 
resulting elevation of succinate levels may negatively 
regulate prolyl hydroxylase. This enzyme is an important 
regulator of hypoxia-inducible factor 1α (HIF1α) levels, 
and HIF1α is a transcriptional activator of insulin-like 
growth factor 2 (IGF2) and vascular endothelial growth 
factor (VEGF) (FIG. 3b). In keeping with this model, 
VEGF expression is higher in wild-type GISTs than in 
KIT-mutant GISTs24. Similar mechanisms have been 
shown in some types of renal cell carcinoma (through 
the loss of fumarate hydratase)63,64 and in paragangliomas 
(through mutations in SDH genes).

Approximately 50% of wild-type GISTs show high 
expression of insulin-like growth factor 1 receptor 
(IGF1R). Whether this correlates with SDH complex 
activity remains to be determined, but it is possible that 
an IGF autocrine loop is sustained in part by loss of SDH 
and upregulation of IGF2 expression65. IGF1R signals 
through both the MAPK and the PI3K–AKT pathways.

It is estimated that 7% of patients with neurofibroma-
tosis type I (NF1) develop one or more GISTs66–70. Most 
arise in the small intestine and they do not readily metas-
tasize66. The majority of these GISTs are wild-type for 
KIT and PDGFRA, but (as expected) they show either 
somatic mutation or loss of the remaining wild-type 
neurofibromin 1 (NF1) allele66,68,69,71.

Unlike GISTs in adults, those that arise in paediatric 
patients (approximately 1–2% of all GISTs) are rarely 
positive for KIT or PDGFRA mutations. These tumours, 
which often metastasize but which tend to grow slowly, 
have a different gene expression signature from adult-
type GISTs72–74. The coexistence of paediatric-type GISTs 
with pulmonary chondromas and/or paragangliomas in 
patients, referred to as Carney’s triad, is well described as 
a non-heritable syndrome75. However, the gene or genes 
for this rare constellation have yet to be identified.

Chromosomal and molecular alterations during GIST 
progression. Although oncogenic kinase mutations have 
an important role in the development of GISTs, other 
genetic events are important in their clinical progres-
sion. Approximately two-thirds of GISTs demonstrate 

Figure 2 | Oncogenic signalling in KIT and PDGFRA-mutant GISTs. Dimerization of KIT proteins at the cell surface, 
through the binding of stem cell factor (SCF) or mutational activation, leads to autophosphorylation (P) of tyrosine residues. 
Phosphotyrosines provide docking sites for a complex of proteins (SHC, GRB2 and SOS) that activates RAS. In turn, RAS 
activates the MAPK cascade (RAF, MEK and ERK), leading to changes in gene expression through MYC and ELK1. In 
addition, the activation of p90RSK by ERK leads to the activation of CREB, increased transcriptional activity of FOS and JUN, 
and the downregulation of capicua (CIC), which is a transcription suppressor of ETS translocation variant 1 (ETV1)36,37. 
Signal transducer and activator of transcription 3 (STAT3) phosphorylation by KIT also promotes JUN transcription. 
Proteasomal degradation of ETV1, a crucial developmental regulator of interstitial cells of Cajal (ICCs) and gastrointestinal 
stromal tumours (GISTs), is regulated by the activity of ERK. Kinase activity of mutated KIT (or of platelet-derived growth 
factor receptor-α (PDGFRA)) induces the activation of ERK and thereby decreases the degradation of ETV1 in GIST. Finally, 
activation of PI3K by KIT leads to the conversion of phosphatidylinositol‑4,5- bisphosphate (PtdIns(4,5)P

2
) to the 

trisphosphate (PtdIns(3,4,5)P
3
) form that allows docking of PDK1 and AKT at the membrane. Phosphorylation of AKT then 

leads to alterations in protein translation, metabolism and apoptosis through the mediators mTOR and p70S6K. PTEN is a 
phosphatase (and tumour suppressor) that converts PtdIns(3,4,5)P

3
 back to PtdIns(4,5)P

2
.
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either monosomy of chromosome 14, or partial loss of 
14q46,76–80. Interestingly, these chromosome 14 abnormal-
ities are observed both in KIT-mutant and in PDGFRA-
mutant GISTs46,53. Based on loss of heterozygosity (LOH) 
and comparative genomic hybridization (CGH) studies, 
there are two regions of this chromosome that may har-
bour tumour suppressor genes that are important in 
early GIST formation77,81. Deletions of 14q11.2 include 
the genes PARP2, APEX1 and NDRG2, and deletions of 
14q32 include the SIVA gene82. Loss of the long arm  
of chromosome 22 is observed in approximately 50% of 
GISTs46,53,76,77,80,83.

Losses on chromosomes 1p, 9p, 11p and 17p are suc-
cessively less common than 14q and 22q losses, but are 
more significantly associated with malignancy46,53,76,80,83–86. 
Losses on chromosomes 10, 13q and 15q have also been 
reported in GISTs53,83,87. Gains on chromosomes 8q 
(including MYC), 3q (including SMARCA3) and 17q are 
associated with metastatic behaviour77,81,87,88. In a recent 
array-based analysis of gene copy number in 42 GISTs (23 
with recurrence or metastasis), the tumours were sepa-
rated into four groups that reflected their accumulated 
chromosomal changes. The overall survival of group 1 
(loss of 22q, 19 and 1p distal) and group 2 (additional loss 
of 14q) was significantly better than that of group 3 (addi- 
tional losses of 15q and 1p proximal) and group 4 (additional 
loss of 10). This indicates that the accumulation of chro-
mosomal lesions generally indicates a worse progno-
sis. Specific genes that were implicated in this analysis 
included OXA1L on 14q, as well as AKAP13 and C15orf5 

on 15q87. Chibon et al.89 have generated a gene expression 
profile that correlates with chromosomal instability in sar-
coma. Use of the chromosomal instability gene signature 
allowed the classification of GISTs into populations with 
a low or a high propensity to develop metastatic disease89.

None of the above karyotypic changes is present in 
paediatric-type GISTs, which remain near-diploid, again 
emphasizing the different biology of these tumours74. By 
contrast, GISTs arising in patients with NF1 often show 
losses of 14q and 22q90.

On the basis of gene expression profiling of high-
risk versus low-risk GISTs, the high-risk tumours show 
significant changes in genes that regulate the cell cycle, 
including genes that are influenced by the PI3K path-
way and genes that are involved in the G2/M cell cycle 
checkpoint91. A considerable proportion of malignant 
GISTs show inactivation of the tumour suppressor gene 
CDKN2A (which encodes the cell cycle regulatory pro-
teins INK4A and ARF) through chromosome 9p21 dele-
tion, either biallelic or in combination with mutation or 
promoter methylation92–96. Methylthioadenosine phos-
phorylase (MTAP) is just telomeric to CDKN2A and can 
be co-deleted in high risk and malignant GISTs, resulting 
in a defect in the adenosine salvage pathway97. Another 
cell cycle inhibitor, p27, is also commonly downregulated 
in malignant GISTs, but the association with tumour pro-
gression is not as well supported as that for INK4A95,98,99. 
Increased expression levels of cyclin A and cyclin H 
are associated with high-risk GISTs97,98,100. TP53 muta-
tions and decreased p53 immunostaining also correlate 

Table 1 | Molecular classification of GISTs

Genetic type Relative frequency Anatomic distribution Germline examples

KIT mutation (relative frequency 75–80%)

Exon  8 Rare Small bowel One kindred

Exon  9 insertion AY502-503 10% Small bowel and colon None

Exon 11 (deletions, single nucleotide 
substitutions and insertions)

67% All sites Several kindreds

Exon 13 K642E 1% All sites Two kindreds

Exon 17 D820Y, N822K and Y823D 1% All sites Five kindreds

PDGFRA mutation (relative frequency 5–8%)

Exon 12 (such as V561D) 1% All sites Two kindreds

Exon 14 N659K <1% Stomach None

Exon 18 D842V 5% Stomach, mesentery and 
omentum

None

Exon 18 (such as deletion of amino acids 
IMHD  842–846)

1% All sites One kindred

KIT and PDGFRA wild-type (relative frequency 12–15%)

BRAF V600E ~7–15%

SDHA, SDHB, SDHC and SDHD mutations ~2% Stomach and small bowel Carney–Stratakis

HRAS and NRAS mutation <1%

Sporadic paediatric GISTs ~1% Stomach Not heritable

GISTs as part of the Carney triad ~1% Stomach Not heritable

NF1-related Rare Small bowel Numerous

GIST, gastrointestinal stromal tumour; NF1, neurofibromatosis type I; PDGFRA, platelet-derived growth factor receptor-α;  
SDH, succinate dehydrogenase.
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with a poor prognosis101–103. Likewise, amplifications of 
MDM2 and CCND1 (which encodes cyclin D1), though 
uncommon in GISTs, are associated with malignancy104. 
Whether microRNA (miRNA) dysregulation plays a part 
in GIST development remains unclear, but miR‑221 and 
miR‑222 levels are significantly lower in KIT-expressing 
GISTs than in KIT-negative GISTs105.

The origin of GISTs
Interstitial cells of Cajal. During the 1990s a number 
of investigators noted similarities between GISTs and a 
population of cells in the gastrointestinal tract called the 
interstitial cells of Cajal (ICCs), which are pacemakers 
for peristaltic contractions. These observations led to 
the hypothesis that ICCs could be the cell-of-origin 
of GISTs. Mice that are engineered to express KIT 
with mutations of the type found in human GISTs 
develop diffuse ICC hyperplasia in the muscular wall 
of the stomach and intestine29,30. As mentioned above, 
these mice also develop GIST-like tumours. In a strain 
expressing KITK641E, the numbers of ICC stem cells 
(KITlow CD44+ CD34+) and mature myenteric ICCs 
were increased, indicating that the mutant KIT can cause 
expansion of ICCs106. Diffuse ICC hyperplasia has been 
described in several kindreds with heritable mutations 
in KIT (TABLE 1), and is associated with dysphagia and 
the development of multiple GISTs29,32,35,67,107–112, although 
many of the tumours do not follow a malignant course.

The relationship between GISTs and ICCs is further 
supported by parallels in gene expression. For example, 
high levels of PKCθ, nestin and DOG1 are expressed in 

both GISTs and ICC cells113–119. In addition, the ETS fam-
ily transcription factor ETV1 is highly expressed in both 
GISTs and the specific subpopulations of ICCs (myen-
teric and intramuscular, as opposed to submucosal) 
that are thought to give rise to GISTs36.

The observation that some KIT and PDGFRA muta-
tions in GISTs correlate closely with anatomical location 
(TABLE 1) might be explained by their ICC origin24,49,54. 
For example, GISTs with a KIT exon 9 mutation, which 
primarily arise in the intestines, may derive from a dif-
ferent subgroup of ICCs than those with a PDGFRA 
D842V mutation, which occur only in the stomach, 
mesentery and omentum58,120,121. The more common KIT 
mutations, by contrast, can be found in GISTs through-
out the gastrointestinal tract, perhaps deriving from a 
more ubiquitous ICC subtype.

Micro-GISTs. Minute growths (1–10 mm in size) of cells 
that are similar to ICCs and GISTs are present in between 
2.9% and 35% of stomachs that are thoroughly examined 
after surgical removal or at autopsy122–125. These ‘micro-
GISTs’ are mitotically inactive and often partially calci-
fied, suggesting tumorigenic arrest. In contrast to the 
diffuse ICC hyperplasia that is observed in the presence 
of a germline KIT mutation, micro-GISTs appear to rep-
resent a nodular form of ICC overgrowth that is caused by 
local, somatic acquisition of a KIT mutation. The type and 
frequency of KIT mutations in micro-GISTs is essentially 
the same as in clinically relevant tumours126, including 
lesions with deletions affecting codon 557 and codon 558. 
Sub-centimetre GISTs with PDGFRA mutations have also 
been reported122. These observations on micro-GISTs sug-
gest that kinase gene mutations occur very early in GIST 
tumorigenesis; however, these mutations are probably not 
sufficient for progression to an oncologically threatening 
lesion. The large pool of micro-GISTs in the general pop-
ulation probably explains the multiple reported cases in 
which two or more genotypically distinct GISTs are found 
in a patient during a single surgical procedure67,122,127,128.

Kinase mutations and TKI therapy
Until the year 2000, treatment options for patients with 
advanced GIST were poor. The response rate to con-
ventional chemotherapy was <5% and median survival 
for patients with advanced disease was approximately 
18 months5.

The tyrosine kinase inhibitor (TKI) imatinib was 
developed in the early 1990s as a therapy for chronic 
myelogenous leukaemia (CML) owing to its ability to 
inhibit the fusion oncoprotein BCR–ABL129. The obser-
vation that ABL shares structural similarity with KIT and 
several other tyrosine kinases led to experiments showing 
that imatinib can inhibit the growth of cells that express 
activated KIT-mutant isoforms27. In addition, imatinib 
showed potent activity against a KIT-mutant GIST cell 
line28. Imatinib inhibits KIT by directly binding to the 
ATP-binding site within the amino‑terminal lobe of  
the kinase and so competitively inhibiting ATP binding. 
The KIT receptor is normally in equilibrium between 
active and inactive conformations. The inactive confor-
mation is favoured by steric hindrance that is conferred 

Figure 3 | Oncogenic signalling in wild-type GISTs. Mutations in neurofibromin 1 
(NF1), RAS or BRAF can all increase signalling through the MAPK cascade (part a), 
leading to changes in gene expression (FIG 2). The succinate dehydrogenase (SDH) 
complex is comprised of four subunits (part b), two of which (SDHC and SDHD) are 
anchored in the inner mitochondrial membrane. SDHA and SDHB coordinate the 
oxidation of succinate to fumarate as part of the Kreb’s cycle. Loss of SDH complex 
activity owing to mutational inactivation of any of the SDH subunits leads to the 
cytoplasmic accumulation of succinate, which downregulates prolyl hydroxlase. This 
enzyme is an important negative regulator of hypoxia-inducible factor 1α (HIF1α): by 
hydroxylating HIF1α, prolyl hydroxlase promotes the proteasomal degradation of HIF1α. 
Therefore, increased succinate levels lead to increased levels of HIF1α, which can enter 
the nucleus and activate the transcription of vascular endothelial growth factor (VEGF) 
and insulin-like growth factor 2 (IGF2). GISTs, gastrointestinal stromal tumours.
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Cross-over
Switching from one arm of a 
trial to the other.

by the juxtamembrane domain, which prevents the activa-
tion loop from assuming the conformation that is required 
for kinase activation. In this inactive state, imatinib binds 
to the amino acids Cys673 in the hinge region, Glu640 in 
the proximal kinase domain, and Asp810 and Phe811  
in the DFG motif between the proximal and distal kinase 
domains. Imatinib stabilizes the kinase in the inactive 
conformation10,130,131.

With the knowledge that imatinib inhibits KIT 
signalling, imatinib was first used clinically to treat a 
50‑year-old female with metastatic GIST, and a dramatic 
response was seen132. Following promising results from 
Phase I and Phase II trials, two international Phase III 
trials were launched, with each using similar protocols 
to allow a subsequent meta-analysis. The Phase III trials 
compared treatment with 400 mg daily and treatment with 
800 mg daily of imatinib, and these trials had cross-over. 
Overall, imatinib achieved disease control in 70–85% 
of patients with advanced KIT-positive GISTs, and the 
median progression-free survival was 20–24 months133–137. 
Currently, the median survival for patients with advanced 
disease who are treated with front-line imatinib is 5 years, 
with 34% of patients surviving more than 9 years138. More 
recently, adjvuant imatinib treatment has been shown to 
decrease the risk of relapse after curative intent surgery139.

Responses to TKI therapy
Clinical disease persistence. Clinical data suggest 
that even long-term TKI treatment fails to eradicate 
GIST cells, resulting in disease persistence. In an attempt 
to determine the optimal duration of imatinib therapy 
for advanced or unresectable GIST, one interesting trial 
randomized patients who had continuous control of 
their disease after 3 years of imatinib treatment to either 
continue or to discontinue treatment140. The 2‑year 
progression-free survival rate was 80% in the continu-
ous treatment cohort and only 16% in the interruption 
group. Patients who relapsed after the discontinuation of 
therapy did so because of persistent disease (that is, the 
failure of imatinib to eradicate GIST cells). By contrast, 
the progression that developed in some of the patients 
who continued therapy was due to resistant disease.

Theoretically, the persistence of GIST cells during 
TKI treatment could be due to the failure of these drugs 
to eradicate mature GIST cells and/or GIST stem cells 
(BOX 1). Current evidence suggests that both mechanisms 
underlie GIST persistence in the face of prolonged TKI 
therapy106,141.

Given the above results, it is not surprising that most 
GIST lesions that are treated with a TKI still harbour 
viable cells. For example, Agaram and colleagues142 

Box 1 | GIST stem cells

Bardsley et al.106 have recently identified a mouse gastrointestinal stromal tumour (GIST) stem cell with a KITlow CD44+ 
CD34+ insulin-like growth factor 1 receptor (IGF1R)+ immunophenotype. Immature interstitial cells of Cajal (ICCs) in 
their model system are KIT+ CD44+ CD34+ IGF1R+, whereas differentiated GIST cells are KIT+ CD44+ CD34– IGF1R–. 	
These investigators found that the GIST stem cell and immature ICC populations are largely resistant to genetic or 
pharmacological inhibition of KIT signalling, whereas the proliferation of GIST differentiated cells was completely 
dependent on functional KIT activity106.

Property ICC stem cell 
population

Immature ICC 
population

Differentiated ICC 
population

Phenotype106 KITlowCD44+CD34+IGF1R+ KIT+CD44+CD34+IGF1R+ KIT+CD44+/–CD34–IGF1R–

ETV1 expression36 Yes •	Yes: ICC-MY* and ICC-IM‡

•	No: ICC-SMP§ and 
ICC-DMP||

•	Yes: ICC-MY and ICC-IM
•	No: ICC-SMP and 

ICC-DMP

Effect of germline 
KIT-activating mutation106

Increased •	Increased: ICC-MY and 
ICC-IM

•	No change: ICC-SMP and 
ICC-DMP

•	Increased: ICC-MY and 
ICC-IM

•	No change: ICC-SMP 
and ICC-DMP

Effect of germline 
inactivating KIT mutations106

No change No change Decreased

Effect of germline mutation 
reducing membrane-bound 
KIT ligand expression106

No change Decreased Decreased

Effect of imatinib on 
proliferation106

None None Decreased

Effect of neutralizing KIT or 
KIT ligand antibody106 

None Not reported Decreased

ETV1, ETS translocation variant 1; ICC-DMP, ICC-deep muscular plexus; ICC-IM, ICC-intramuscular; ICC-MY, ICC-myenteric; 
ICC-SMP, ICC-submucosal plexus. *ICC-MY cells form a network of ICCs between the circular muscle and the longitudinal muscle 
layers surrounding the neuronal myenteric plexus. Present in stomach, large and small intestines. These cells express ETV1 and can 
give rise to GISTs. ‡ICC-IM cells are singly dispersed ICCs in the circular muscle. Present in the stomach, large and small intestines. Also 
referred to as ICC-circular muscle (ICC-CM ) in the stomach and large intestine. These cells express ETV1 and can give rise to GISTs. 
§ICC-SMP cells form an ICC network surrounding the submucosal plexus. Present in the large but not the small intestine. Similar 
network known as ICC-submucosa ( ICC-SM ) are present in the pylorus of the stomach. These cells do not express ETV1 and do not 
give rise to GISTs. ||ICC-DMP cells form an ICC network around the deep muscular plexus in the circular muscle close to the muscosa. 
Present in the small intestine but not the stomach or large intestine. These cells do not express ETV1 and do not give rise to GISTs36,191.
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examined a series of 43 clinically responsive GIST 
lesions from 28 patients. Histological responses in 
these resected tumours after 1 to 31 months of imatinib 
treatment ranged from a <10% to a >90% reduction in 
tumour cellularity. In most cases, these lesions have little 
or no metabolic activity (discussed below) and appear 
on computed tomography (CT) scans as cystic remnants 
of a larger mass, thus suggesting a completely treated 
tumour. Surprisingly, few lesions showed a complete loss 
of tumour cells and overall responses did not correlate 
with the mutational status of KIT or PDGFRA, nor with 
the duration of treatment. However, the residual tumour 
cells in 75% of the lesions were quiescent, as judged by 
an absence of mitoses and a proliferative index of 0%  
by Ki‑67 staining. Interestingly, some tumour cells 
showed transdifferentiation towards a smooth muscle 
phenotype, as evidenced by immunohistochemistry, 
electron microscopy and gene expression analyses. Thus, 
under imatinib suppression, GIST cells may avoid apop-
tosis by exiting the cell cycle and by expressing genes that 
are associated with a differentiated phenotype.

Metabolic changes. Functional imaging of GIST metabo
lism by F18‑fluorodeoxyglucose (F18‑FDG) positron 
emission tomography (PET) carried out within 24 hours 
of the first dose of imatinib showed a significant decrease 
in FDG signal in tumours that had a robust response to 
imatinib143. This in vivo evidence suggests that one of the 
initial effects of kinase inhibition in GISTs is a decrease 
in glycolytic metabolism. On follow-up CT scans, many 
patients have objective tumour responses, but other 
patients have little or no change in overall tumour bulk. 
Only a small minority of patients (3–5%) that are treated 
with imatinib show a complete disappearance of their dis-
ease135,144–146. Regardless, it is now established that patients 
with tumours that remain stable in size have the same 
clinical benefit as patients with tumour shrinkage147.

Responses in experimental systems. The above clini-
cal results are mirrored by cellular models of imatinib- 
sensitive GIST. These KIT-mutant GIST  cell lines 
derived from human tumour specimens typically retain 
substantial sensitivity to the inhibitory effects of imatinib 
on KIT kinase activity, unless they are subjected to  
carcinogen-induced mutagenesis. Imatinib treatment of 
these cell lines induces a strong anti-proliferative effect, 
leading some cells to go undergo apoptosis through a 
mechanism that is dependent on histone H2AX, high-
lighting the requirement of these cells for oncogenic 
KIT signalling, a phenomenon that is often referred to 
as oncogene addiction148,149. However, many cells sim-
ply become quiescent through nuclear p27‑mediated 
exit from the cell cycle, as well as by upregulation of 
autophagy. Even after prolonged exposure, the removal 
of imatinib from the culture system allows the cells to 
resume proliferation141,148.

It is possible, however, to induce apoptosis in qui-
escent GIST cells by using imatinib-synergistic treat-
ments such as ABT‑737 (a BCL‑2 inhibitor) or RNA 
interference directed against the pro-apoptotic BCL‑2 
family member, BIM150,151. In addition, inhibition of 

the autophagy survival pathway by small interfering 
(siRNA) against ATG7 or ATG12, or chloroquine inhibi-
tion of lysosomal acidification, can also induce apoptosis 
in GIST cells that are quiescent during imatinib treat-
ment141. These data suggest that some form of combina-
tion therapy might improve the ability of current TKIs 
to kill GIST cells.

There is also emerging evidence that GIST stem cells 
are inherently resistant to KIT inhibitors (BOX 1). In the 
stem cell population of a mouse model of GIST, IGF1R 
was identified as an alternative regulator of cellular pro-
liferation and survival. KIT mutations seem to confer a 
competitive growth advantage to GIST stem cells over 
non-transformed ICC stem cells, but the growth and sur-
vival of these cells is not completely dependent on KIT 
signalling. Therefore, TKI therapy can control the growth 
and survival of differentiated GIST cells that account for 
most of the cellular composition of clinical GIST lesions, 
but this therapy may not control or eradicate the GIST 
stem cell and progenitor cell pool106.

Resistance to TKI therapy
Primary resistance. Resistance to treatment with KIT 
and PDGFRA inhibitors such as imatinib can be divided 
into two types: primary and secondary. Approximately 
10% of patients with GISTs have primary resistance, 
which is defined as progression within the first 6 months 
of treatment. One of the interesting observations that has 
emerged from the Phase II trials, and which was con-
firmed in the Phase III trials, is that tumour response 
to imatinib correlates with the underlying kinase geno-
type43,51,137,146,152. The probability of primary resistance 
to imatinib for KIT exon 11, KIT exon 9 and wild-type 
GISTs is 5%, 16% and 23%, respectively43.

Despite the poor clinical prognosis of exon 
11‑mutant KIT GISTs in the absence of imatinib treat-
ment, this mutant is highly sensitive to imatinib in vitro, 
with a half-maximal inhibitory concentration (IC50) of 
<100 nM, and exon 9‑mutant KIT and wild-type KIT 
are less sensitive to the drug (with an IC50 of ~1,000 nM 
for each)153. Thus, underdosing of imatinib in patients 
with exon 9 mutations probably accounts for some of the 
apparent resistance137. Correspondingly, patients with a 
tumour harbouring exon 11 mutations have a signifi-
cantly better progression-free and overall survival than 
patients with a tumour that has an exon 9 mutation or 
no detectable KIT or PDGFRA mutation137,146,152. These 
outcomes correlate with the above rates of primary  
resistance from these GIST genotypes.

Based on in vitro data, the most common PDGFRA 
mutation in GISTs, D842V, is strongly resistant to the 
effects of imatinib43,47,154,155. This mutation favours  
the active conformation of the kinase domain and con-
sequently disfavours imatinib binding43,130,156. This has 
been corroborated by clinical results, as patients with 
PDGFRA D842V‑mutant GIST have low response rates 
and very short progression-free survival and overall 
survival during imatinib treatment. There are, however, 
some PDGFRA mutants that are sensitive to imatinib 
in vitro, and patients with these mutations have shown 
durable responses to imatinib.
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Wild-type GISTs include tumours with mutations 
downstream of KIT60,61,157,158, hence these subsets of 
wild-type GISTs might respond better to other tar-
geted agents, such as VEGFR inhibitors for paediatric 
or SDH-mutant GIST, and BRAF or MEK inhibitors for 
BRAF-mutant GIST159.

Secondary resistance. After an initial benefit from 
imatinib, the vast majority of patients eventually develop 
disease progression or secondary resistance. The resist-
ance may manifest in a number ways, including growth 
of a nodule within a pre-existing, clinically quiescent 
lesion, the development of one or more new nodules, or 
widespread expansion of lesions throughout the liver 
or abdominal cavity. It is now established that acquired 
mutations in KIT or PDGFRA account for most second-
ary resistance, and that these mutations occur almost 
exclusively in the same gene and allele as the primary 
oncogenic driver mutation44,160–166.

In a Phase II imatinib study for advanced GISTs, 67% 
of the patients whose tumour showed imatinib resistance 
had a new, or secondary, mutation in KIT. Notably, these 
mutations were common among tumours with a primary 
exon 11 mutation, but were not observed in wild-type 
GIST samples163. Secondary mutations of KIT have not 
been reported in wild-type GISTs, suggesting that KIT 
activation is not the primary driver of tumour growth in 
these cases. Unlike primary mutations that activate KIT, 
which are predominantly in the juxtamembrane regions 
that are encoded by exons 9 and 11, the secondary muta-
tions were concentrated in two regions of the KIT kinase 
domain, which is the domain that is targeted by imatinib 
(FIG. 4). One is the ATP-binding pocket, encoded by exons 
13 and 14, mutations of which directly interfere with 
drug binding. The second is the activation loop, where 
mutations can stabilize KIT in the active conformation 
and thereby hinder drug interaction. Compounding the 
problem, almost all of the secondary exon 17 or 18 KIT 
mutations can also serve as primary activation mutations, 
thus potentially increasing kinase activity. By contrast, 

the secondary ATP-binding pocket mutations do not 
cause intrinsic kinase activation44,142,163,167–169. Drug resist-
ance has also been observed in PDGFRA-mutant GISTs, 
in which the most common is an acquired D842V muta-
tion (activation loop)161,163. However, there have been no 
reliable reports of a secondary KIT mutation arising in a 
GIST with a primary PDGFRA mutation, or vice versa, 
during treatment with imatinib.

Additional studies using more sensitive assays have 
identified secondary mutations in more than 80% of 
drug-resistant GIST lesions169–172. More sobering is that 
there is a considerable heterogeneity of resistance across 
different lesions, and even within different areas of the 
same lesion44,163,168,173. For example, there have been 
reports of up to five different drug resistance mutations 
in different portions of an individual lesion and of up 
to seven different secondary resistance mutations across 
multiple tumours in the same patient169,172. This hetero-
geneity of resistance substantially affects the efficacy 
of salvage TKI therapy after front-line imatinib treat-
ment because the diversity of resistant, minority clones 
precludes the systemic eradication of GIST cells by any 
particular TKI.

Although secondary mutations in KIT are the most 
common cause of acquired resistance to imatinib ther-
apy, there are other potential causes for GIST growth in 
the face of TKI therapy. For example, there can be down-
regulation or loss of KIT and PKCθ expression, which 
is associated with a marked increase in cyclin D1 and 
JUN levels174. Overexpression of IGF1R has been shown 
in GISTs lacking primary KIT or PDGFRA mutations, 
and the inhibition of IGF1R may kill GIST cells inde-
pendently of KIT mutational status65,175. Focal adhesion 
kinase (FAK) may also have a role in the growth and sur-
vival of imatinib-resistant GIST cells176. In addition, an 
imatinib-resistant GIST cell line and two patients with 
KIT-negative GISTs were observed to have overexpres-
sion of the tyrosine kinase AXL, which activates similar 
pathways to KIT177.

Approaches to imatinib-resistant GISTs
Prior to switching therapy in patients with progression 
on imatinib, it is recommended that the dose of imatinib 
is increased. Although the median time to progression 
following dose escalation is only 5 months, a small pro-
portion of all patients with GISTs (20–30%) may have 
prolonged disease control lasting 1 year or more135. 
Presumably, such responses are due to either inadequate 
drug concentrations that are boosted following dose 
escalation and/or the achievement of higher drug con-
centrations that are able to biochemically inhibit some 
secondary mutations that are associated with relative 
rather than absolute imatinib resistance.

Alternative TKIs that target KIT and PDGFRA. 
Unfortunately, most patients will not respond to imatinib 
dose escalation, forcing a switch to an alternative KIT 
and PDGFRA TKI. Such salvage agents include sunitinib, 
sorafenib, vatalanib, masitinib, nilotinib and dasatinib, as 
well as other investigational inhibitors (TABLE 2). Although 
all of these agents are KIT and PDGFRA inhibitors,  

Figure 4 | Secondary mutations in KIT and their drug sensitivities. A comparison of 
the relative in vitro potency of imatinib (IM), sunitinib (SU), sorafenib (SOR) and nilotinib 
(NIL) versus secondary mutations that are associated with resistance to imatinib, as 
assessed by in vitro expression studies153,163,192–194, is shown. JM, juxtamembrane. Figure is 
modified, with permission, from REF. 130 © Natl Acad. Sci. USA (2009).

R E V I E W S

NATURE REVIEWS | CANCER	  ADVANCE ONLINE PUBLICATION | 9

© 2011 Macmillan Publishers Limited. All rights reserved



most of them (in contrast to imatinib) also target 
VEGFR1 and VEFGR2 (REF. 178), hence these agents have 
the potential to decrease tumour growth by the inhibition 
of angiogenesis, as well as by the direct inhibition of KIT 
and PDGFRA. It remains unclear, however, whether the 
additional VEGFR1 and VEGFR2 inhibition contributes 
to disease stabilization that can be seen on treatment of 
imatinib-resistant GIST with salvage agents.

Sunitinib is US Food and Drug Administration 
(FDA)-approved for the treatment of patients with GISTs 
with progression on imatinib179 but biochemical evidence 
suggests that the range of activity of sunitinib against 
secondary imatinib-resistant kinase mutations is subop-
timal. Although KIT ATP-binding pocket mutations are 
extremely sensitive to sunitinib in vitro, the activation 
loop mutations are strongly cross-resistant to sunitinib 
(FIG. 4). Given the approximately equal frequency of 
these different classes of mutations in imatinib-resistant 
lesions and the multiplicity of lesions in a typical patient, 
it is not surprising that mixed responses are common 
during sunitinib therapy146,180. One interesting example 
of serial mutations is a case reported by Nishida et al.180 
in which an imatinib-resistant tumour that had a pri-
mary exon 11 mutation and a secondary exon 13 muta-
tion, acquired (in cis) a tertiary activation loop mutation 
during sunitinib treatment.

Nilotinib is a drug that is structurally similar to 
imatinib and that has limited activity against ATP-
binding pocket mutations and activation loop mutations 
(FIG. 4) and that therefore displays minimal efficacy in 
imatinib-resistant cells. By contrast, in vitro studies sug-
gest that sorafenib has broader activity than nilotinib 
(and sunitinib) against imatinib-resistance mutations 
(FIG. 4). Correspondingly, nilotinib has shown limited 
activity in patients with imatinib-resistant GISTs in 
Phase II clinical trials, whereas a sorafenib analogue 
(regorafenib) provided a remarkable 10‑month median 
progression-free survival, prompting a Phase III trial 
that is currently underway181–183.

Even with newer drugs such as regorafenib, resistance 
develops over time, suggesting that escape from ATP-
competitive inhibitors of KIT and PDGFRA is inevita-
ble. Interestingly, a new class of non-ATP mimetic kinase 
inhibitors (known as switch pocket kinase inhibitors, 
such as DP‑2976) have shown high potency when tested 
in vitro against imatinib-resistant KIT mutants184,185. This 
class of drugs, which suppresses the conformational 
switch to the activated form of KIT, represents a novel 
alternative in the battle against TKI resistance.

Other agents. There is evidence that the PI3K–mTOR 
signalling pathway is one of the most important path-
ways in the growth of GIST cells38, and multiple medica-
tions targeting this pathway are in clinical development. 
Testing these agents in isolation or in combination with 
potent KIT inhibitors is a logical next step in develop-
ing better treatments for drug-resistant GIST. There are 
also ongoing efforts to test HSP90 inhibitors in the treat-
ment of TKI-resistant GISTs (TABLE 2). This class of com-
pounds has been shown to have in vitro activity against 
imatinib-resistant GISTs, but not as much activity in 
wild-type or primary KIT-mutant GISTs39.

Given that multiple secondary mutations frequently 
develop during monotherapy with a kinase inhibitor, 
it is time to consider treatment approaches that use 
multiple agents. In theory, an inhibitor ‘cocktail’ could 
not only prevent secondary resistance from emerging, 
but might also knock out GIST stem cells and thereby 
eradicate the disease. However, it can be challenging 
to combine small-molecule inhibitors for simultane-
ous treatment, as many of these drugs are metabolized 
by shared cytochrome P450 pathways (for example, 
CYP3A4). In particular, combining drugs that inhibit 
or that induce pathways that are responsible for the 
metabolism of a co-administered drug can be difficult, 
if not impossible186,187.

Conclusions and future directions
Achievements in the treatment of GISTs during the past 
decade are the direct result of a growing understand-
ing of their molecular biology. Although the current 
recommendations for assessing the risk of progression 
of a newly diagnosed primary GIST are based on three 
simple parameters: tumour size, tumour location and 
mitotic index (mitoses per 5 mm2)188–190, the accuracy of 
prognoses is likely to be enhanced by incorporating the 
mutational status of GISTs.

Table 2 | New therapies being tested for the treatment of GISTs

Drug Targets Trial information

Tyrosine kinase inhibitors

Imatinib KIT and PDGFRA FDA approved 

Sunitinib KIT, PDGFRA and VEGFR FDA approved 

Nilotinib KIT and PDGFRA Phase III (ClinicalTrials.gov ID: 
NCT00785785)

Dasatanib KIT and PDGFRA Phase II (NCT00568750)

Sorafenib KIT, PDGFRA and VEGFR Phase II (NCT01091207)

Regorafenib KIT, PDGFRA and VEGFR Phase III (NCT01271712)

Vatalanib KIT, PDGFRA and VEGFR Phase II (NCT00117299)

Masitinib (AB1010) KIT and PDGFRA Phase III (NCT00812240)

Pazopanib KIT, PDGFRA and VEGFR Phase II (NCT01323400)

Crenolanib PDGFRA Phase II (NCT01243346)

HSP90 inhibitors

STA-9090 HSP90 Phase II (NCT01039519)

AT-13387 HSP90 Phase II (NCT01294202)

AUY922 HSP90 Phase II (NCT01404650)

Monoclonal antibodies

IMC-3G3 (Olaratumab) PDGFRA Phase II (NCT01316263)

Bevacizumab VEGFR Phase III (NCT00324987)

mTOR inhibitor

Everolimus mTOR Phase II (NCT00510354)

Other

Perifosine AKT (PI3K pathway) Phase II (NCT00455559)

FDA, US Food and Drug Administration; GISTs, gastrointestinal stromal tumours; HSP90, heat 
shock protein 90; PDGFRA, platelet-derived growth factor receptor-α; VEGFR, vascular 
endothelial growth factor receptor. 

R E V I E W S

10 | ADVANCE ONLINE PUBLICATION	  www.nature.com/reviews/cancer

© 2011 Macmillan Publishers Limited. All rights reserved



The high frequency of primary KIT and PDGFRA 
mutations in these tumours makes them sensitive to kinase 
inhibitors such as imatinib, but resistance develops in most 
cases. An immediate research goal is to develop new inhib-
itors that can inhibit secondary activation loop mutations 
that confer cross-resistance to all clinically available TKIs. 
In addition, the development of effective combination  
therapy is likely to improve tumour control. To date, our ther-
apeutic approach to GISTs is focused on gain-of-function 
kinase mutations, but ongoing high-throughput genomic 
studies are likely to identify additional drivers and modifiers 
of GIST biology that can be targeted.

The clinical utility of GIST mutational status is high-
lighted by the finding that KIT exon 9‑mutant GISTs 
require a higher dose of imatinib for optimal disease 

control. In addition, certain molecular subtypes of GISTs 
are less effectively treated by conventional KIT inhibi-
tors, but may be better treated with agents that target the 
underlying biology (for example, SDH-deficient GISTs 
and PDGFRA D842V GISTs). In addition to the use 
of tumour genotype to individualize treatment, future 
improvements in molecular imaging may allow further 
treatment optimization.

In summary, new insights into the origin and pro-
gression of GISTs are setting the stage for further thera-
peutic innovations, with the goal not only of controlling 
disease growth, but also of eliminating all tumour cells 
at the time of initial therapy. Thus, the current chal-
lenge from GISTs is to move from a paradigm of tumour  
suppression to one of true cancer cure.
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