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Abstract— In this paper, we study the maximum edge
augmentation problem in directed Laplacian networks to
improve their robustness while preserving lower bounds on
their strong structural controllability (SSC). Since adding
edges could adversely impact network controllability, the
main objective is to maximally densify a given network by
selectively adding missing edges while ensuring that SSC
of the network does not deteriorate beyond certain levels
specified by the SSC bounds. We consider two widely used
bounds: first is based on the notion of zero forcing (ZF),
and the second relies on the distances between nodes
in a graph. We provide an edge augmentation algorithm
that adds the maximum number of edges in a graph while
preserving the ZF-based bound, and also derive a closed-
form expression for the exact number of edges added to the
graph. Then, we examine the edge augmentation while pre-
serving the distance-based bound and present a random-
ized algorithm that guarantees an α–approximate solution
with high probability. Finally, we numerically evaluate and
compare these edge augmentation solutions.

Index Terms— Edge augmentation, structural controlla-
bility, zero forcing, graph distances.

I. INTRODUCTION

IN a networked multi-agent system, a frequent approach to
improve network connectivity is to systematically increase

interconnections between agents. On the one hand, edge
augmentation is useful for improving network connectivity,
robustness and resilience, but on the other hand, adding edges
could adversely impact network controllability [1]–[4]. In this
paper, we study the problem of maximum edge augmentation
in a directed network of agents with Laplacian dynamics
while preserving the controllability specification. We consider
the network’s strong structural controllability (SSC), which
depends (apart from the set of input nodes) only on the
structure of the underlying graph defined by the edge set of
the graph. To measure how much of the network is strong
structurally controllable with a given set of leader (input)
nodes, the concept of the dimension of strong structurally
controllable subspace (SSCS) is typically used (Section II-
A). The exact computation of the dimension of SSCS is a
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hard task, so various graph-theoretic bounds on the dimension
of SSCS have been proposed in the literature. We utilize two
widely used bounds that are based on the ideas of Zero Forcing
(ZF) [5]–[7] and distances between nodes in graphs [8], [9].
We discuss these bounds in detail in Sections III-A and IV-
A, respectively. Our main objective is to add the maximum
number of edges in a given directed graph while preserving the
lower bound (ZF-based or distance-based) on the dimension
of SSCS. Our contributions are listed below.
1) We present an optimal edge augmentation algorithm for
adding the maximum number of edges in a directed graph
while preserving the ZF-based bound on the dimension of
SSCS. We analyze the algorithm and provide a closed-form
expression for the number of edges added in the graph.
2) We also discuss edge augmentation in graphs that preserves
the distance-based bound on the dimension of SSCS. For a
given node pair (u, v) in a directed graph, we characterize the
optimal solution of the distance preserving edge augmentation
problem in which the objective is to add maximum edges in a
graph without changing the distance from node u to node v.
3) We then provide a randomized algorithm that adds maximal
edges in a directed graph while preserving the distance-
based bound on the dimension of SSCS. We also analyze the
approximation ratio of the algorithm.

We studied the edge augmentation problem while preserving
the distance-based bound on SSC in undirected networks in
[4]. In this paper, we focus on directed networks and consider
both the ZF-based bound and the distance-based bound on the
dimension of SSCS. It is worth emphasizing that the edge aug-
mentation problem differs significantly between directed and
undirected networks. This work is also related to [2], which
only considers directed networks that are strong structurally
controllable and studies the problem of adding edges while
retaining their SSC. Here, we also consider directed networks
that are not necessarily strong structurally controllable. We
note that such a setup is very relevant to the notion of target
controllability in linear networks, where the goal is to control
only a subset of agents (targets) instead of the entire network.
Since controlling the entire network might not be required in
certain applications and could be costly, it is desired to control
only target nodes (for instance, [6], [10], [11]).

II. PRELIMINARIES AND PROBLEM DESCRIPTION

We consider a network of agents modeled by a directed
graph G = (V,E), where V is the set of agents and E is the



set of directed edges. An edge from node u to v is denoted by
(u, v), and u is the in-neighbor, or simply the neighbor of v.
We use the terms node and agent interchangeably. The set of
all neighbors of u, denoted by Nu, is called the neighborhood
of u. The distance from u to v in G, denoted by dG(u, v), is
the number of edges in the shortest directed path from u to
v. Accordingly, dG(u, u) = 0 and dG(u, v) = ∞ if there is
no directed path from u to v. We may ignore the subscript G
when it is clear from the context. The union of G = (V,E)
and G′ = (V ′, E′) is G∪G′ = (V ∪V ′, E∪E′). The edges in a
graph are assigned positive weights by some weight function:

w : E → R+, (1)

where R+ is the set of positive real numbers. Each agent u in
the network has a state xu ∈ R, and the overall state of the
network is x ∈ Rn, where n = |V |. The network dynamics
are given by the following equation:

ẋ = −Lwx+Bu, (2)

where Lw is the weighted Laplacian matrix of G and defined
as Lw = (Deg − Aw). Here, Aw ∈ Rn×n is the weighted
adjacency matrix of G whose uvth entry is

[Aw]u,v =

{
w(u, v) if u 6= v, and (u, v) ∈ E

0 otherwise, (3)

and Deg ∈ Rn×n is the degree matrix, such that [Deg]u,v =∑n
k=1[Aw]u,k, if u = v, and 0 otherwise. In (2), B ∈ Rn×m

is the input matrix, where m is the number of inputs,
which is equal to the number of leader nodes. If V` =
{`1, `2, · · · , `m} ⊆ V is the set of leader nodes, then [B]u,v =
1 if node u is also a leader, and 0 otherwise.

A. Strong Structural Controllability (SSC)
A state x′ ∈ Rn is reachable if there is an input u that

can drive the network in (2) from origin (initial state) to
x′ in a finite amount of time. A network G = (V,E) with
edge weights defined by w and leader set V` is completely
controllable, that is every point in Rn is reachable, if and
only if the following controllability matrix is full rank.

Γ(Lw, V`) =
[
B (−Lw)B (−Lw)2B · · · (−Lw)n−1B

]
.

The rank of Γ(Lw, V`) defines the dimension of the con-
trollable subspace consisting of all the reachable states. A
Laplacian network G = (V,E) with a given set of leader
nodes is called strong structurally controllable (SSC) if it is
completely controllable for any choice of w as in (1). At the
same time, the dimension of strong structurally controllable
subspace (SSCS), denoted by γ(G,V`), is the minimum rank of
the controllablility matrix Γ(Lw, B) over all feasible w (edge
weights), i.e., γ(G,V`) = min

w
rank(Γ(Lw, V`)).

B. Problem Formulation
The main objective in the paper is to identify the maximum

number of missing edges in a given network such that the
dimension of SSCS of the network is preserved even after

adding those edges. Since computing the dimension of SSCS
is computationally challenging, we consider its lower bounds,
including the zero forcing (ZF) and distance-based bounds
(explained in Sections III and IV, respectively). These bounds
are tight and have numerous applications [9]. If δ is a (ZF-
based or distance-based) lower bound on the dimension of
SSCS of the network, then the goal is to maximally densify
the graph while maintaining the dimension of SSCS to be at
least δ. Formally, we state the problem below.

Problem Let G = (V,E) be a directed network of agents
with a leader set V` ⊆ V and the network dynamics as in (2).
Let the dimension of SSCS of the network be at least δ. Then,
find the maximum size edge set E′ such that E ⊆ E′ and the
dimension of SSCS of the network G′ = (V,E′) with the
same set of leaders V` is also at least δ, i.e., δ ≤ γ(G′, V`).

III. ADDING EDGES THROUGH ZERO FORCING BOUND

In this section, we present an edge augmentation algorithm
that optimally adds edges in a network while preserving the
zero forcing-based bound on the dimension of SSCS.

A. Zero Forcing (ZF) Bound for SSC
First, we explain the notion of Zero Forcing process and its

relation to the dimension of SSCS [5]–[7].

Definition (Zero Forcing Process) Consider a directed graph
G = (V,E) such that each node v ∈ V is initially assigned
either a white or black color. The following coloring defines
the zero forcing process: if a black colored node v ∈ V has
exactly one white in-neighbor u, then change the color of u
to black. We say that v infected u.1

Definition (Derived Set) Consider a directed graph G =
(V,E) where V ′ ⊆ V is an initial set of black nodes (also
called the input set), and apply the zero forcing process until
no further color changes are possible. The resulting set of
black nodes is the derived set, denoted by dset(G,V ′) ⊆ V .
For a given set of input nodes, the derived set is unique [12].
Moreover, an input set V ′ is called a zero forcing set (ZFS)
if dset(G,V ′) = V .

The cardinality of the derived set is significant as it provides
a lower bound on the dimension of SSCS, as stated below.

Theorem 3.1: [6] For any network G = (V,E) with
the leaders V` ⊆ V , we have ζ(G,V`) ≤ γ(G,V`), where
ζ(G,V`) = |dset(G,V`)| is the size of the derived set corre-
sponding to the input set V`.

B. Edge Augmentation Algorithm Using ZF
We provide an algorithm to add edges in a directed graph

while ensuring that the derived set of the graph remains
the same after adding edges, thus, preserving the ZF-based
bound on the dimension of SSCS. The proposed algorithm

1Since an edge (u, v) indicates that the state of node u is influenced by the
state of v in our system model (as in (2) and (3)), we use in-neighbors in the
ZF process for consistency. If an edge (u, v) indicates that node u influences
node v’s state, then out-neighbors should be used in the ZF process, as done
in some other works.



is a modification of the ZF process. In summary, we look
for a BLACK node with a single WHITE in-neighbor, add
edges that are incident to the BLACK node and do not change
the size of the derived set, change the WHITE node’s color,
and then repeat the same procedure until there is no BLACK
node with a single WHITE in-neighbor. When this process
concludes, we add any extra edges that can be added while
preserving the derived set. The algorithm is outlined below.
We denote the color of the node v by COLOR(v).

Algorithm 1 ZF-based Edge Augmentation

Given G = (V,E), V` . V` is a leader set.
Initialize G′ = (V,E′), E′ ← E
For all v ∈ V , COLOR(v)← WHITE
For all v ∈ V`, COLOR(v)← BLACK
while ∃u a BLACK node with a single WHITE in-neighbor v do

COLOR(v)← BLACK
For all w ∈ V , with COLOR(w) = BLACK,
set E′ ← E′ ∪ {(w, u)} . Add edges from all BLACK nodes

to u.
end while
For all nodes u not considered in the loop above,
set E′ ← E′ ∪ {(w, u) : w ∈ V } . Add edges to u from all
nodes.
return G′ = (V,E′).

Next, we show that Algorithm 1 is optimal and adds the
maximum number of edges while preserving the size of the
derived set returned by the ZF process.

Proposition 3.2: For a directed graph G = (V,E) with a
leader set V` ⊆ V , let G′ = (V,E′) be a graph returned by
Algorithm 1. Then, dset(G,V`) = dset(G′, V`).

Proof: Let ∆ = dset(G,V`). In G′, all leader nodes
in V` are colored BLACK due to the initial condition of the
ZF process. Consider an arbitrary iteration in the ZF process,
where a BLACK node u colors its only WHITE in-neighbor
v BLACK. Algorithm 1 adds edges in G′ from (currently)
BLACK nodes to u. Since no edge from a currently WHITE
node to u is added, v must be the only WHITE in-neighbor of
u in G′ as well. Thus, the ZF process proceeds by assigning
the BLACK color to node v, which is the only WHITE in-
neighbor of the BLACK node u in G′. This holds for every
iteration in the ZF process. Thus, the ZF process in G and G′

will change the colors of nodes exactly the same way.
We can count the number of edges in the directed graph

G′ = (V,E′) returned by Algorithm 1 in terms of |V |, |V`|
and the size of the derived set.

Proposition 3.3: For a graph G′ = (V,E′) returned by
Algorithm 1 with a leader set V` and derived set ∆,

|E′| ≥ |∆|(|∆|+ 1)

2
− m(m+ 1)

2
+ (m+ n− |∆|)n− n,

where n = |V | and m = |V`|.
Proof: In each iteration of the WHILE loop in Algo-

rithm 1, edges from all BLACK nodes to a fixed node are
added. There are |V`| = m BLACK nodes when the WHILE
loop starts, and this number increases by one in each iteration.
Thus, we add m,m+1, . . . , |∆|−1 edges in the WHILE loop.
Outside the loop, we add n − 1 incoming edges for each of
the remaining n− |∆|+m nodes. Therefore,

|E′| ≥ (n− 1)(n− |∆|+m) +

|∆|−1∑
i=m

i

=
|∆|(|∆|+ 1)

2
− m(m+ 1)

2
+ (m+ n− |∆|)n− n.

Theorem 3.4: Let G = (V,E) be a directed graph with
|V | = n nodes, leader set V`, where |V`| = m, and derived
set ∆ = dset(G,V`). Then, Algorithm 1 returns a graph
G∗ = (V,E∗) where E∗ ⊇ E and |E∗| is maximum while
preserving the size of the derived set ∆. Moreover, the number
of edges in the optimal graph is

|∆|(|∆|+ 1)

2
− m(m+ 1)

2
+ (m+ n− |∆|)n− n.

Proof: Let G∗ = (V,E∗) be a graph satisfying the
conditions stated in the theorem, and G′ = (V,E′) be a graph
returned by Algorithm 1. We will count the number of edges
in G∗ and show that |E∗| is upper bound by the expression in
Proposition 3.3. Clearly |E′| can not be larger than |E∗|, we
will get the desired result.

Since G∗ preserves the size of the derived set, we should
be able to run |∆| − |V`| iterations of the ZF process in
some arbitrary order. When the ZF process starts, there are
m BLACK nodes and (n−m) WHITE nodes. At this point,
there must exist a BLACK node u which has only one in-
coming edge from a WHITE in-neighbor. Therefore, at least
n−m−1 edges of the form (v, u), where v is a WHITE node,
are missing from G∗. In each iteration, the number of WHITE
nodes decreases by exactly one. This means that in the second
iteration, at least (n − m − 2) edges are missing, and these
edges are distinct from previously counted edges because none
of these involve the node u. Similarly, in iteration i, there are
at least (n − m − i) distinct edges missing. We can upper
bound the number of edges in G∗ by subtarting the minimum
number of missing edges in the graph from the maximum
possible n2 − n edges. Thus,

|E∗| ≤ n2 − n−
|∆|−m∑
i=1

(n−m− i) = n2 − n−
n−m−1∑

i=n−m−(|∆|−m)

i

= n2 − n− (n−m− 1)(n−m)

2
+

(n− |∆|)(n− |∆| − 1)

2
.

Using Proposition 3.3, we get |E∗| ≤ |E′|. However, |E∗|
is optimal, which means |E∗| ≥ |E′|. Thus, we deduce that
|E∗| = |E′| and conclude the desired statement.

It can be shown that the time complexity of Algorithm 1 is
Θ(n2). An important observation here is that the number of
edges that one can add to a directed graph while preserving
the derived set is independent of the topology of the given
graph. Note, however, that the size of the derived set in an
arbitrary graph is not independent of the topology.

IV. ADDING EDGES THROUGH DISTANCE-BASED BOUND

In this section, first, we review a tight lower bound on the
dimension SSCS based on the distances of nodes to leaders in
a graph [8]. Second, we present a method to add edges while



preserving distances between specific node pairs, which also
preserves the bound on the dimension of SSCS. The distance-
based bound on the dimension of SSCS is typically better than
the ZF-based bound, especially when the network is not strong
structurally controllable [9].

A. Distance-based Bound for SSC
Given a network with m leaders V` = {`1, · · · , `m}, we

define the distance-to-leaders (DL) vector of each vi ∈ V as

Di =
[
d(vi, `1) d(vi, `2) · · · d(vi, `m)

]T ∈ Zm.

The jth component of Di, denoted by [Di]j , is equal to the
distance of vi to `j . Next, we provide the definition of pseudo-
monotonically increasing sequences of DL vectors.

Definition (Pseudo-monotonically Increasing (PMI)
Sequence) A sequence of distance-to-leaders vectors D
is PMI if for every ith vector in the sequence, denoted by
Di, there exists some π(i) ∈ {1, 2, · · · ,m} such that

[Di]π(i) < [Dj ]π(i), ∀j > i. (4)

In other words, (4) needs to be satisfied for all the subsequent
distance-to-leader vectors Dj appearing after Di in the se-
quence. We say that Di satisfies the PMI property at coordinate
π(i) whenever [Di]π(i) < [Dj ]π(i), ∀j > i.

Figure 1 gives an example of DL vectors. A PMI sequence
of length five, D = [D1,D2,D3,D4,D5], is given below.

D =

[[
0
3

]
,

[
1
0

]
,

[
1
4

]
,

[
2
1

]
,

[
2
2

]]
. (5)

Indices of bold values in (5) are the coordinates, π(i), at
which the DL vectors are satisfying the PMI property.

Fig. 1: A network with two leaders, V` = {v1, v2}, and the
corresponding distance-to-leaders (DL) vectors.

The longest PMI sequence of DL vectors is related to the
dimension of SSCS as stated in the following result.

Theorem 4.1: [8] Consider any network G = (V,E) with
the leaders V` ⊆ V . Let δ(G,V`) be the length of the longest
PMI sequence of distance-to-leaders vectors with at least one
finite entry. Then, δ(G,V`) ≤ γ(G,V`).

Remark 4.2: While the bound in Theorem 4.1 was pre-
sented for connected undirected graphs in [8, Theorem 3.2],
it also holds for any choice of leaders on strongly connected
directed graphs as shown in [8, Remark 3.1]. Such connectivity
properties ensure that all DL vectors have only finite entries.
The bound can be extended easily to all directed graphs
(without requiring strong connectivity) as in Theorem 4.1 by
considering only the DL vectors with at least one finite entry
(i.e., excluding followers with no feasible path to any leader).

B. Adding Edges While Preserving Node Distances
Let G = (V,E) be a graph with a leader set V`, D be a

PMI sequence of length δ, and Ṽ ⊆ V be the set of nodes
whose DL vectors are included in D. If we add edges in G to
obtain a new graph G′ = (V,E′) such that the DL vectors of
nodes in Ṽ remain the same in G′, then D will also be a PMI
sequence of G′ and δ ≤ γ(G′, V`). Therefore, one approach
to augment edges in a graph while preserving a bound on
the dimension of SSCS is to ensure that the distances from
a certain set of nodes to leaders do not change due to edge
additions. In this direction, we first need to study the maximal
edge augmentation in a graph while preserving the distance
from a given node a to another node b.

Definition (Distance Preserving Edge Augmentation (DPEA)
Problem) Given a directed graph G = (V,E) and nodes
a, b ∈ V such that dG(a, b) = k, find a graph G′(V,E′) with
the (same) node set V and an edge set E′ ⊇ E such that
dG′(a, b) = k and |E′| is maximized.

Next, we characterize optimal solutions of the DPEA prob-
lem for a given node pair (a, b) in G. The optimal solution
belongs to a special class of graphs obtained by the union of
clique chains and modified clique chains described below.

Definition (Directed clique chain) A directed graph Ck =
(V,E) is a directed clique chain if the node set V can be
partitioned into sets V0, V1, V2, . . . , Vk, such that there is an
edge from every node in Vi to every node in Vi−1 ∪Vi ∪Vi+1

for all 1 ≤ i ≤ k − 1. Moreover, nodes in each of V0 and Vk
induce cliques.

Definition (Directed modified clique chain) A directed graph
Mk = (V,E) is a directed modified clique chain if the node
set V can be partitioned into sets V0, V1, V2, . . . , Vk, such that
there is an edge from every node in Vi to every node in Vj
for all j ≤ i.

Examples of these graphs are shown in Figure 2.

v5

v1

v2

v3

v4

(a) C3

v1

v2

v3

v4

v5

(b) M3

Fig. 2: (a) Directed clique chain and (b) directed modified
clique chain. The node set V is partitioned into four subsets:
V0 = {v1}, V1 = {v2}, V2 = {v3, v4} and V3 = {v5}.

Theorem 4.3: Let G = (V,E) be a directed graph and
let a, b be two fixed vertices in G with dG(a, b) = k. Then,
an augmented graph G′ = (V,E′), E′ ⊇ E, that preserves
the distance from a to b, and contains the maximum number
of edges is a union of a directed clique chain Ck and a
directed modified clique chain Mk for some partition V0 =
{a}, V1, V2, . . . , Vk = {b} of the node set V .

Proof: Let dG(a, b) = k. Then, it is clear that for all
vertices v ∈ V , dG′(a, v) ≤ k because otherwise we can add
an edge from an arbitrary node at distance ≤ k − 1 to v.



Also, an arbitrary vertex v in G′ at distance i from a, we may
assume that dG′(v, b) = k − i. Clearly, dG′(v, b) can not be
less than k − i, and if it is more, we can add an edge from
v to a vertex w where dG′(w, b) = k − i − 1. Thus, every
vertex in G′ lies on a shortest path from a to b. Let u, v be
two vertices such that dG′(a, u) = i, and dG′(a, v) = j. We
have the following cases:

1) i = j or i = j−1 : an edge from u to v does not change
the distance from a to b. Thus, we may assume that all
such edges exist in G′.

2) i < j − 1: since both of u, v lie on a shortest path
from a to b, we know that dG′(v, b) = k − j. So an
edge u, v will create a path from a to b of distance
≤ j − 2 + 1 + k − j = k − 1. This is a contradiction
to the fact that G′ preserves a, b distance. Therefore, G′

doesn’t contain any edge of the form u, v.
3) i > j: in this case, an edge from u to v doesn’t create

any new shortest paths from a to b. Thus, we may
assume that all such edges exist in G′.

Let us define V0, V1, . . . , Vk a partition of V where Vi = {v ∈
V : dG′(a, v) = i}. It is clear that with this partition, the graph
G is a union of a directed clique chain and a directed modified
clique chain. This provides a complete characterization of
edges in G′ and completes the proof.
From Theorem 4.3, we obtain a simple way to greedily
construct a maximally dense graph that preserves the distance
from node a to node b in a given graph G as follows:

Algorithm 2 Distance Preserving Edge Augmentation(DPEA)

1: Given G = (V,E), a, b ∈ V .
2: Initialize E′ ← E, G′ ← (V,E′)
3: While ∃ (u, v) ∈ V × V with dG′(a, u) ≥ dG′(a, v)− 1
4: E′ ← E′ ∪ {(u, v)}, G′ ← (V,E′).
5: End While
6: Return G′ = (V,E′)

We note that the time complexity of Algorithm 2 is
O(n2 log n), where n = |V |. We can use DPEA to add edges
in a graph G(V,E) with a leader set V` while preserving a
bound on the dimension of SSCS. Let D be a PMI sequence
of length δ and Ṽ ⊆ V be the set of nodes whose DL vectors
are included in D. By solving the DPEA problem for the node
pair (v, l), where v ∈ Ṽ and l ∈ V`, we can obtain edges, say
Ev,l, whose addition to the graph will preserve the distance
from node v to leader l. By solving DPEA problem for all
node pairs (v, l), where v ∈ Ṽ and l ∈ V`, we can obtain
edges that are common in all solutions, that is, Ecomm =
∩v∈Ṽ ,l∈V`Ev,l. By adding these common edges in the given
graph G, we obtain a new graph G′ = (V,E ∪ Ecomm) such
that dG(v, l) = dG′(v, l), ∀v ∈ Ṽ and ∀l ∈ V`. Consequently,
D will also be PMI sequence of G′, which means that the
dimension of SSCS in the augmented graph G′ will also be at
least δ. Thus, by solving multiple instances of DPEA problem,
we can determine edges whose addition to the graph will
preserve the distance-based bound on the dimension of SSCS.

Next, we present an easily implementable randomized edge
augmentation algorithm offering good numerical results.

C. Randomized Edge Augmentation Algorithm
Preserving the Distance-based Bound

If D is a PMI sequence of length δ containing DL vectors
of nodes Ṽ ⊆ V , then it might be possible to add edges in
G to obtain an augmented graph G′ with the same leader set
V`, such that G′ also has a PMI sequence of length δ even if
dG(v, l) 6= dG′(v, l), ∀v ∈ Ṽ , ∀l ∈ V`. In particular, for every
node pair (v, l), where v ∈ Ṽ , l ∈ V`, there exists an integer
εv,l ∈ Z such that if εv,l < dG′(v, l) ≤ dG(v, l), then G′ will
have a PMI sequence consisting of DL vectors of nodes in
Ṽ and having a length δ. We will then provide a randomized
edge augmentation algorithm satisfying conditions to preserve
the distance-based bound on the dimension of SSCS. Finally,
we will analyze the performance of the algorithm.

Let Di be the ith vector in the PMI sequence D of the
given graph G. Then by the definition of PMI sequence, for
each element [Di]j , there is an integer, say εi,j , such that
[Di]j > εi,j . We denote the maximum possible value of εi,j

by ε∗i,j and define ε∗i :=
[
ε∗i,1 ε∗i,2 · · · ε∗i,|V`|

]T
. For

instance, consider the PMI sequence in (5). The vectors ε∗i
corresponding to each Di in the sequence are given below.

ε∗1 =

[
−1
−1

]
, ε∗2 =

[
0
−1

]
, ε∗3 =

[
0
0

]
, ε∗4 =

[
1
0

]
, ε∗5 =

[
1
1

]

We can think of ε∗i,j as a strict lower bound on [Di]j . From
a given PMI sequence of length δ, we can always obtain ε∗i
for all i ∈ {1, 2, · · · , δ}.

Observation 4.4: In a PMI sequence D, if we replace [Di]j
by some integer x, where ε∗i,j < x ≤ [Di]j , then the resulting
sequence will still be a PMI sequence.
For instance, consider the sequence D̄ below, which is ob-
tained from D in (5) by replacing [D1]2 = 3 and [D3]2 = 4
by [D̄1]2 = 1 and [D̄3]2 = 1, respectively. Since ε∗1,2 = −1
and ε∗3,2 = 0, the resulting sequence D̄ is a PMI sequence.

D̄ =

[ [
0
1

]
,

[
1
0

]
,

[
1
1

]
,

[
2
1

]
,

[
2
2

] ]
. (6)

Next, we present a randomized algorithm to add edges
in a graph G with a leader set V`. G has a PMI sequence
D of length δ consisting of DL vectors of nodes Ṽ ⊆ V .
Moreover, let S =

[
s1 s2 · · · sδ

]
, where si is the index

of the node whose DL vector is the ith element (vector) in D.
For instance, D in (5) is a PMI sequence of the graph in
Figure 1. The corresponding Ṽ is {v1, v2, · · · , v5} and S is[

1 2 3 4 5
]
. For every ith vector in the sequence,

the algorithm first computes the corresponding vector ε∗i ,
which basically provides minimum distances that need to
be maintained from node vsi to all leaders during the edge
augmentation. The algorithm then selects a missing edge
randomly and augments it to the graph if its addition does not
violate distance conditions (line 8 in Algorithm 3), otherwise
discards it. This process is repeated until all missing edges
from the original graph are either added to the graph, or
discarded. The details are outlined in Algorithm 3.

We note that the distance-based bound on the dimension of
SSCS is typically better than the ZF-based bound, especially



Algorithm 3 Randomized Algorithm for the Distance-based
Edge Augmentation

1: Given G = (V,E), V` = {`1, · · · , `m}, D, S.
2: Initialize E′ ← E
3: Compute ε∗i,j for each element [Di]j in D.
4: Compute Ec (set of all missing edges).
5: While Ec 6= ∅
6: Randomly select e ∈ Ec, and obtain H = (V,E′ ∪ {e}).
7: Compute dH(vsi , `j) for all j ∈ {1, · · · ,m} and for all i ∈
{1, · · · , |S|}.

8: If (ε∗i,j < dH(vsi , `j) ≤ [Di]j for all j ∈ {1, · · · ,m} and for
all i ∈ {1, · · · , |S|}, then E′ ← E′ ∪ {e}.

9: Update Ec ← Ec \ {e}.
10: End While
11: Return E′

when the graph is not SSC [9]. Thus, edge augmentation
using Algorithm 3 allows to add edges while preserving a
better bound on the dimension of SSCS. Next, we analyze the
performance of Algorithm 3 by the following result.

Proposition 4.5: If we repeat Algorithm 3 a constant c
number of times and then return the best graph among these
iterations, then the returned graph is an α–approximation with
probability at least 1 − e−c(

OPT
β )

α×OPT

, where OPT is the
optimal number of edges and β is the number of edges that
can each be added without changing the PMI.

We omit the proof of this proposition, because it follows
the same arguments given in [4, Proposition 4.2] for a similar
result on the undirected graphs.

V. NUMERICAL EVALUATION

We illustrate and compare the ZF-based and the distance-
based edge augmentation algorithms on random directed net-
works with n = 100 nodes in which edge (i, j) exists with
probability p = 0.075, ∀i 6= j. Each point in plots is an
average of 30 randomly generated instances. In Figure 3(a),
we plot ZF-based and distance-based bounds on the dimension
of SSCS as a function of number of leaders, which are chosen
randomly. The distance-based bound is better than the ZF-
based, especially for a smaller number of leaders (as discussed
in [9]). Figure 3(b) plots the number of edges added in graphs
as a function of number of (randomly selected) leaders. We
note that Algorithms 1 and 3 augment edges while preserving
the ZF-based and distance-based bounds on the dimension
of SSCS, respectively. For the same number of leaders, the
number of edges augmented by Algorithm 1 is greater than
the Algorithm 3 because the controllability bound preserved
by the ZF-based augmentation (Algorithm 1) is smaller than
the distance-based augmentation. The number of edges in the
original graphs are also shown. Figure 3(c) illustrates the result
when we augment edges using Algorithms 1 and 3 while
preserving the same (ZF-based) controllability bound.

VI. CONCLUSION

In this paper, we presented edge augmentation algorithms
to add the maximum number of edges in a network while
preserving the ZF-based and the distance-based bounds on
the dimension of SSCS. When the bound on the dimension

(a) (b) (c)

Fig. 3: (a) Lower bounds on the dimension of SSCS. (b) Num-
ber of edges added by ZF-based and distance-based augmen-
tation algorithms while preserving their respective bounds.
(c) Number of edges added by Algorithms 1 and 3 while
preserving the same (ZF-based) bound.

of SSCS to be preserved is smaller, a large number of edges
can be augmented. Though we considered networks with
Laplacian dynamics (2), both the distance-based and the ZF-
based methods are applicable to more generalized dynamics
in the form ẋ = Px + Bu (e.g., [5], [10]). In particular,
the ZF-based bound holds for any such linear dynamics on a
network where an edge (vi, vj) denotes that the corresponding
entry in the system matrix is non-zero. In comparison, the
distance-based method requires the system matrix P to be in
a class of matrices called the distance-information-preserving
matrices (as explained in [10]), which contain the graph
Laplacian as a special case. We aim to further explore the
relation between network controllability and edge density to
co-optimize robustness and controllability in the future.
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[8] A. Y. Yazıcıoğlu, W. Abbas, and M. Egerstedt, “Graph distances and
controllability of networks,” IEEE Transactions on Automatic Control,
vol. 61, no. 12, pp. 4125–4130, 2016.
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