

"CREATING NEIGHBORHOOD DEVELOPERS PROGRAM"

Revitalizing Communities through Emerging Developers through Quality Training

Course 5: Development and Construction

Saturday, March 25, 2017, 9:00 AM – 11:30 AM Room 313, College of Business, Southern University, Baton Rouge

COURSE OVERVIEW

This course provides information regarding the development and construction planning of a housing project. It will teach the emerging developer how to plan, implement and to achieve milestones in the development phase.

DEVELOPER'S CONSTRUCTION PROCESS

Planning:

Emphasis on the importance of planning.

The design phase of construction –
 Working with architects and engineers

DEVELOPER'S CONSTRUCTION PROCESS

Document Administration:

The Procurement Process for contractors.

Environmental Review Process

When Does Development Occur?

- Economic Feasibility
 - Property Specific Market
 Analysis
 - Regional
 - Neighborhood
 - o Site Selection
- Design Feasibility
 - o Site
 - o Building

When Does Development Occur?

- Financial Feasibility
 - Investment returns on the
 - Property
 - Equity
 - Debt
 - Construction period
 - Permanent loan
- Regulatory/Legal Feasibility
 Timing

A.Market Analysis

- 1.Purpose
 - a. to identify needs in the real property market
 - b. to help estimate the market value of the completed property
 - c. to provide documentation for the financing decision
 - i. to support loan application
 - ii. to attract equity investors

A.Market Analysis

- 2.Steps
 - a. Define the relevant (sub-)market boundaries
 - i. primary market
 - ii. secondary market
 - b. Market characteristics
 - i. size of market
 - ii. market share
 - iii. absorption rates
 - c. Characteristics of demanders
 - i. income
 - ii. preferences

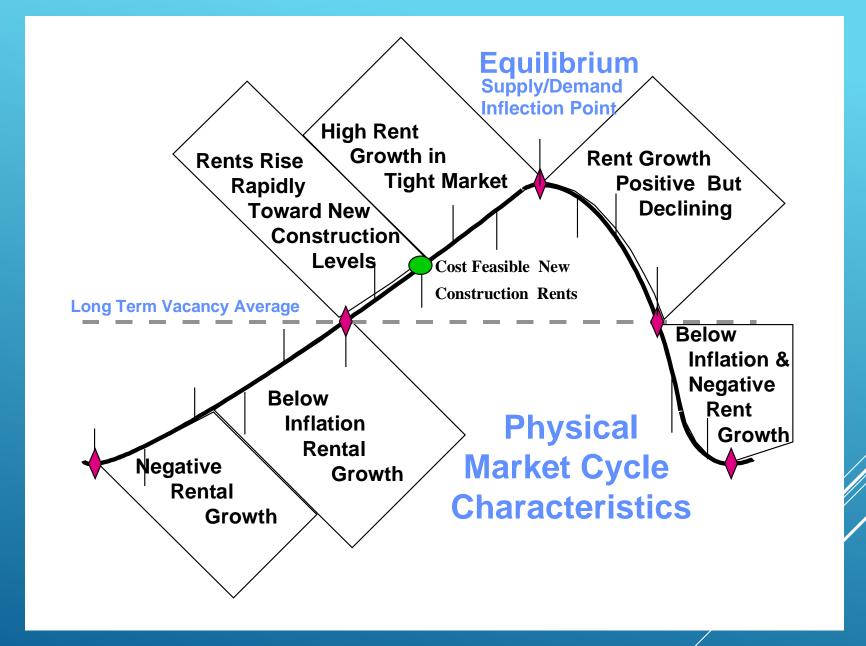
A. Market Analysis

- 2. Steps
 - d.Product supply
 - i. Existing supply
 - Occupancy/vacancy rates
 - ii. The pipeline
 - New construction
 - Conversions from alternative uses
 - Planned/no permit issued
 - e. Barriers to entry

A.Market Analysis

- 2. Steps
- f. Location of competing products
- g. Current market conditions
 - i. rent levels
 - ii. vacancy rates
 - by product type
 - by amenity package

2.Steps


- h. Market projections
 - i. future demand
 - ii. future supply
 - iii. identify development opportunities
 - product type
 - amenity package
 - •consumer profile
 - iv. estimate absorption
 - v. estimate capture rates

A. Market Analysis

- 2. Steps
 - i. Real estate cycles
 - Market rents do not justify new construction
 - Excess supply
 - High vacancy rates
 - Rents and values declining
 - No new construction
 - Economic growth increases demand
 - Vacancy rates decline
 - ORents and then values increase
 - New construction occurs when expected benefits exceed (all) expected development costs

A. Market Analysis

- 2. Steps
 - i. Real estate cycles
 - Market equilibrium
 - Market rents and vacancy rates stable
 - Economic growth slower than expected
 - OPipeline adds to existing supply
 - Vacancy rates increase
 - ORents then values decline
 - Cycle repeats
 - OCycle time varies with property type
 - MF: 18 months
 - Large Class A Office: 3 years

- B. Site Selection
 - 1. Highest and Best Use
 - 2.Location and

Neighborhood

Amenities

- a. Proximity
- b. Accessibility
- c. Visibility
- 3. Environmental Issues
 - a. soil contamination

- **B. Site Selection**
 - 4. Size and Shape
 - 5. Site conditions
 - a. slope & topography
 - b. geology/drainage/soil conditions
 - c. vegetation
- 6. Easements and covenants

B. Site Selection

- 7. Utilities
 - a. electric
 - b. water
 - c. gas
 - d. telephone
 - e. cable
- 8. Traffic patterns
- 9. Neighboring uses

- C. Maps and Surveys
 - 1. Topographic survey
 - a. property contours
 - b. springs/marshes/wetlands
 - c. soil types
 - d. vegetation
 - 2.Site map
 - 3.Boundary survey
 - 4. Utilities map

D. Design Feasibility

1. Site

a. Footprint

b.Parking

c.Landscaping

d.Other amenities

- D. Design Feasibility
 - 2. Building configuration
 - a. External Design

Features

- i. Structure
- ii. Shell components
- iii. Roof systems
- iv. Signage

- D. Design Feasibility
 - 2. Building configuration
 - b.Interior Design Characteristics
 - i. tenant space
 - ii. structural flexibility
 - iii. ceiling height
 - iv. floor covering
 - v. utilities
 - vi. mechanical and electrical

E. Financial Feasibility

- 1. Measure investment returns
 - a. Project amount and timing of benefits
 - b.Project amount and timing of costs
 - c. Required returns
 - i. Yield on property
 - ii. Yield on equity
 - iii. Yield on cost: spread over cap rates and loan constants

E. Financial Feasibility

- 2. Capital Structure
 - a. Debt
 - b. Equity
- 3. Types of loans
 - a. Construction
 - b. Permanent
 - c. Miniperm—construction loanw/option to extend for a shortperiod
 - d. Standby commitment

- E. Financial Feasibility
- 4. Completed Project NPV
 - a. rental revenues: leases
 - b. non-rental income
 - c. expenses
 - i. vacancy/collection/loss to leases
 - ii. fixed expenses
 - iii. variable expenses
 - iv. reserves for replacements

- E. Financial Feasibility
 - 5. Construction Period NPV
 - a.land costs
 - b.site development costs
 - i. grading
 - ii. storm/water drainage
 - iii. sanitary sewer
 - iv. streets/curbs/walks
 - v. utilities

- E. Financial Feasibility
 - 5. Construction Period NPV
 - c. Building costs
 - i. hard costs
 - shell structure
 - HVAC
 - Electrical
 - Plumbing
 - Project management fees
 - Finish out
 - Signage

- E. Financial Feasibility
 - 5. Construction Period NPV
 - c. Building costs
 - ii. soft costs
 - Architect
 - Fees and permits
 - Legal
 - Construction period interest
 - Construction loan fees
 - Permanent loan fees
 - Leasing commissions
 - Direct overhead
 - Indirect overhead

Construction Period or Interim Loan

- Variable Rate: prime + 300 basis points
- Developer obtains line of credit and draws funds as work is completed
- Draws must be approved by lender
- Construction period interest and loan fees *accrue* during the construction period and are paid with the proceeds of the sale of the property or with the permanent financing

Construction Period Loan Example

You want a construction loan to develop a \$1.75M garden apartment complex. The property will take 12 months to build. The expected non-loan development costs appear in the first column of the table on the following slide. The construction loan has a 2% fee. The fee is computed on the total amount borrowed. Interest is quoted as an annual rate at prime plus 300 basis points. The prime rate is expected to be:

6% over the first three months of the construction period;

7% over months 4-6 of the construction period;

8% over months 7-9 of the construction period; and

9% over months 10-12 of the construction period.

The interest on the construction loan and the loan fee are not paid but *accrue* interest over the development period. Compute monthly interest, total draws, the loan fee, and the effective borrowing cost.

Construction Loan Analysis: Borrowing Cost Fee				13. 351% 2. 000%			
	Non-Interest	Annual	Interest		Cumul at i ve	Cash	ļ
Mont h	Costs	Rat e	& Fees	Draw	Loan	Fl ow	ļ
0	36, 000	#N/ A	26, 943	62, 943	62, 943	36, 000	ł
1	25, 000	9. 00%	472	25, 472	88, 415	25, 000	i
2	71, 000	9. 00%	663	71, 663	160, 078	71,000	i
3	125, 000	9. 00%	1, 201	126, 201	286, 279	125, 000	İ
4	174, 600	10.00%	2, 386	176, 986	463, 265	174, 600	İ
5	200, 000	10.00%	3, 861	203, 861	667, 125	200, 000	İ
6	160, 000	10.00%	5, 559	165, 559	832, 684	160,000	1
7	175, 000	11. 00%	7, 633	182, 633	1, 015, 317	175, 000	
8	95, 000	11. 00%	9, 307	104, 307	1, 119, 625	95, 000	1
9	93, 000	11. 00%	10, 263	103, 263	1, 222, 888	93, 000	
10	50, 000	12.00%	12, 229	62, 229	1, 285, 117	50,000	
11	21, 000	12.00%	12, 851	33, 851	1, 318, 968	21, 000	
12	15, 000	12.00%	13, 190	28, 190	1, 347, 157	15, 000//	
Tot al s	1, 240, 600		106. 557	1, 347, 157	1, 347, 157	(1, 347, 157)	

E. Financial Feasibility

6. Property NPV: Amortization/ Depreciation Periods

<u>Cost</u> <u>Depreciation/Amortization Period</u>

Capital Improvements 27.5 years for residential 39.0 years for commercial

Tenant Improvements 7 years

Construction Loan Fees Construction period (1 year)

Permanent Loan Fees Loan Term

Leasing Commissions Typical lease term (7 years)

Interim Lender Closing Requirements

- 1. Project information: final drawings, cost estimates, site plan
- 2. Property market and borrower financial information
- 3. Government and regulator information
- 4. Legal documentation
 - a. approval for permanent loan
 - b. all documentation for general contractors, architects, planners, subcontractors; evidence of bonding;

contractor

agreements to perform for construction lender;

closing

documents

c. inventory of personal property that secures interim

loan

- d. executed leases
- e. default provisions

Source: Brueggeman and Fisher, 11th Ed., page 440-441

Permanent Lender Closing Requirements

- 1. Market and financial data
 - a. Financial status of borrower
- b. List of tenants, lease contracts, estoppel certificates
 - c. Residual construction cost obligations
- 2. Project information
 - a. Estimate of market value
 - b. Building survey
- 3. Government and regulatory information
 - a. Property taxes
 - b. Certificate of occupancy
 - c. Other permits (e.g. fire, safety, health),

Permanent Lender Closing Requirements

- 4. Legal documentation
 - a. delivery of construction loan mortgage
 - b. architect's certificate of completion
 - c. insurance policy endorsements (casualty,

hazard)

- d. title insurance policy
- e. status of ground rents (if applicable)
- f. an exculpation agreement that relieves the

borrower

of personal liability (if applicable)

g. lien releases from construction

subcontractors

Source: Brueggeman and Fisher, 11th Ed., p. 441

F. Regulatory Issues

1.Zoning

a. permitted uses

b.density

c.floor/area ratio (FAR)

d.height restrictions

e. size requirements

D.Regulatory Issues

- 2.Platting
 - a. street width
 - b. lot size
 - c. setbacks
 - d. turning radius
- 3. Public Approvals
- 4. Building Codes
- 5. Fire Codes

Go/No go decision points

- Land option (option to purchase land)
- Government approvals
 - Site plan approvals
 - Building plan approvals
- Lender commitments
- Equity investor commitments

REAL ESTATE DEVELOPMENT ECONOMIC FEASIBILITY

- a. Professional Real Estate

 Development: The ULI Guide to the
 Business, by Richard B. Peiser with
 Dean Schwanke. The Urban Land
 Institute. 1992.
- b. Value by Design: Landscape, Site Planning, and Amenities, by Lloyd W. Bookout with Michael D. Beyard and Steven W. Fader. The Urban Land Institute. 1994
- c. ABC of Architecure, by James F.
 O'Gorman with drawings by Dennis

REAL ESTATE DEVELOPMENT ECONOMIC FEASIBILITY

CONSTRUCTION MANAGEMENT

- Owner owns project upon completion of construction
 - Private owner owns land and pays for construction of facility
 - Able to accept/reject bids based on many parameters including cost, quality, reputation
 - Public owner is government agency, public pays for facility
 - Very strict method of soliciting bids, accepting bids, writing specs

OWNERS/PLAYERS

- Design Professionals
 - Architects, Engineers, design professionals
 - Assist owner in developing plan for facility
 - Make sure it is structurally sound
 - Make sure all systems, utilities, facilities are integrated into design
 - Responsible for applying for and obtaining all necessary permits

TEAM PLAYERS

- Contractor
- Contracts to build project to the specs set forth in the contract for a contracted price
 - Contract will subcontract to specialty firms
 - Subcontractors may subcontract further
- Project Management
 - Acts as owners agent and works with designers and contractors to insure high quality and lower cost

PM IS THE KEY TO SUCCESS!

- Has following characteristics
 - Defined goal or objective
 - Specific tasks not routinely performed
 - Defined beginning and end
 - Defined deliverables
 - Resources being consumed

CONSTRUCTION PROJECT

- To build a project on time and at cost need a good map to get thru project
 - Steps
 - Establish project plan/objectives
 - Do research into materials and design
 - Design, estimate and schedule
 - Present design to owner
 - Analyze project for viability
 - Adjust project plans as needed and go back to beginning

ROAD MAP TO SUCCESS- FINISH LINE

- As the project progresses more information is known and needs to be considered
- Good early decisions provide significant benefits. Ability to influence the project costs decreases as the project is built

CHANGE ORDERS (RFI) EMAIL AND DOCUMENTATION

- Residential
 - Condos, town houses, apartments, single family homes
 - Owners may be development companies or individual owners
 - ▶ Fairly low tech
- Building Construction Projects
 - Office buildings, large apartment buildings, shopping malls, theaters
 - Dependent on economy
 - Designed by architects with engineering support

CONSTRUCTION PROJECT CATEGORIES

- Heavy Construction
 - Roads, bridges, dams, tunnels, water & waste water systems
 - Designed by engineers
 - Usually public projects
- ▶ Industrial Projects
 - Steel mills, petroleum refineries, chemical processing plants, auto production facilities
 - Specialized design and construction
 - Limited companies do this work

CONSTRUCTION PROJECT CATEGORIES

- Conceptual Planning
 - Owner makes decisions on designers, site, and project cost and schedule
 - Iterative process add in and delete items to get desired final product
 - ▶ Need to gather as much info as possible
 - Rehab work uncovers many unknowns
 - Permits are started and applications made
 - ► Estimate +/- 25%, Schedule +/- month

- Schematic Design
 - Actual design begins
 - Looking at method and materials to use
 - Value engineering
 - Begin setting up work packages
 - ▶ Id long lead time items
 - Preliminary estimate (+/- 10%) and schedule are completed

- Design Development
 - ▶ Final design phase
 - Make system choices based on cost and schedule
 - Prequalification process for bidders
 - Contract documents and determination of work packages – Woodrow Wilson Bridge
 - Fair cost estimate and schedule developed

- **▶** Construction
 - ▶ Mobilization-
 - Milestones- what milestones do I need make for payment? (lead time, order, accounts)
 - Substantial completion-
 - Punchlist items- (attention to detail and laser focus)
 - Project Close out- the child is born!

- Bid depends on amount of risk contractor is willing to take
- Risks
 - ▶ Project Site Neighbors, Regulatory environment, Subsurface conditions, Economic climate
 - Project complexity, planned technologies, degree of finishes,
 materials, mechanical/electrical systems
 - Process Project funding, timetable, preconstruction info, project unknowns
 - ➤ Owner Org sophistication, org structure, decision making
- Contingency takes some of risk out

PROJECT RISK & ABILITY TO PARTNER

- Fixed Price (Lump Sum)
 - Do work for a set price
 - Must have an accurate estimate for bid
 - Provides owner and contractor with a number
 - Risk to contractor is great, to owner minimal
- ▶ Unit Price
 - Price is per unit of each item. Price includes all O&P
 - Designer estimates quantities

CONTRACT TYPES

Cost Plus Fee

- Owner reimburses actual costs plus a fee to cover O&P
- Good when scope of project is unclear
- **GMP**
 - Owner knows max price for financing
 - Clause provides a split of money if contract comes in under budget

CONTRACT TYPES