Evidence-Based Instructional Practices for Mathematics

Secondary Leads

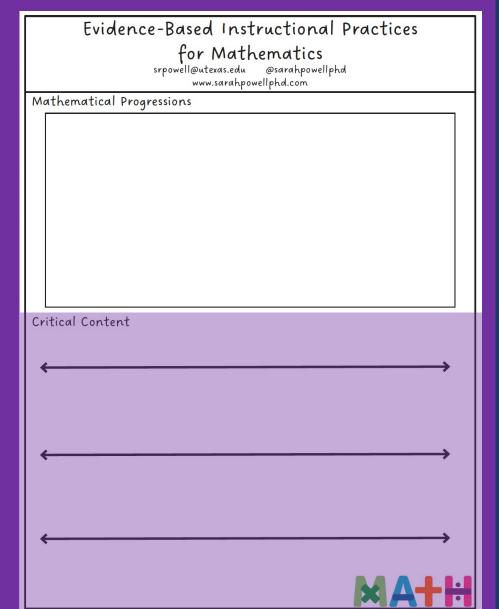
Sarah R. Powell, Ph.D.

Associate Professor The University of Texas at Austin

Introduce yourself.

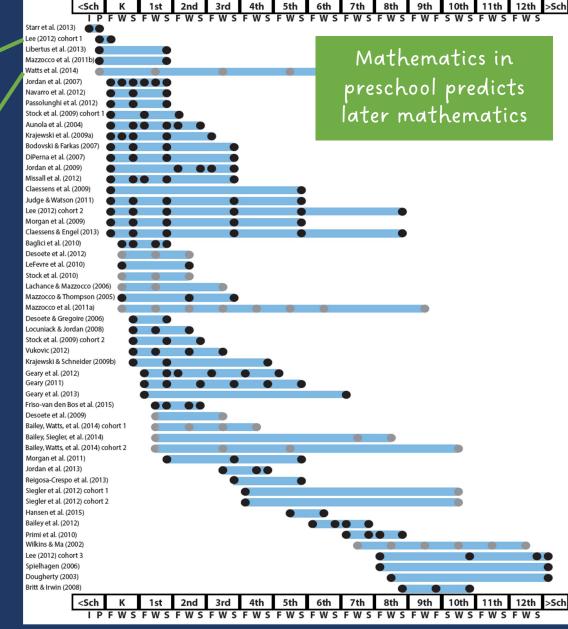
Describe your strengths in supporting mathematics.

Describe an opportunity for growth.



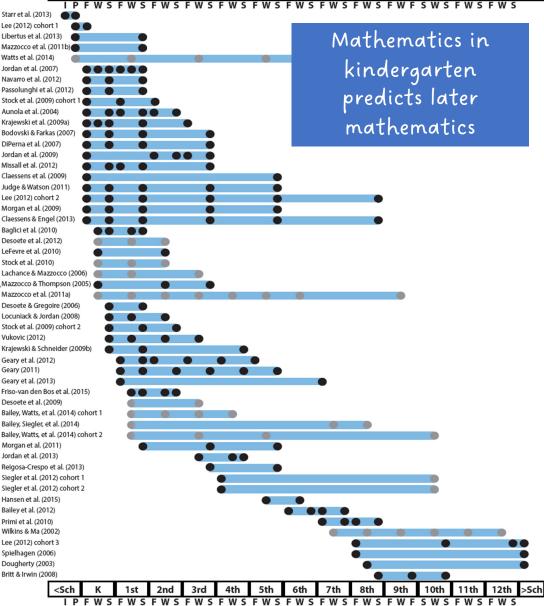
October 5 th ,	IN PERSON with Leads
2023	Evidence-Based Instructional Practices for Mathematics
January 3rd,	VIRTUAL with Teachers
2024	Evidence-Based Instructional Practices for Mathematics
	Sarah Powell (Grades K-5)
	Brad Witzel (Grades 6-12)
March 11 th ,	IN PERSON with Leads
2024	Sarah Powell (Grades K-5)
	Brad Witzel (Grades 6-12)

Mathematical Progressions



Broad math in prek predicted K broad math

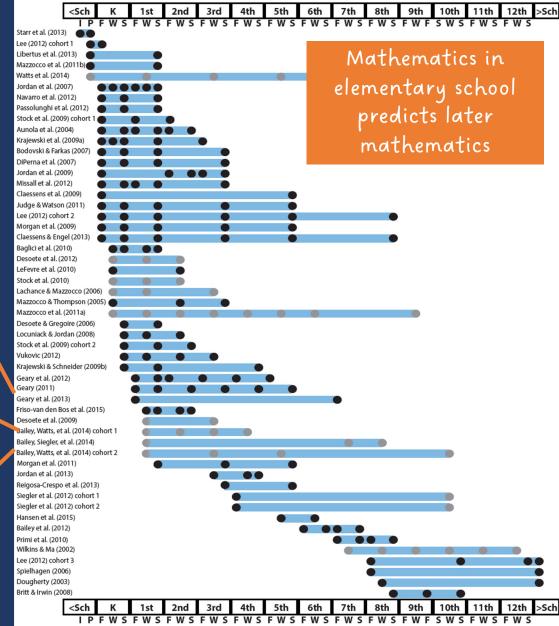
Broad math in prek predicted grade 10 broad math


XA++

Counting in K predicted grade 1 broad math

Broad math in K predicted grade 8 broad math

K math accurately predicted math performance below 10th percentile in grades 2 and 3 with 84% correct classification

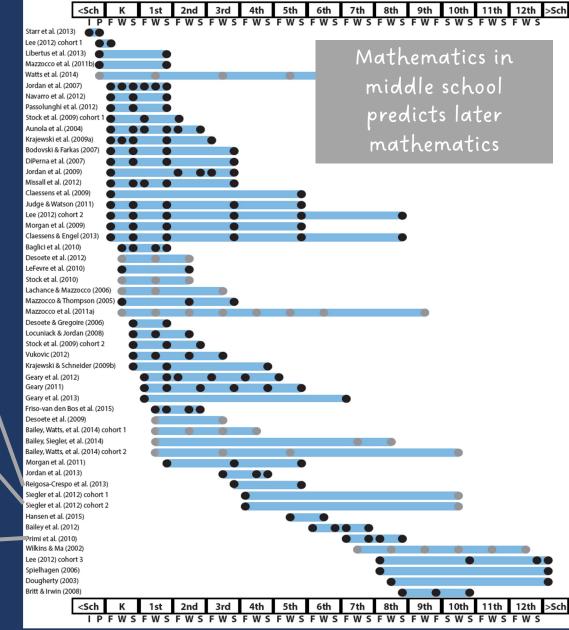

XA+H

nttp://www.greatertexasfoundation.org/trajectories-of-mathematics-performance/

Addition influenced arithmetic with increasing importance from grades 1 to 5

Grade 1 arithmetic predicted arithmetic at grades 2, 3, and 4

Grade 1 broad math predicted broad math at grades 3, 5, and 10

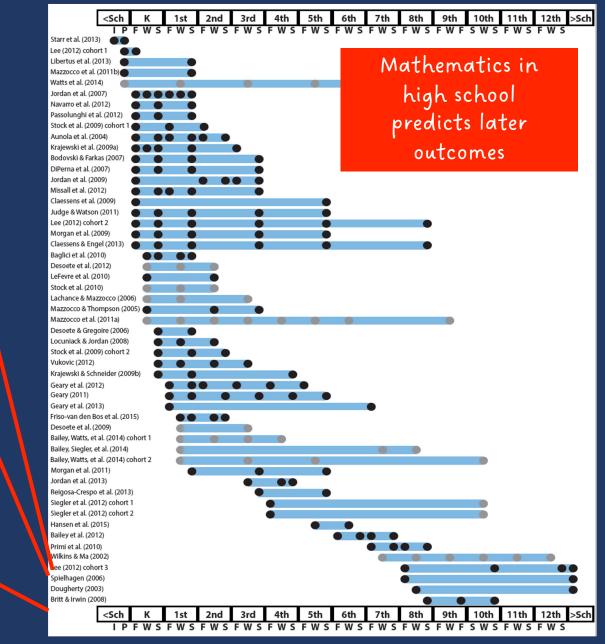


nttp://www.greatertexasfoundation.org/trajectories-of-mathematics-performance/ >Sch

Counting and comparison in grades 2 or 4 predicted broad math 1 year later

Fractions at 10-12 years old predicted broad math 5 years later

Broad math in grade 7 predicted broad math in grade 8



nttp://www.greatertexasfoundation.org/trajectories-of-mathematics-performance/

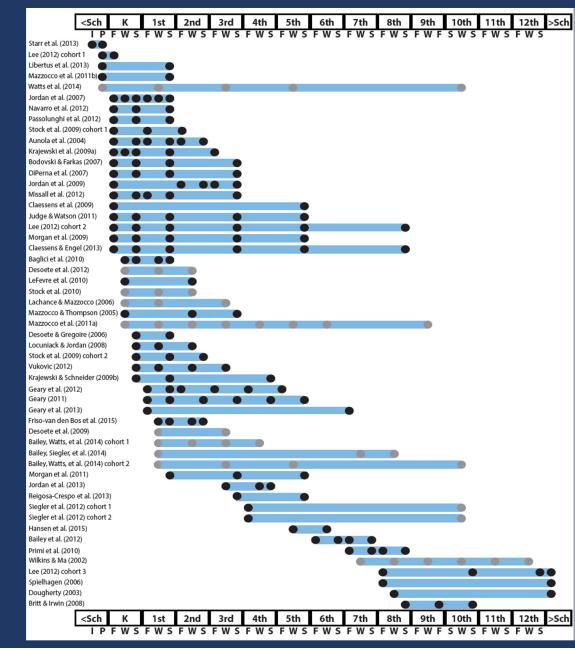
Broad math in grade 8 predicted completion of 4-year college degree

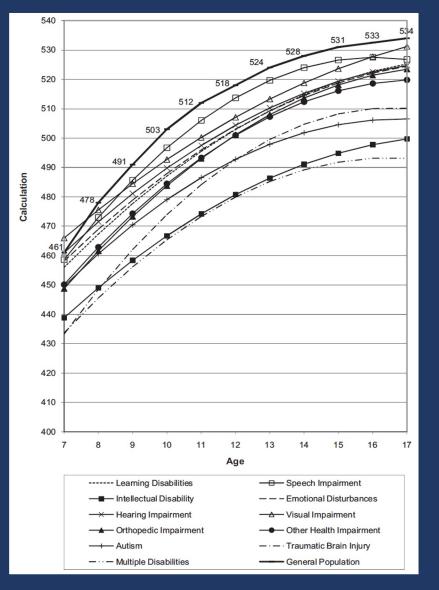
Students who took algebra in grades 8 took more advanced math courses and enrolled in 4-year colleges more often than students who took algebra in grade 9

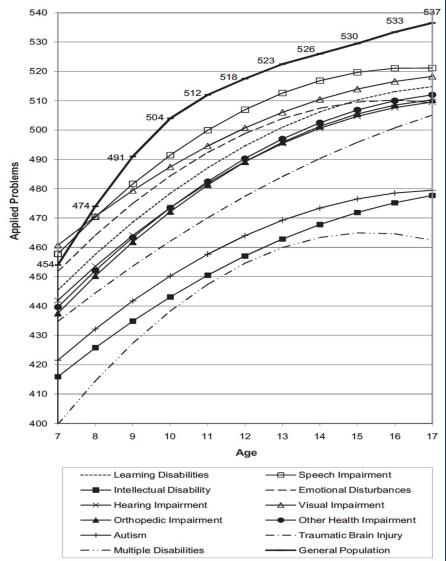
Numeracy measured in adolescence impacted hourly earnings 7 to 15 years later

XA++

nttp://www.greatertexasfoundation.org/trajectories-of-mathematics-performance/


Mathematics in preschool predicts later mathematics


Mathematics in kindergarten predicts later mathematics


Mathematics in elementary school predicts later mathematics

Mathematics in middle school predicts later mathematics

Mathematics in high school predicts later outcomes

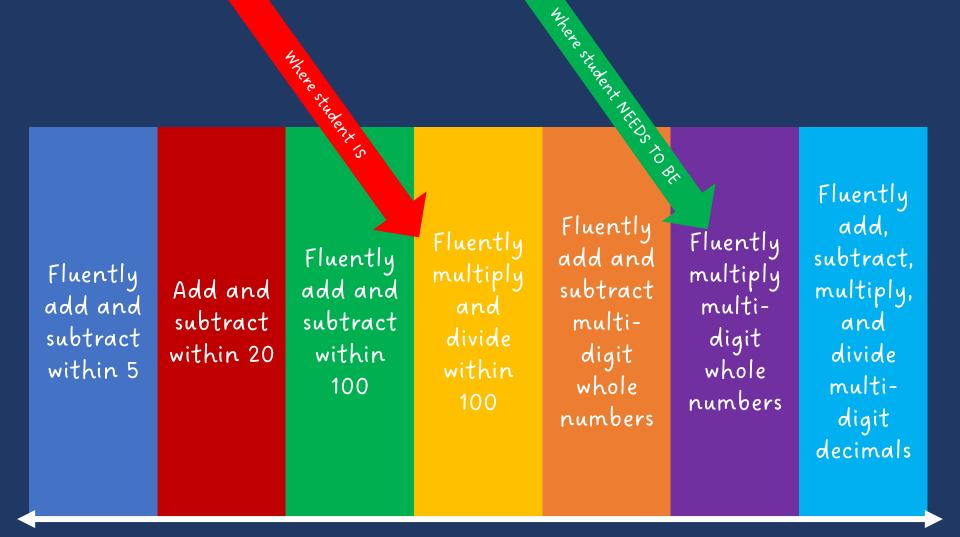
Problem Solving

Computation

XA+H

Provide examples of how you see earlier math skills relating to later math skills.

Evidence-Based Instructional Practice	es
for Mathematics srpowell@utexas.edu @sarahpowellphd	
srpowell@utexas.edu @sarahpowellphd	
www.sarahpowellphd.com	
Mathematical Progressions	
Critical Content	
	•
<	\longrightarrow
<	\rightarrow
<u> </u>	 →
	•



continuum of mathematics learning

Fluently add and subtract multi- digit whole numbers	Fluently multiply and divide within 100	Fluently multiply multi- digit whole numbers	Fluently add and subtract within 100 using strategies	Fluently add and subtract within 5	Add and subtract within 20	Fluently add, subtract, multiply, and divide multi- digit decimals

Recognize that in a multi-digit number, a digit in one place represents 10 times as much as it represents in the place to its right and 1/10 of what it represents in the place to its left.

> Understand that the two digits of a two-digit number represent amounts of tens and ones

Understand that the three digits of a threedigit number represent amounts of hundreds, tens, and ones

Compose and decompose numbers from 11 to 19 into ten ones and some further ones

Recognize that in a multidigit number, a digit in one place represents ten times what it represents in the place to its right

Use place value understanding to round whole numbers to the nearest 10 or 100

Compose and decompose numbers from 11 to 19 into ten ones and some further ones... Understand that the two digits of a two-digit number represent amounts of tens and ones.

Mhere student 15

Understand that the three digits of a three-digit number represent amounts of hundreds, tens, and ones.

Use place value understanding to round whole numbers to the nearest 10 or 100. Recognize that in a multi-digit number, a digit in one place represents ten times what it represents in the place to its right...

Where student WEDS TO BE

Recognize that in a multi-digit number, a digit in one place represents 10 times as much as it represents in the place to its right and 1/10 of what it represents in the place to its left.

Solve real-world and math problems involving the four operations with rational numbers.

Solve word problems involving addition and subtraction of fractions referring to the same whole, including cases of unlike denominators

Solve word problems that call for addition of three whole numbers whose sum is less than or equal to 20

> Use addition and subtraction within 100 to solve one- and two-step word problems

Solve addition and subtraction word problems, and add and subtract

within 10

Solve multi-step word problems posed with whole numbers and having whole-number answers using the four operations

Use

multiplication

and division

within 100 to

solve word

problems

Solve realworld and math problems leading to two linear equations in two variables

Interpret and

compute quotients

of fractions, and

solve word

problems involving

division of

fractions by

fractions...

Solve multi-Solve word Solve realstep word solve addition problems that world and world and Use problems and call for multiplication posed with subtraction problems addition of and division whole numbers word problems, three whole involving the within 100 to and having and add and numbers whose four solve word whole-number sum is less subtract within operations problems answers using than or equal with rational the four numbers to 20 operations

Use addition and subtraction within 100 to solve oneand two-step word problems

Where student 15

Use multiplication and division within 100 to solve word problems

ere student NEEDS 10 BE

Solve multistep word problems posed with whole numbers and having wholenumber answers using the four operations

additio value ai operat

Understand that the two digits of a tworepresent tens and ones.

Mhere student 15

Apply properties of operations as divide....

multiply and as the and division ...

Use

olication

division

n 100 to

e word

olems...

Where student NEEDS to Br four-d tand three ofa digit ber ent based on ts of s, tens, properti nes. and/or

relation

and divi

lti-step. oblems with multiply multiumbers digit whole aving .umber using our ions...

An important subset of the major work in grades K–8 is the progression that leads toward middle school algebra.

К	1	2	3	4	5	6	7	8
Know number names and the count sequence Count to tell the number of objects Compare numbers Understand addition as putting together and adding to, and understand subtraction as taking apart and taking from Work with numbers 11- 19 to gain foundations for place value	Represent and solve problems involving addition and subtraction Understand and apply properties of operations and the relationship between addition and subtraction Add and subtract within 20 Work with addition and subtraction equations Extend the counting sequence Understand place value Use place value understanding and properties of operations to add and subtract Measure lengths indirectly and by iterating length units	Represent and solve problems involving addition and subtraction Add and subtract within 20 Understand place value Use place value understanding and properties of operations to add and subtract Measure and estimate lengths in standard units Relate addition and subtraction to length	Represent & solve problems involving multiplication and division Understand properties of multiplication and the relationship between multiplication and division Multiply & divide within 100 Solve problems involving the four operations, and identify & explain patterns in arithmetic Develop understanding of fractions as numbers Solve problems involving measurement and estimation of intervals of time, liquid volumes, & masses of objects Geometric measurement: understand concepts of area and relate area to multiplication and to addition	Use the four operations with whole numbers to solve problems Generalize place value understanding for multi-digit whole numbers Use place value understanding and properties of operations to perform multidigit arithmetic Extend understanding of fraction equivalence and ordering Build fractions from unit fractions by applying and extending previous understandings of operations Understand decimal notation for fractions, and compare decimal fractions	Understand the place value system Perform operations with multi-digit whole numbers and decimals to hundredths Use equivalent fractions as a strategy to add and subtract fractions Apply and extend previous understandings of multiplication and division to multiply and divide fractions Geometric measurement: understand concepts of volume and relate volume to multiplication and to addition Graph points in the coordinate plane to solve real-world and mathematical problems*	 Apply and extend previous understandings of multiplication and division to divide fractions by fractions Apply and extend previous understandings of numbers to the system of rational numbers Understand ratio concepts and use ratio reasoning to solve problems Apply and extend previous understandings of arithmetic to algebraic expressions Reason about and solve one-variable equations and inequalities Represent and analyze quantitative relationships between dependent variables 	Apply and extend previous understanding of operations with fractions to add, subtract, multiply, and divide rational numbers Analyze proportional relationships and use them to solve real-world and mathematical problems Use properties of operations to generate equivalent expressions Solve real-life and mathematical problems using numerical and algebraic expressions and equations	Work with radical and integer exponents Understand the connections between proportional relationships, lines, and linear equations and pairs of simultaneous linear equations Define, evaluate, and compare functions Use functions to model relationships between quantities

* Indicates a cluster that is well thought of as a part of a student's progress to algebra, but that is currently not designated as major by the assessment consortia in their draft materials. Apart from the one asterisked exception, the clusters listed here are a subset of those designated as major in the assessment consortia's draft documents.

** Depends on similarity ideas from geometry to show that slope can be defined and then used to show that a linear equation has a graph which is a straight line and conversely.

https://achievethecore.org/category/774/mathematics-focus-by-grade-level

Table A.3. Grades 6–8 Curriculum Focal Points and Connections Compared with the Expectations of the Content Standards in *Principles and Standards for School Mathematics*

Curriculum Focal Points and Connections

Grade 6 Curriculum Focal Points

Number and Operations: Developing an understanding of and fluency with multiplication and division of fractions and decimals

Students use the meanings of fractions, multiplication and division, and the inverse relationship between multiplication and division to make sense of procedures for multiplying and dividing fractions and explain why they work. They use the relationship between decimals and fractions, as well as the relationship between finite decimals and whole numbers (i.e., a finite decimal multiplied by an appropriate power of 10 is a whole number), to understand and explain the procedures for multiplying and dividing decimals. Students use common procedures to multiply and divide fractions and decimals efficiently and accurately. They multiply and divide fractions and decimals to solve problems, including multistep problems and problems involving measurement.

Number and Operations: Connecting ratio and rate to multiplication and division

Students use simple reasoning about multiplication and division to solve ratio and rate problems (e.g., "If 5 items cost \$3.75 and all items are the same price, then I can find the cost of 12 items by first dividing \$3.75 by 5 to find out how much one item costs and then multiplying the cost of a single item by 12"). By viewing equivalent ratios and rates as deriving from, and extending, pairs of rows (or columns) in the multiplication table, and by analyzing simple drawings that indicate the relative sizes of quantities, students extend whole number multiplication and division to ratios and rates. Thus, they expand the repertoire of problems that they can solve by using multiplication and division, and they build on their understanding of fractions to understand ratios. Students solve a wide variety of problems involving ratios and rates.

Algebra: Writing, interpreting, and using mathematical expressions and equations

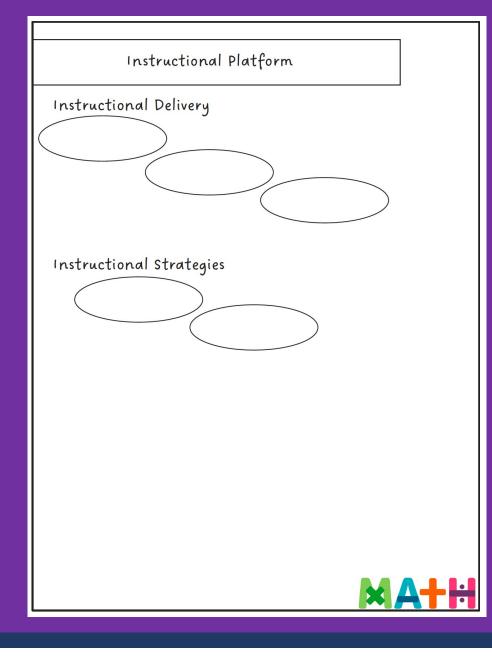
Students write mathematical expressions and equations that correspond to given situations, they evaluate expressions, and they use expressions and formulas to solve problems. They understand that variables represent numbers whose exact values are not yet specified, and they use variables appropriately. Students understand that expressions in different forms can be equivalent, and they can rewrite an expression to represent a quantity in a different way (e.g., to make it more compact or to feature different information). Students know that the solutions of an equation are the values of the variables that

Expectations of the Content Standards

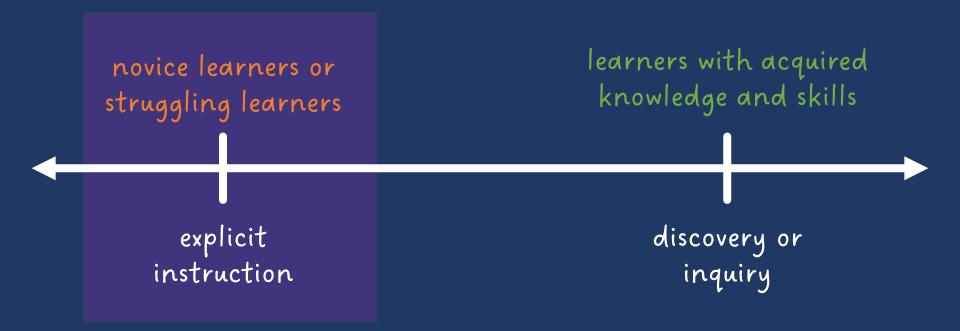
Number and Operations, Grades 6-8

- Work flexibly with fractions, decimals, and percents to solve
 problems
- Compare and order fractions, decimals, and percents efficiently and find their approximate locations on a number line
- Develop meaning for percents greater than 100 and less than 1
- Understand and use ratios and proportions to represent quantitative relationships
- Develop an understanding of large numbers [identified in Grades 4 and 5 Curriculum Focal Points] and recognize and appropriately use exponential, scientific, and calculator notation
- Use factors, multiples, prime factorization, and relatively prime numbers to solve problems
- Develop meaning for integers and represent and compare quantities with them
- Understand the meaning and effects of arithmetic operations with
 fractions, decimals, and integers
- Use the associative and commutative properties of addition and multiplication and the distributive property of multiplication over addition to simplify computations with integers, fractions, and decimals
- Understand and use the inverse relationships of addition and subtraction, multiplication and division, and squaring and finding square roots to simplify computations and solve problems
- Select appropriate methods and tools for computing with fractions
 and decimals from among mental computation, estimation, calculators or computers, and paper and pencil, depending on the situation, and apply the selected methods

https://www.nctm.org/curriculumfocalpoints/



What is the critical math content for your students?


Instructional Platform

What's the continuum of mathematics support?

Anita Archer (2019) facebook/com/watch/?v=320845308601739

Instructional Platform

A practice that has shown consistent and positive results

Copyright 2023 Sarah R. Powell, Ph.D.

evidence-based practice

evidence-based practice

evidence-based intervention

An intervention (i.e., packaged program) that has shown **consistent and positive** results

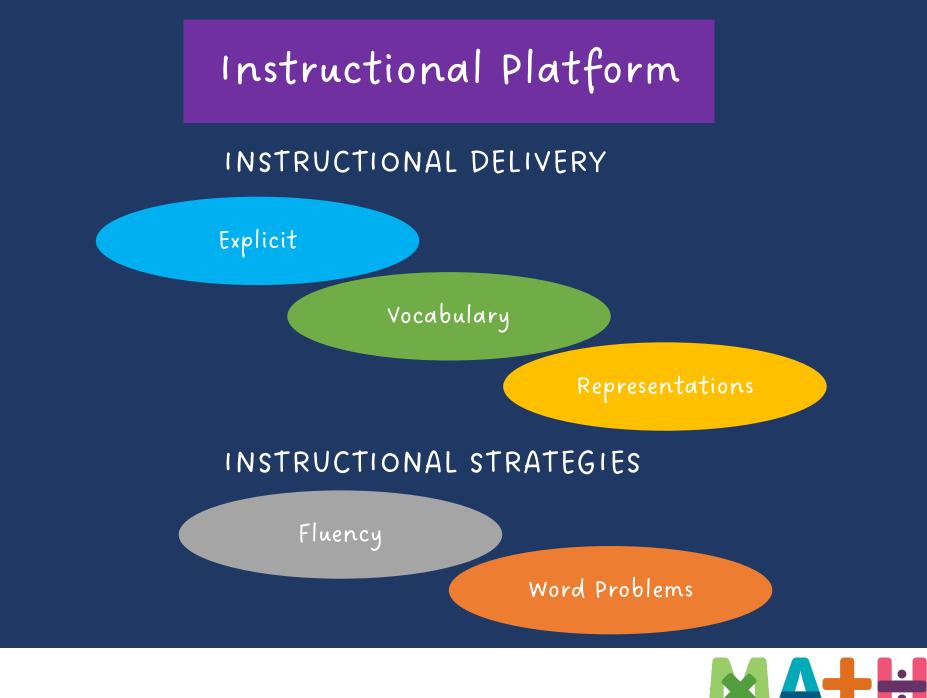
evidence-based intervention

evidence-based strategy

evidence-based practice

A method or strategy that has shown consistent and positive results

Teachers should use systematic and explicit instruction to help students develop a strong foundation for specific mathematics skills.

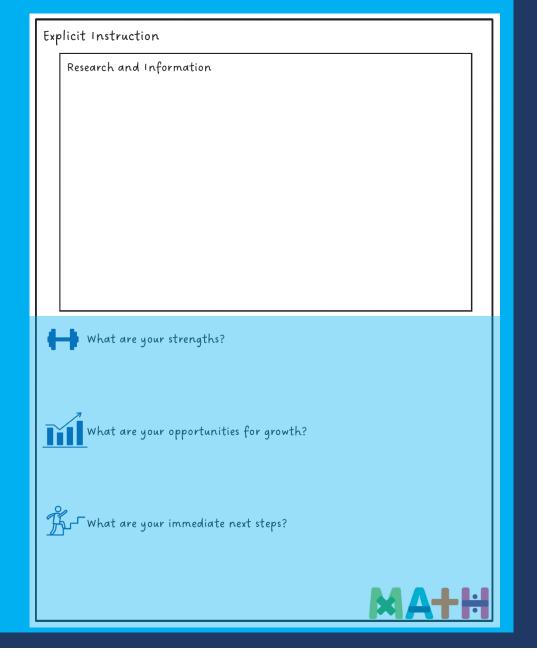

Students require modeling and practice on how to use the language of mathematics.

Students should use hands-on tools, virtual manipulatives, drawings, and other visuals to understand mathematics concepts and procedures.

Teachers should use fluency building activities to build counting fluency and fluency with the operations.

Students should learn how to set up and solve word problems by combining an attack strategy with a focus on word-problem schemas.

Be Explicit


Instructional Platform

INSTRUCTIONAL DELIVERY

INSTRUCTIONAL STRATEGIES

Over a half century of research supports explicit (i.e., direct, systematic) instruction. (stockard et al., 2018)

When compared to discovery approaches, explicit instruction demonstrates higher outcomes. (Alfieri et al., 2011; Kroesbergen et al., 2004; Poncy et al., 2010)

Numerous meta-analyses and large-scale studies have identified explicit instruction as essential for the teaching and learning of mathematics. (Chodura et al., 2015; Ennis & Losinski, 2019; Jitendra et al., 2018; Kong et al., 2021; Morgan et al., 2015; Nelson & McMaster, 2019; Powell et al., 2021).

xplicit Instruction		
MODELING	PRACTICE	
SUPPORTS		
	MATH	

Guided practice

Planned examples

MODELING

Step-by-step explanation

Independent practice

SUPPORTS

Ask high-level and low-level questions

Eliciting frequent responses

Providing affirmative and corrective feedback

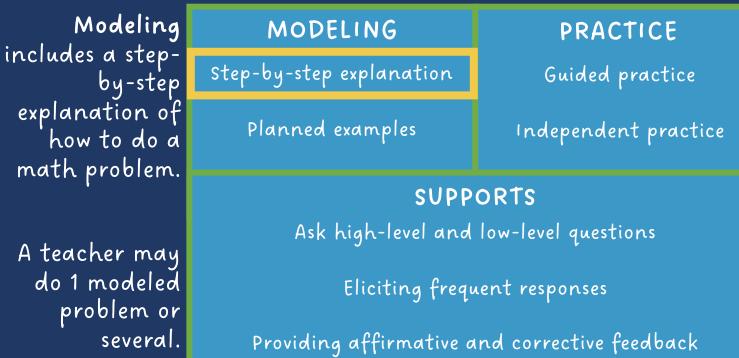
Guided practice

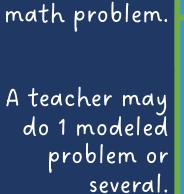
Independent practice

MODELING

Step-by-step explanation

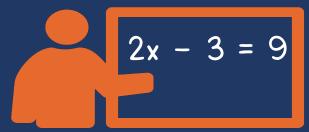
Planned examples


SUPPORTS Ask high-level and low-level questions


Eliciting frequent responses

Providing affirmative and corrective feedback

Modeling is a dialogue between the teacher and students.



"Today, we are learning about solving equations. This is important because sometimes you have an unknown and you want to figure out the unknown."

"Let's solve this problem. What's the problem?"

> 2x minus 3" equals 9."

"To solve 2x minus 3 equals 9, first we want to isolate the term with the variable. What's the term with the variable?"

"2x is our term with the variable. What's the coefficient?" "2."

"2x."

ΜĂ

"And what's the variable?"

"x."

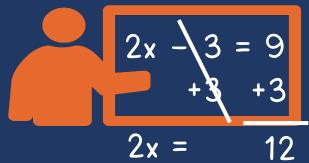
"The first step is to isolate the term with the variable. What do we want to isolate?"

"To isolate the term with the variable, we can move the constant to the other side of the equal sign. To do that, we can use inverse operations. If we have minus 3, what's the inverse operation?" "The term with the variable - 2x."

"So, let's write plus 3 below the minus 3. What do we write?"

"But if we add 3 to this side of the equal sign, what do we do to the other side of the equal sign?"

"Yes. Anytime you do something to one side of the equal sign you have to do the same thing to the other side of the equal sign. Describe that to your partner."


= 9

mm "Plus 3."

"Whenever you do something..."

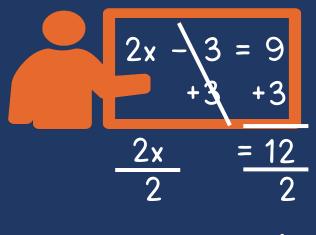
Mř

"So what should we write on that side of the equal sign?"

12

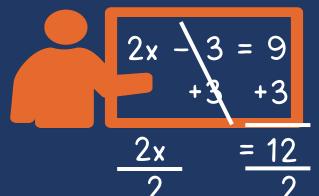
"So, minus 3 and plus 3 creates a zero pair. That would equal 0. What should we do?"

"Then we add 9 plus 3. What's 9 plus 3??"


"Let's write 12 here. So, now we have 2x equals 12. What is the equation now?"

x =

"Now we have 2x equals 12. We can isolate the variable of x from the = 12 dividing by 2 on coefficient of 2 by both sides of the equal sign What 6 will we do?"


> "So, 2x divided by 2 equals x. What's 12 divided by 2?"

> "Let's write x equals 6. What?"

"Divide by 2 on both sides of the equal sign to balance the equation."

"6."

"x equals 6."

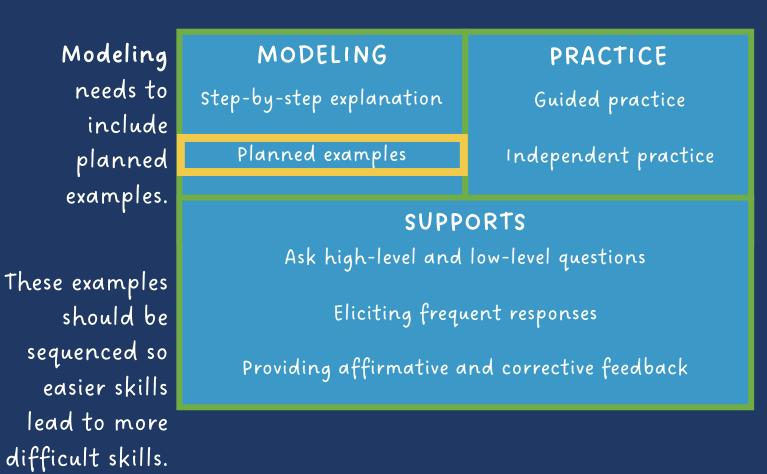
x =

"So, x equals 6. Let's see if that makes sense. How would you check our work?"

"2 times 6 equals 12. Then, 12 minus 3 equals 9!"

"First, we isolated the term with the variable. So, we added 3 to both sides of the equation. Then, we isolated the variable by dividing by 2 on both sides of the equal sign."

6 "Excellent. Who can share how we solved this problem?"



How would you improve this example?

Copyright 2023 sarah R. Powell, Ph.D.

Guided practice

Independent practice

SUPPORTS Ask high-level and low-level questions

MODELING

Step-by-step explanation

Planned examples

Eliciting frequent responses

Providing affirmative and corrective feedback

Guided practice

Independent practice

SUPPORTS Ask high-level and low-level questions

MODELING

Step-by-step explanation

Planned examples

Eliciting frequent responses

Providing affirmative and corrective feedback

Practice continues as a dialogue between the teacher and students.

MODELING	PRACTICE	Guided practice
Step-by-step explanation	Guided practice	is practice in which the
Planned examples	Independent practice	teacher and students
SUPPORTS Ask high-level and low-level questions		practice problems together.
Eliciting frequent responses Providing affirmative and corrective feedback		

"Let's work on a problem together."

"Now, you'll practice a problem on your own. Use your attack strategy!"

Guided practice

Independent practice

MODELING

Step-by-step explanation

Planned examples

SUPPORTS

Ask high-level and low-level questions

Eliciting frequent responses

Providing affirmative and corrective feedback

Guided practice

Independent practice

. . .

MODELING

Step-by-step explanation

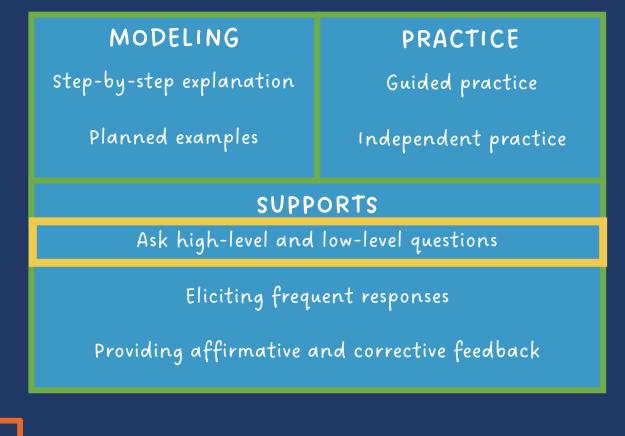
Planned examples

SUPPORTS

Ask high-level and low-level questions

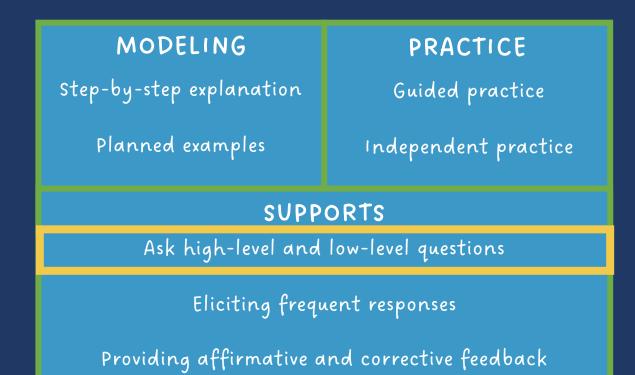
Eliciting frequent responses

Providing affirmative and corrective feedback

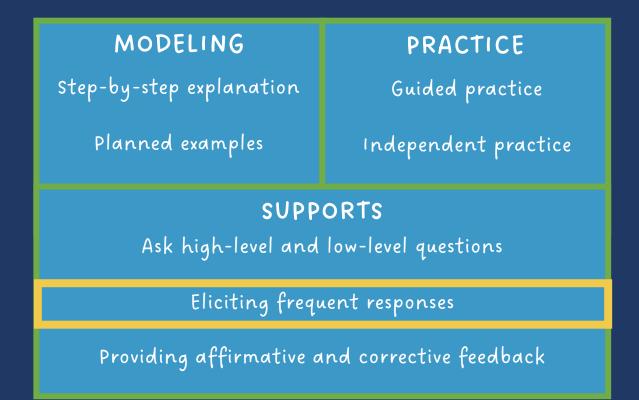

These Supports should be used in both Modeling and Practice.

MODELING	PRACTICE	
Step-by-step explanation	Guided practice	
Planned examples	Independent practice	
SUPPORTS		
Ask high-level and low-level questions		
Eliciting frequent responses		
Providing affirmative and corrective feedback		

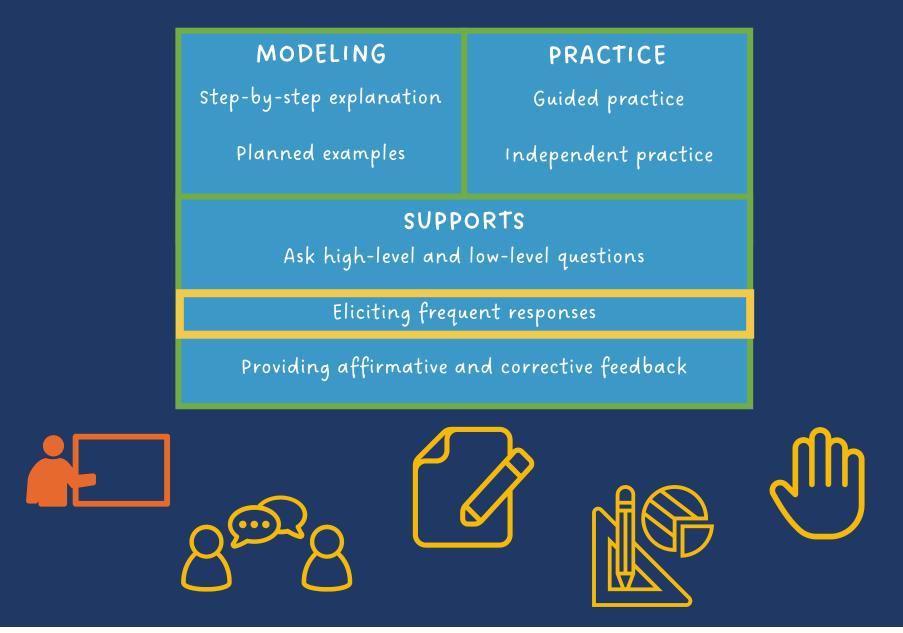
During Modeling and Practice, it is essential to engage students and check for understanding.



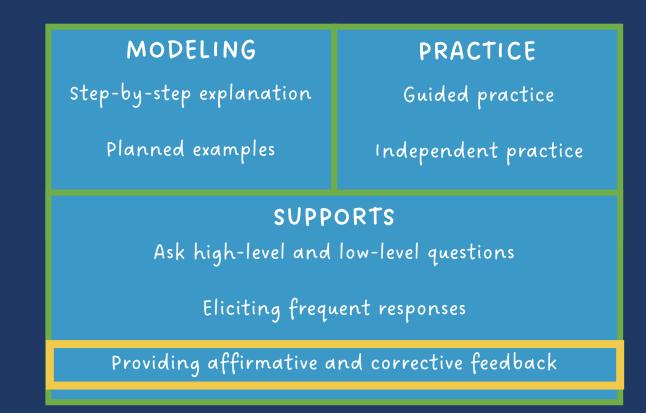
"What is 7 times 9?"



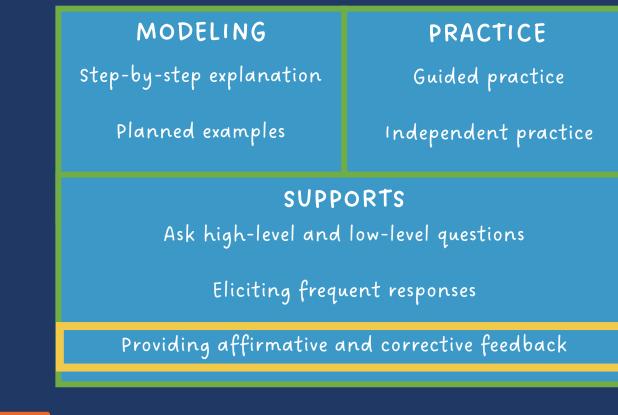
"A positive 1 and a negative 1 equal 0 Zero pairs helps us balance on either side of the equal sign."



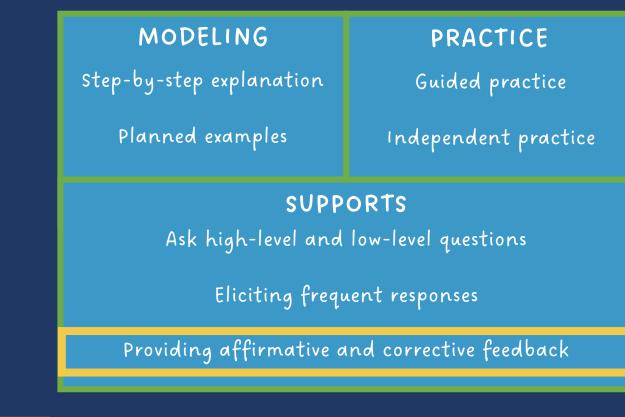
"Why do you use zero pairs?"



During **Modeling** and **Practice**, students should frequently respond. The frequent responses keeps student attention and keeps student learning active.



During Modeling and Practice, students should receive immediate feedback on their responses.



"Nice work using your word problem attack strategy."

"Let's look at that again. Tell me how you used the formula for volume."

Guided practice

Independent practice

SUPPORTS

MODELING

Step-by-step explanation

Planned examples

Ask high-level and low-level questions

Eliciting frequent responses

Providing affirmative and corrective feedback

Exp	plicit Instruction	
	Research and Information	
I what are your strengths?		
	What are your opportunities for growth?	
Ţ	What are your immediate next steps?	
	MATH	

Teachers should use systematic and explicit instruction to help students develop a strong foundation for specific mathematics skills.

What are your strengths with explicit instruction?

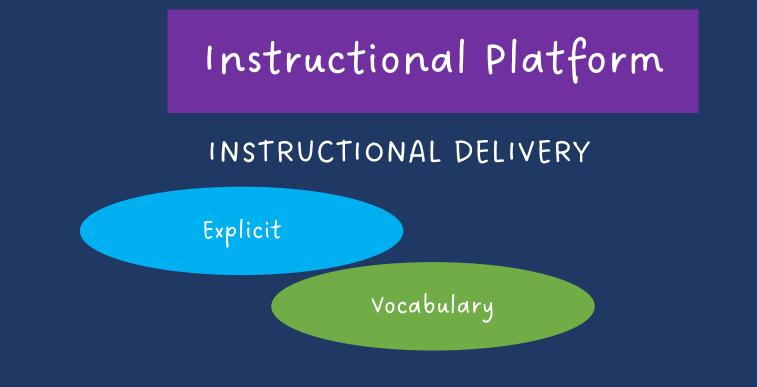
What are the opportunities for growth?

What are your immediate next steps?

Teachers should use systematic and explicit instruction to help students develop a strong foundation for specific mathematics skills.

Students require modeling and practice on how to use the language of mathematics.

Students should use hands-on tools, virtual manipulatives, drawings, and other visuals to understand mathematics concepts and procedures.


Teachers should use fluency building activities to build counting fluency and fluency with the operations.

Students should learn how to set up and solve word problems by combining an attack strategy with a focus on word-problem schemas.

Focus on Vocabulary

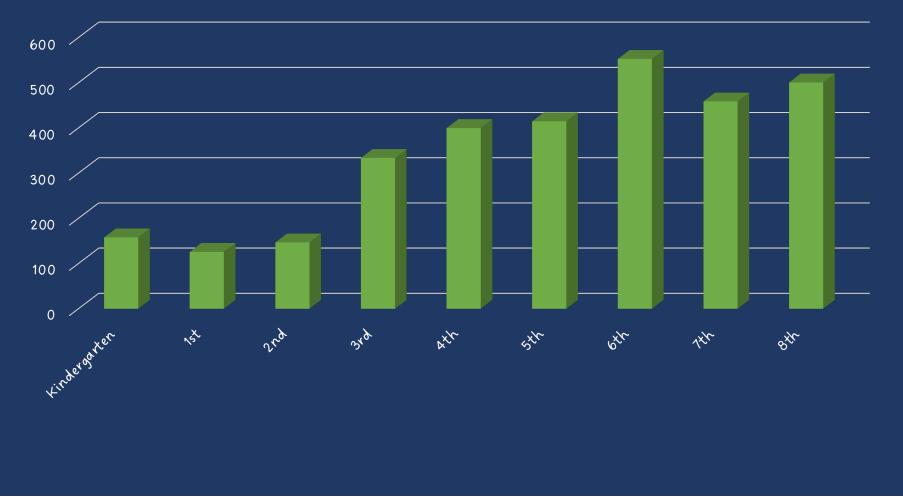
INSTRUCTIONAL STRATEGIES

Math	Vocabul	ary

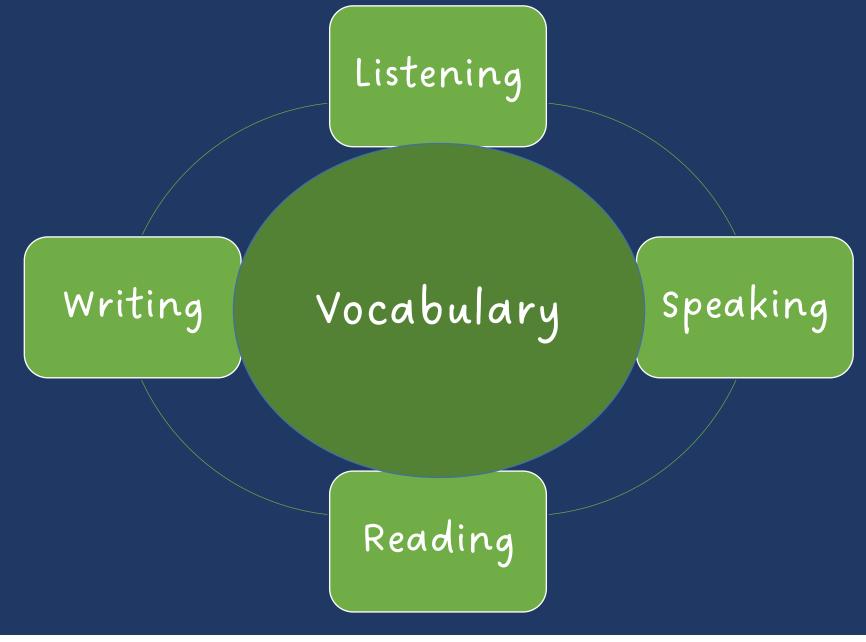
Research and Information

Use Formal Mathematics Language

Instead of that	say this			
,				
		_		
		_		



Significant correlation (r = .49) between mathematics vocabulary and mathematics performance. Mathematics vocabulary appears most important for word-problem performance (r = .58). (Lin et al., 2021)


Early mathematics vocabulary related to mathematics and literacy. (Hornburg et al., 2018; Purpura et al., 2017)

Students who experience difficulty with mathematics demonstrate lower mathematics vocabulary performance. (Hughes et al., 2020; Powell & Nelson, 2017; Powell et al., 2017; Unal et al., 2021)

1. Some math terms are shared with English but have different meanings

Rubenstein & Thompson (2002)


- 1. Some math terms are shared with English but have different meanings
- 2. Some math words are shared with English with similar meanings (but a more precise math meaning)

- 1. Some math terms are shared with English but have different meanings
- 2. Some math words are shared with English with similar meanings (but a more precise math meaning)
- 3. Some math terms are only used in math

- 1. Some math terms are shared with English but have different meanings
- 2. Some math words are shared with English with similar meanings (but a more precise math meaning)
- 3. Some math terms are only used in math
- 4. Some math terms have more than one meaning

- 1. Some math terms are shared with English but have different meanings
- 2. Some math words are shared with English with similar meanings (but a more precise math meaning)
- 3. Some math terms are only used in math
- 4. Some math terms have more than one meaning
- 5. Some math terms are similar to other content-area terms with different meanings

divide vs. Continental Divide variable vs. variably cloudy

Rubenstein & Thompson (2002)

- 1. Some math terms are shared with English but have different meanings
- 2. Some math words are shared with English with similar meanings (but a more precise math meaning)
- 3. Some math terms are only used in math
- 4. Some math terms have more than one meaning
- 5. Some math terms are similar to other content-area terms with different meanings
- 6. Some math terms are homophones

Rubenstein & Thompson (2002)

- 1. Some math terms are shared with English but have different meanings
- 2. Some math words are shared with English with similar meanings (but a more precise math meaning)
- 3. Some math terms are only used in math
- 4. Some math terms have more than one meaning
- 5. Some math terms are similar to other content-area terms with different meanings
- 6. Some math terms are homophones
- 7. Some math terms are related but have distinct meanings

hundreds vs. hundredths

numerators vs. denominator

Rubenstein & Thompson (2002)

- 1. Some math terms are shared with English but have different meanings
- 2. Some math words are shared with English with similar meanings (but a more precise math meaning)
- 3. Some math terms are only used in math
- 4. Some math terms have more than one meaning
- 5. Some math terms are similar to other content-area terms with different meanings
- 6. Some math terms are homophones
- 7. Some math terms are related but have distinct meanings
- 8. An English math term may translate into another language with different meanings

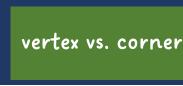
mesa vs. tabla

Rubenstein & Thompson (2002)

- 1. Some math terms are shared with English but have different meanings
- 2. Some math words are shared with English with similar meanings (but a more precise math meaning)
- 3. Some math terms are only used in math
- 4. Some math terms have more than one meaning
- 5. Some math terms are similar to other content-area terms with different meanings
- 6. Some math terms are homophones
- 7. Some math terms are related but have distinct meanings
- 8. An English math term may translate into another language with different meanings
- 9. English spelling and usage may have irregularities

four vs. forty

Rubenstein & Thompson (2002)

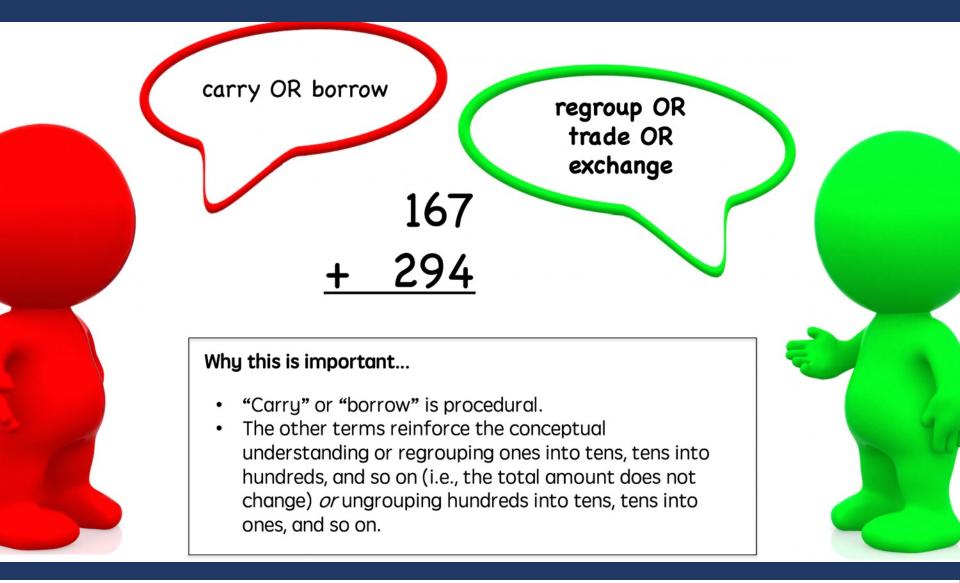

- 1. Some math terms are shared with English but have different meanings
- 2. Some math words are shared with English with similar meanings (but a more precise math meaning)
- 3. Some math terms are only used in math
- 4. Some math terms have more than one meaning
- 5. Some math terms are similar to other content-area terms with different meanings
- 6. Some math terms are homophones
- 7. Some math terms are related but have distinct meanings
- 8. An English math term may translate into another language with different meanings
- 9. English spelling and usage may have irregularities
- 10. Some math concepts are verbalized in more than one way

skip count vs. multiples

one-fourth vs. one quarter

- 1. Some math terms are shared with English but have different meanings
- 2. Some math words are shared with English with similar meanings (but a more precise math meaning)
- 3. Some math terms are only used in math
- 4. Some math terms have more than one meaning
- 5. Some math terms are similar to other content-area terms with different meanings
- 6. Some math terms are homophones
- 7. Some math terms are related but have distinct meanings
- 8. An English math term may translate into another language with different meanings
- 9. English spelling and usage may have irregularities
- 10. Some math concepts are verbalized in more than one way
- 11. Informal terms may be used for formal math terms

rhombus vs.


diamond

Use formal math language

Use terms precisely

top number and bottom number

numerator and denominator

Why this is important...

- Identifying that there are two separate (whole) numbers suggests that whole number properties can be applied to fractions.
- Emphasizing that a fraction is ONE number with ONE magnitude on a number line that is communicated with a numerator and denominator is important.

reduce the fraction

rename OR find equivalent OR simplify

Why this is important...

• Reducing suggests that the quantity or magnitude of the new number will be less than the original number.

Four point seven Four point oh seven

Four and seven tenths Four and seven hundredths

Why this is important...

• Accurately shares the magnitude of the decimal.

4.7 4.07

• Emphasizes place value.

reflections, translations, rotations

Why this is important...

- The informal language helps children remember the actions, but this vocabulary is not used on assessments.
- Use the formal mathematical terms.

Math Vocabulary

Research and Information

Use Formal Mathematics Language

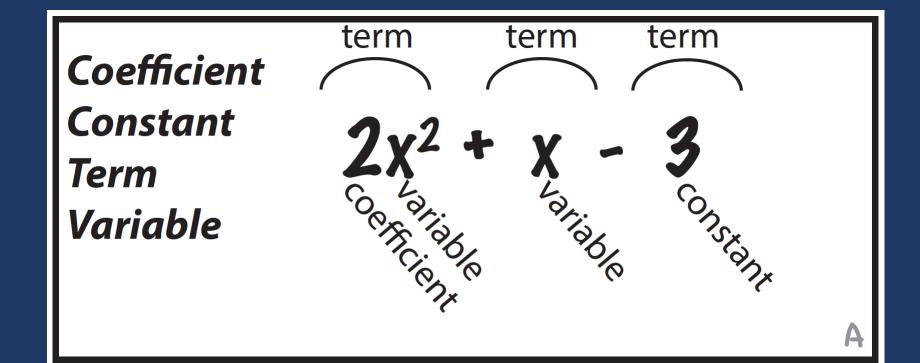
Instead of that	say this	
		\neg
		_
		-
		_
		-
		_

Identify examples of "Instead of ____, say ____."

Use formal math language

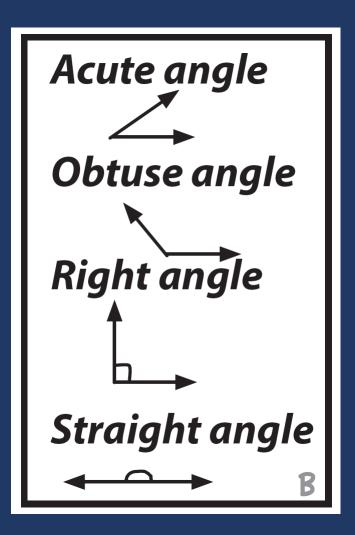
Use terms precisely

]	ith Vocabulary Use Terms With Precision
[Strategies for Teaching Mathematics Language
	strategies for reacting mathematics canguage
l	
ł	🕂 What are your strengths?
_	
	What are your opportunities for growth?
T	What are your immediate next steps?


Factor
1 × 8 = 8
2 × 4 = 8

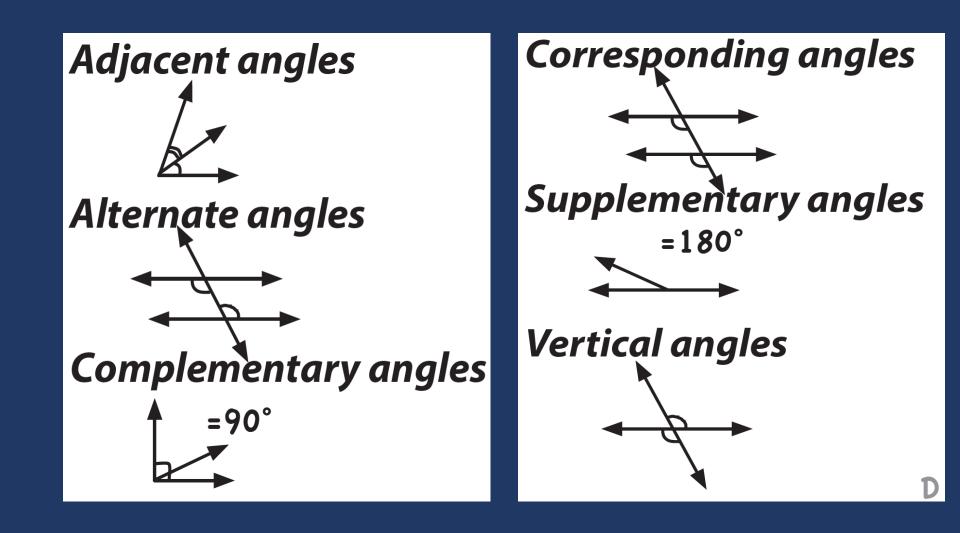
$$f_{a_{cto_{r}}}$$
 $f_{a_{cto_{r}}}$
Multiple
8 × 1 = 8
8 × 2 = 16
multiples of 8
Multiples of 8

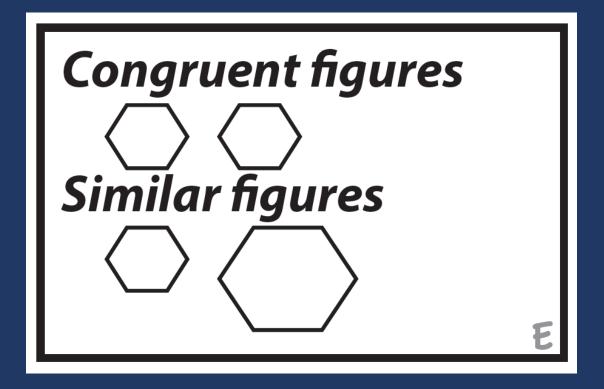
Improper fraction 8 5	Proportion $\frac{2}{5} = \frac{8}{20}$
Mixed number $1\frac{3}{5}$	Ratio 4:3
Proper fraction 2 9	Unit fraction 1 6

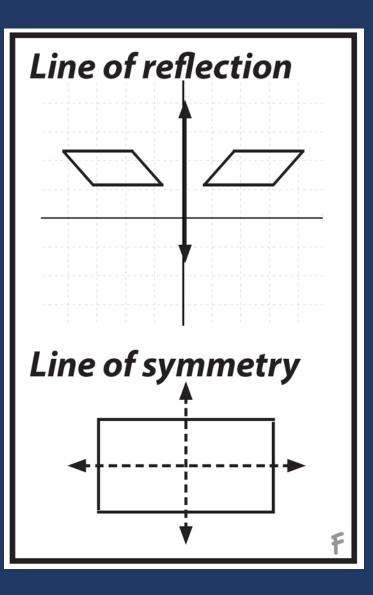


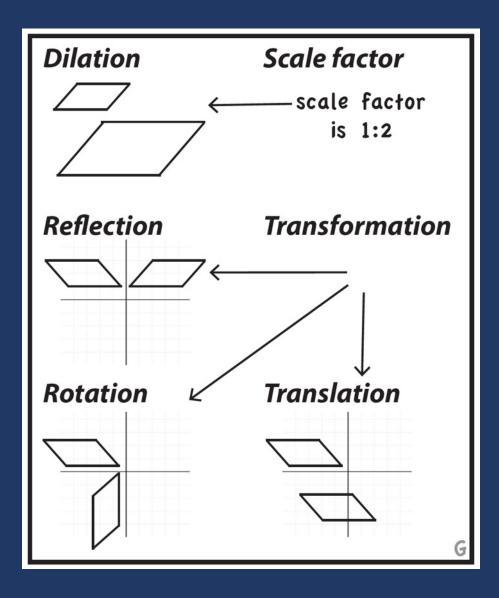
Equation
$$9x - 4 = 7x$$

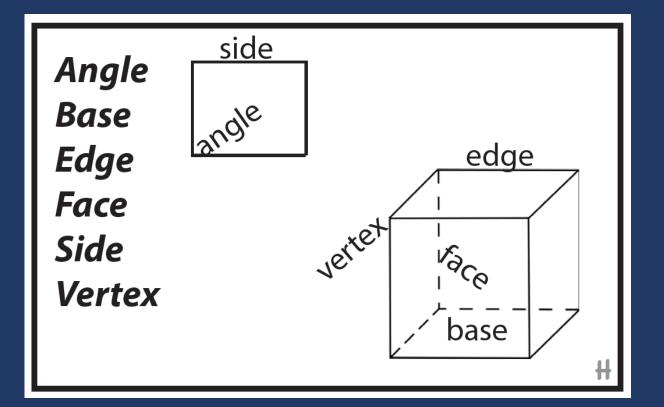
Expression $9x - 4$
Formula $a^2 + b^2 = c^2$
Function $f(x)$
Inequality $9x - 4 > 6x$

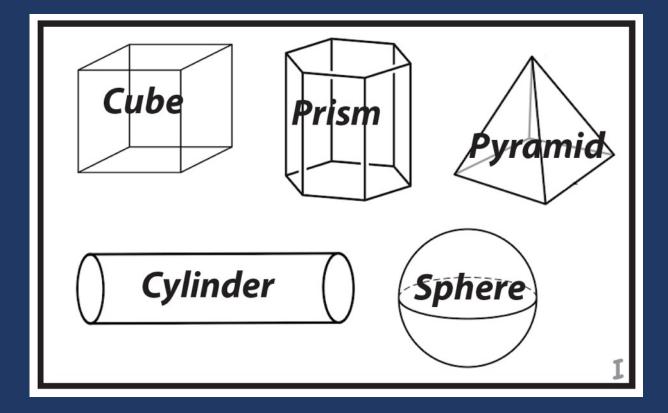












Math Vocabulary

Use Terms With Precision

Strategies for Teaching Mathematics Language

What are your strengths?

What are your opportunities for growth?

Discuss terms you want your students to use with precision.

Use formal math language

Use terms precisely

Math Vocabulary
Use Terms With Precision
Strategies for Teaching Mathematics Language
I what are your strengths?
What are your opportunities for growth?
The What are your immediate next steps?

Use explicit instruction. (Powell & Driver, 2015; Stevens et al., 2022)

> Use semantic maps. (Stevens et al., 2022)

Use visuals. (Powell & Driver, 2015)

Use flashcards with spaced practice. (Petersen-Brown et al., 2019)

> Use read-alouds. (Purpura et al., 2017)

Use explicit instruction. Use multiple representations. Create opportunities for discussion and feedback. Monitor student progress. Coordinate vocabulary instruction across settings. Create additional practice opportunities. (Nelson et al., 2020)

Math Vocabulary

Use Terms With Precision

Strategies for Teaching Mathematics Language

What are your strengths?

What are your opportunities for growth?

Discuss your strategy for focusing on mathematical vocabulary in your teaching.

Math Vocabulary
Use Terms With Precision
Strategies for Teaching Mathematics Language
+ What are your strengths?
7
What are your opportunities for growth?
ffur What are your immediate next steps?

Students require modeling and practice on how to use the language of mathematics.

What are your strengths with mathematical language?

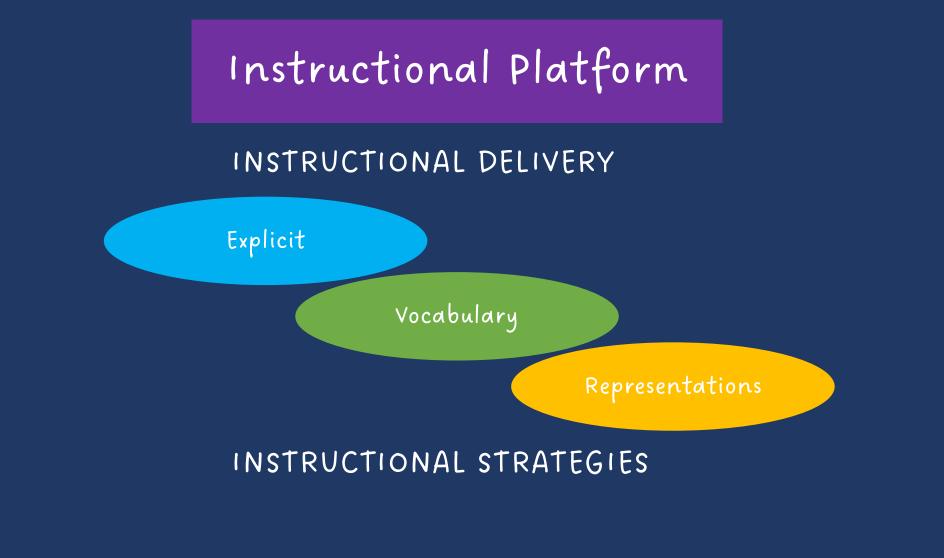
What are the opportunities for growth?

What are your immediate next steps?

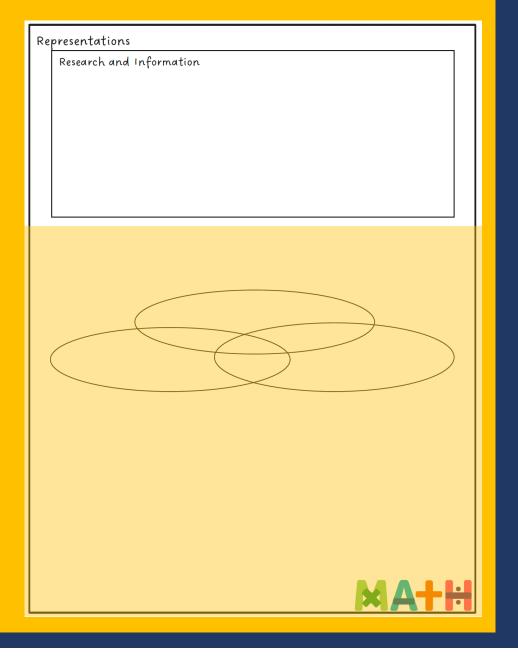
Teachers should use systematic and explicit instruction to help students develop a strong foundation for specific mathematics skills.

Students require modeling and practice on how to use the language of mathematics.

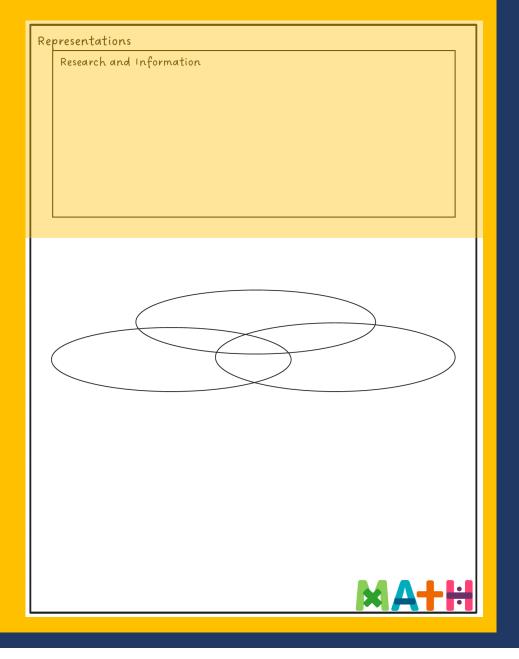
Students should use hands-on tools, virtual manipulatives, drawings, and other visuals to understand mathematics concepts and procedures.


Teachers should use fluency building activities to build counting fluency and fluency with the operations.

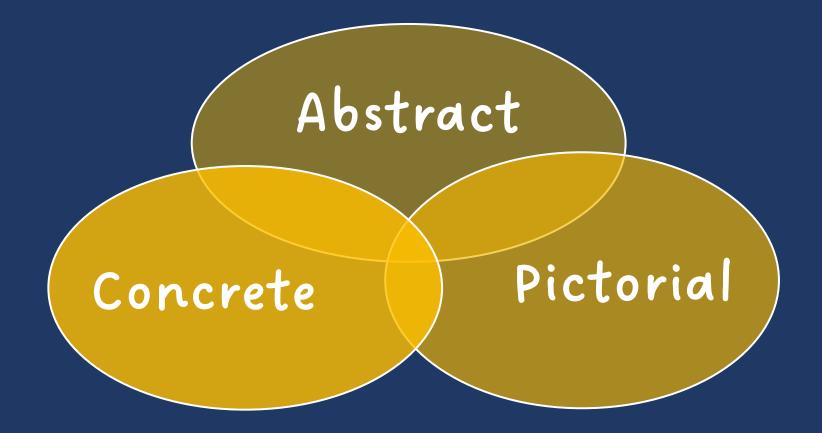
Students should learn how to set up and solve word problems by combining an attack strategy with a focus on word-problem schemas.



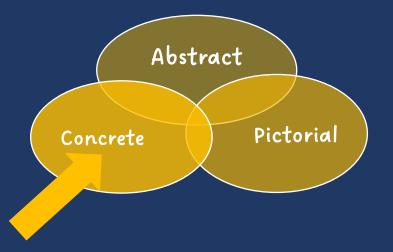
Use Representations

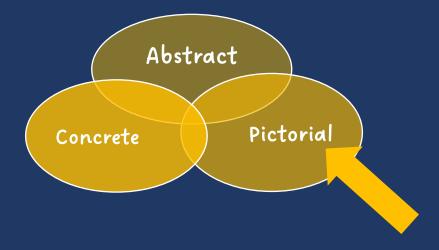

Hands-on manipulatives contribute to increases in mathematics performance.

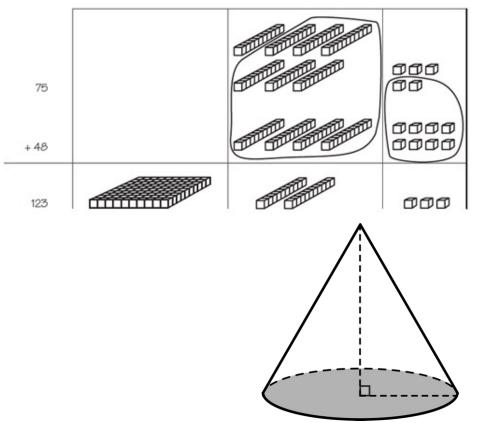
(Bouck & Park, 2018; Carbonneau et al., 2013; Namkung & Bricko, 2021; Sherman & Bisanz, 2009; Strickland & Maccini, 2012)

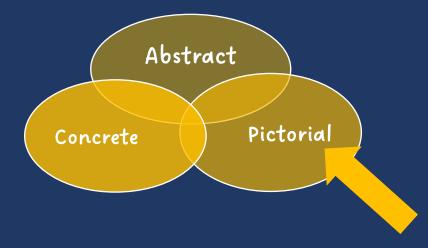

Virtual manipulatives contribute to increases in mathematics performance. (Bouck et al., 2020; satsangi et al., 2016)

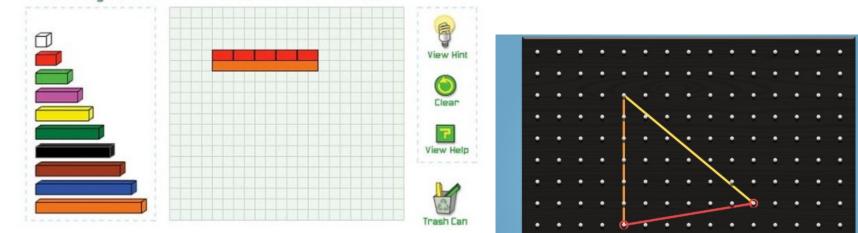
Other visuals (e.g., graphic organizers) contribute to increases in mathematics performance. (Jitendra et al., 2009; sharp & Dennis, 2017; van Garderen, 2007; Xin, 2008)







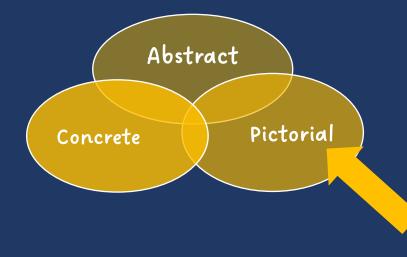



Find the rule and complete the table.

In	Out
9	5
19	15
	29
62	
95	91
96	92

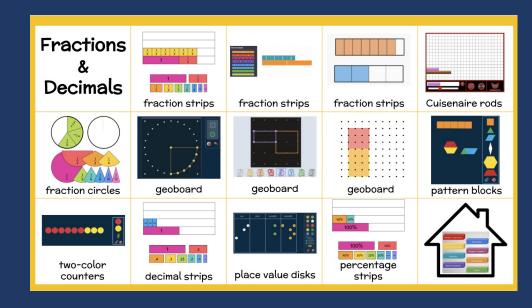
Modeling Fractions with Cuisenaire Rods

0

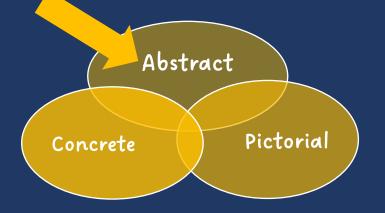


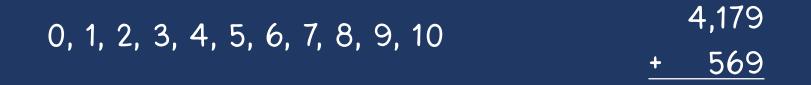
面

0

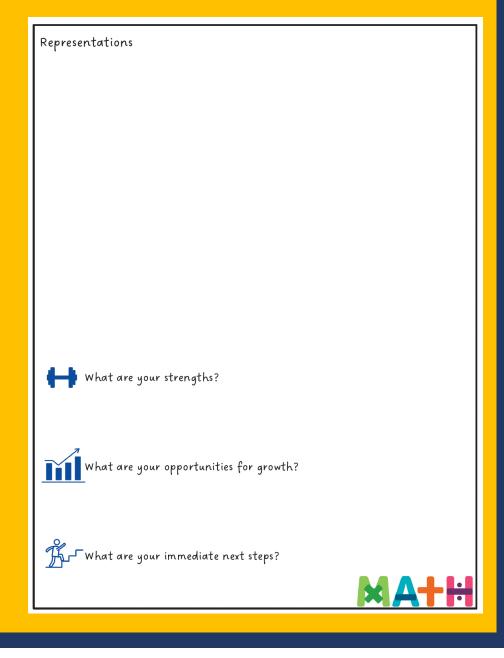

e

Nº 11.




Explore 3 virtual manipulatives.

Share with a partner.



2 + 8 = 10 34 = 3 tens and 4 ones

Students should use hands-on tools, virtual manipulatives, drawings, and other visuals to understand mathematics concepts and procedures.

What are the opportunities for growth?

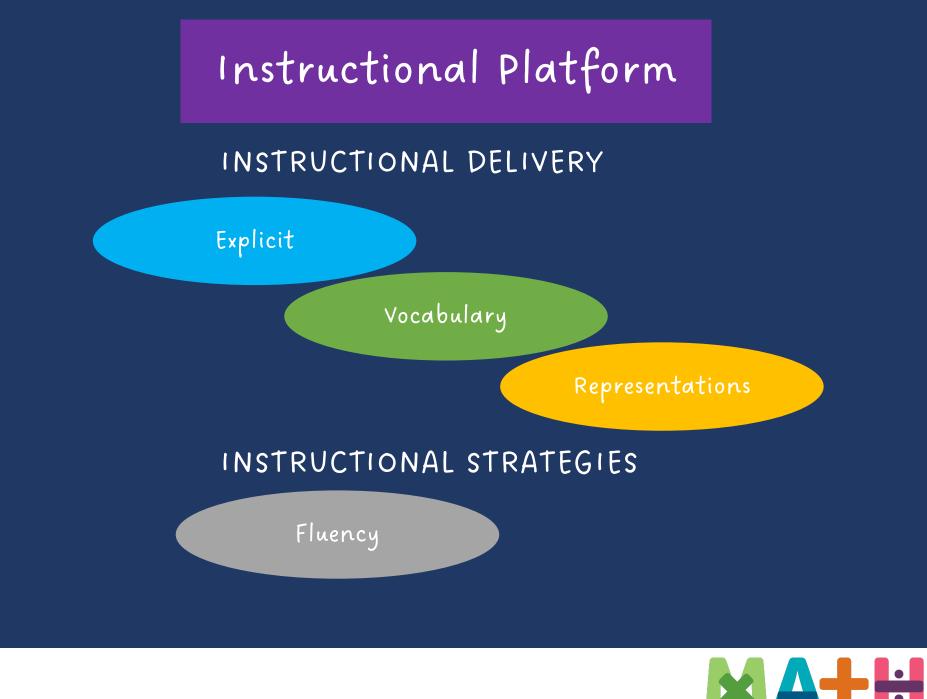
What materials do you need?

Copyright 2023 sarah R. Powell, Ph.D.

Teachers should use systematic and explicit instruction to help students develop a strong foundation for specific mathematics skills.

Students require modeling and practice on how to use the language of mathematics.

Students should use hands-on tools, virtual manipulatives, drawings, and other visuals to understand mathematics concepts and procedures.


Teachers should use fluency building activities to build counting fluency and fluency with the operations.

Students should learn how to set up and solve word problems by combining an attack strategy with a focus on word-problem schemas.

Build Fluency

Fluency			
Research and Information			
Research and information			
Types of Fluency			
Туре	Memorization?		
	Yes	No	

Mathematics fluency, particularly fluency with facts and computation, is related to overall mathematics performance. (Bailey et al., 2012; Cirino et al., 2019; Koponen et al., 2007, 2017; Vukovic et al., 2014

Fact fluency practice improves mathematics fact performance. (Burns et al., 2010; Codding et al., 2011; McCallum et al., 2004; Nelson et al., 2013; Poncy et al., 2010; Schutte et al., 2015; Stocker & Kubina, 2017)

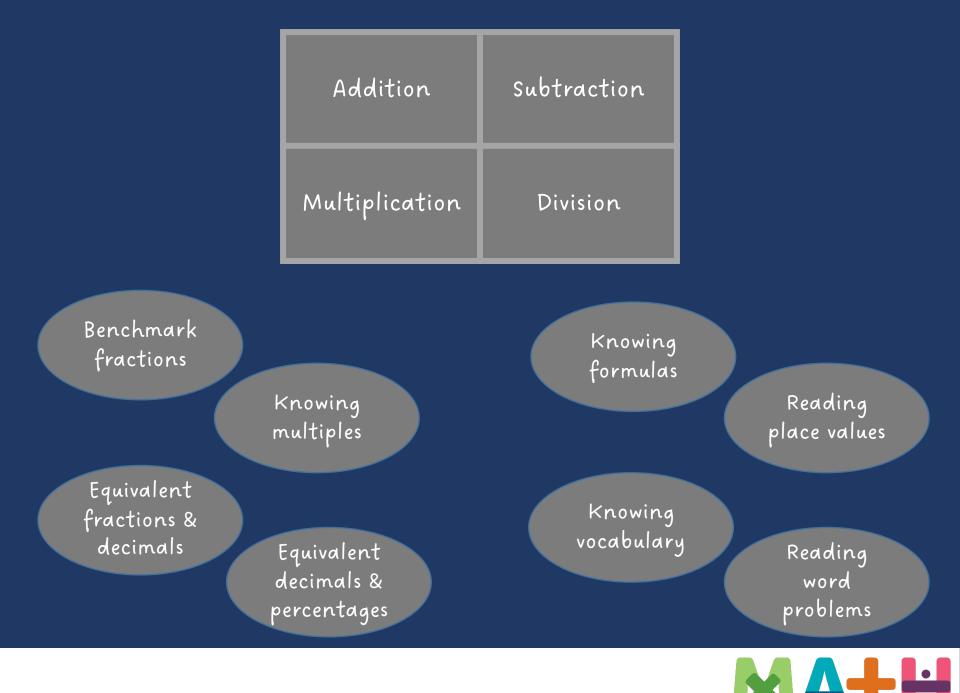
Fluency helps students build confidence with mathematics.

Fluency in mathematics makes mathematics easier.

Fluency is doing mathematics easily and accurately.

With fluency, it is important to emphasize both conceptual learning and procedural learning.

Fluency


provides less

stress on

working

memory.

Memorization or automaticity

Ease and accuracy

Fluency			
Research and Information			
Types of Fluency			
Туре	Memor	Memorization?	

Туре	Memori	zation?
	Yes	No
		└──

List different types of fluency. Discuss whether they require memorization.

Fluency with Facts				
	Addition			
	Subtraction			
	Multiplication			
	Division			
	MA+H			

Addition

100 addition facts

Single-digit addends sum to a single- or doubledigit number

subtraction

100 subtraction facts

Subtrahend and difference are single-digit numbers and minuend is single- or double-digit number

16	(minuend)
<u>- 8</u>	(subtrahend)
8	(<u>difference</u>)

Multiplication

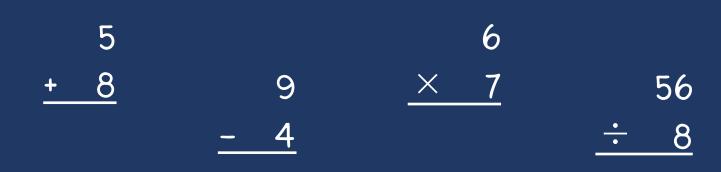
100 multiplication facts

Multiplication of single-digit factors results in a single- or double-digit product

Division

90 division facts

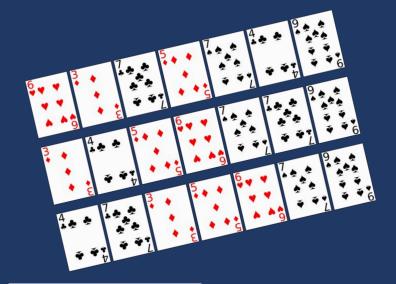
Divisor and quotient are single-digit numbers and dividend is single- or double-digit number

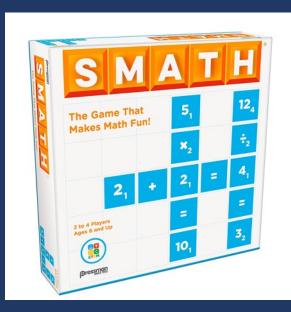

$8 \div 4 = 2$ (<u>dividend</u>) (<u>divisor</u>) (<u>quotient</u>)

Addition	Subtraction
Multiplication	Division

Build fluency with math facts.

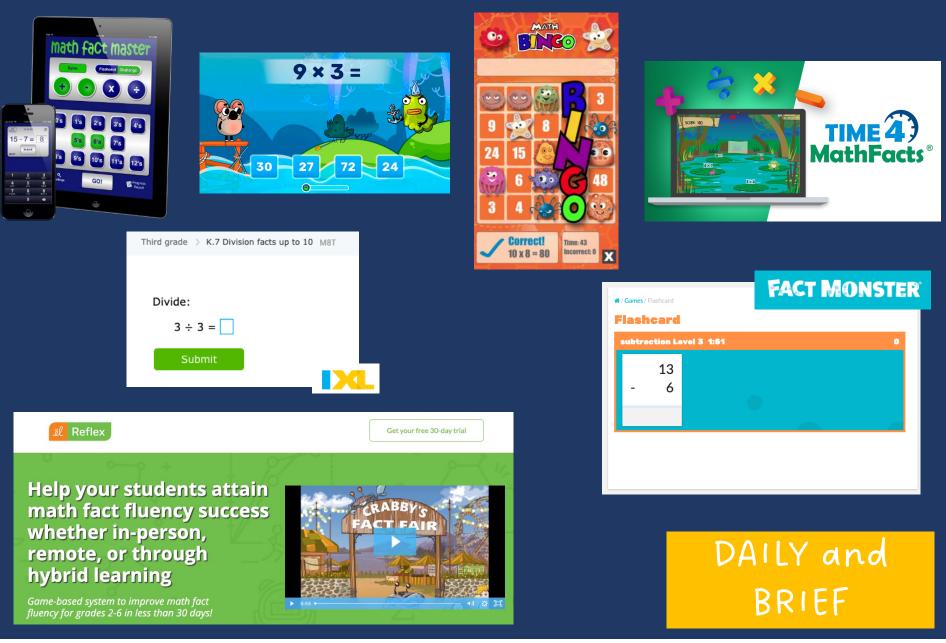
- Addition: single-digit addends
- Subtraction: single-digit subtrahend
- Multiplication: single-digit factors
- Division: single-digit divisor





F	luency	
	Strategies for Building Fluency	
	What are your strengths?	
-	What are your opportunities for growth?	
	0.	
	Br What are your immediate next steps?	
L		XATH

Cover, Copy, Co	ompare			Taped Pro	blems	
9	8 × 6		6 × 5	8 × 6	7 × 9	6 <u>× 8</u>
× 6 54 7	48 6 × 5		9 × 8	8 × 5	7 × 8	6 × 6
× 8 56 9	$\frac{x}{3}$ $\frac{1}{6+3} = 1+7=$	File Folder	7 × 7	6 × 9	5 × 9	8 × 4
× 9 81			1 1 1 1 1 9 1 (× 4	6 × 9	9 × 5	8 × 7
6 <u>× 7</u> 42	5+6= 4+7= 7+8=	1	× /	8 × 8	4 × 8	5 × 7
8 × 8	6 + 7 = 7 + 9 = 7 + 6 =	19 13 16				
64	8+7= 7+0= 9+6=	13 15 7				
	6+0= 6+8=	15 6				
		14				

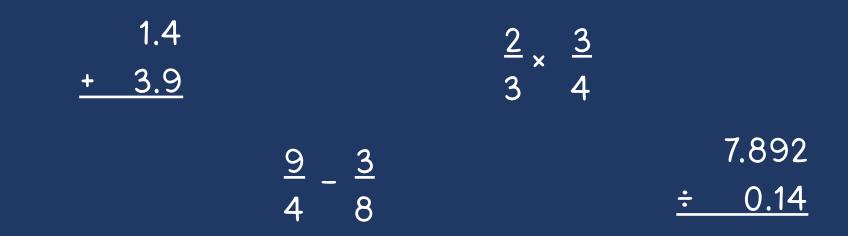


Addition	Subtraction
Multiplication	Division

What are five ways you help students build fact fluency?

Fl	uency with Computation	
	Addition	
	Subtraction	
	Multiplication	
	Division	
		XATM

Addition	Subtraction
Multiplication	Division


Build fluency with whole-number computation

Addition	Subtraction
Multiplication	Division

Build fluency with rational-number computation

Addition	Subtraction
Multiplication	Division

Build fluency with integer computation

-14 - (-7) = -135 ÷ 2 =

Partial Sums

Α. 74 <u>+ 18</u> 80 92

в. 725 <u>+ 365</u> 1,000 10 1,090

Opposite Change

$$\begin{array}{ccc} & & 7 & 4 & \xrightarrow{-4} & 70 \\ & + & 18 & \xrightarrow{+4} & 22 \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ \end{array}$$

Partial Differences

^{a.} 62	^{в.} 305
<u> </u>	<u> </u>
+50	+300
- 5	-90
45	-1
15	209

232 - 164

Same Change

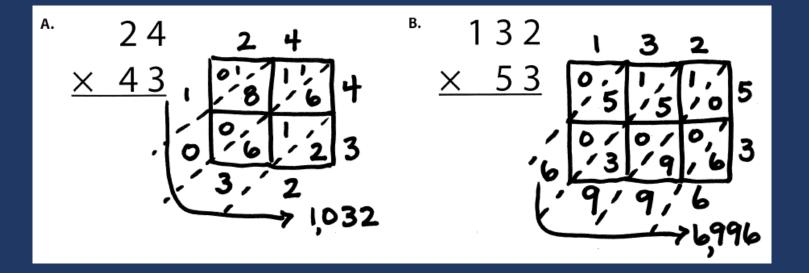
62 +3, 65 - 17 +3,-20 Α.

305 ++ 309 в. 96 >-100 209

Add Up

96 в. 305 Α. 62 $\begin{array}{r}
 100 \\
 300 \\
 200 \\
 305 \\
 + 5
 \end{array}$ 3 40 + 2 45 20 60 62 96 17 209

232 - 164


Partial Products

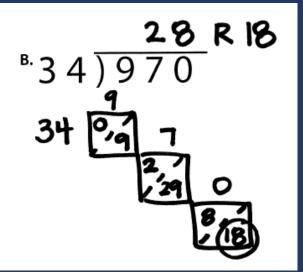
в. Α. × 53 5000 1500 160 60 12 1,032

Area (Array)

A.
$$24$$

 $\times 43$
 132
 132
 5000
 5000
 5000
 5000
 5000
 5000
 5000
 5000
 5000
 5000
 5000
 5000
 5000
 5000
 5000
 5000
 1500
 100
 5000
 1500
 100
 5000
 1500
 100
 5000
 1500
 100
 5000
 1500
 100
 5000
 1500
 100
 5000
 1500
 100
 5000
 1000
 1000
 5000
 1000
 1000
 5000
 1000
 1000
 5000
 1000
 1000
 1000
 5000
 1000
 1000
 1000
 1000
 5000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 100

Lattice



Partial Quotients

Lattice

13 R2 A.12)158 12 0% 5 8

804

12

Fluer	ency	
S	Strategies for Building Fluency	
←	What are your strengths?	
	What are your opportunities for growth?	
Å	What are your immediate next steps?	
		• •

Teachers should use fluency building activities to build counting fluency and fluency with the operations.

What are your strengths with building fluency?

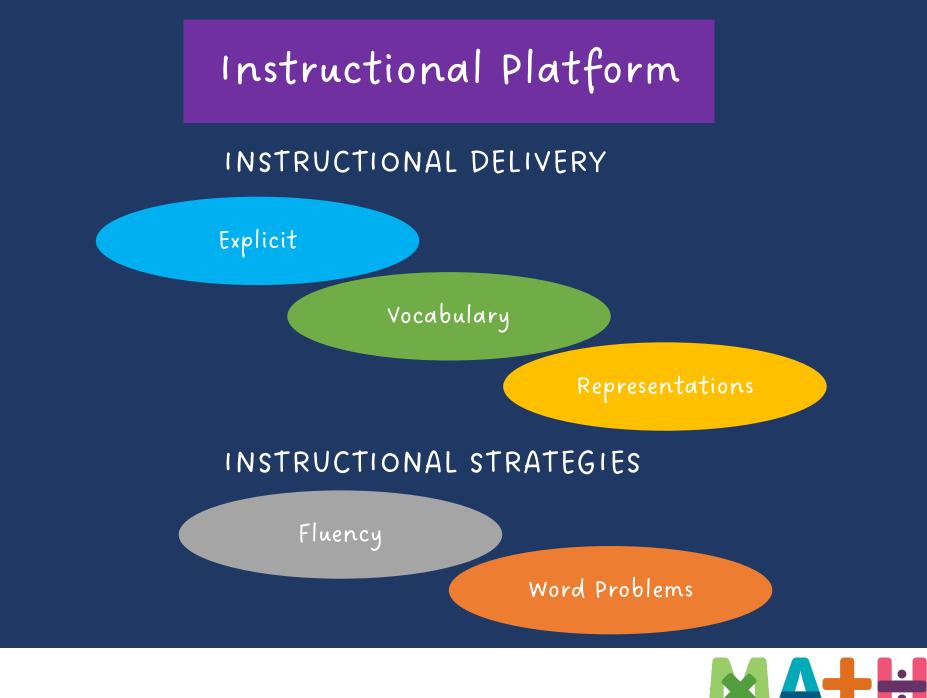
What are the opportunities for growth?

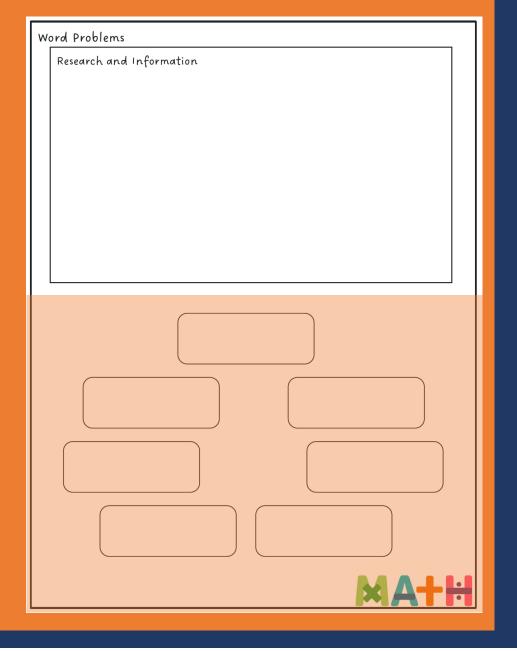
What are your immediate next steps?

Teachers should use systematic and explicit instruction to help students develop a strong foundation for specific mathematics skills.

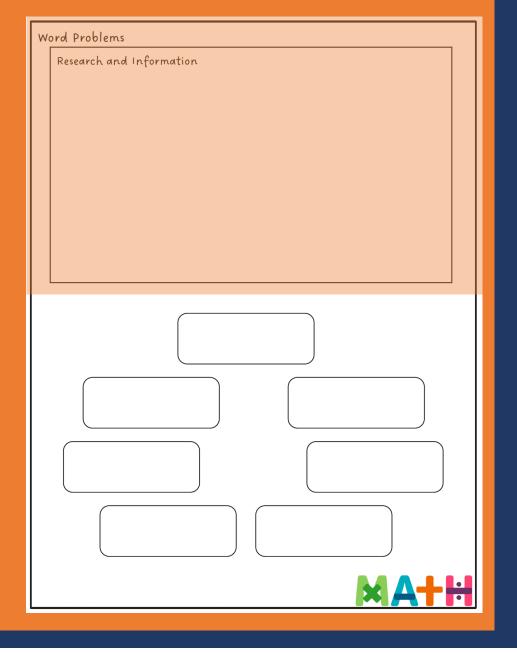
Students require modeling and practice on how to use the language of mathematics.

Students should use hands-on tools, virtual manipulatives, drawings, and other visuals to understand mathematics concepts and procedures.

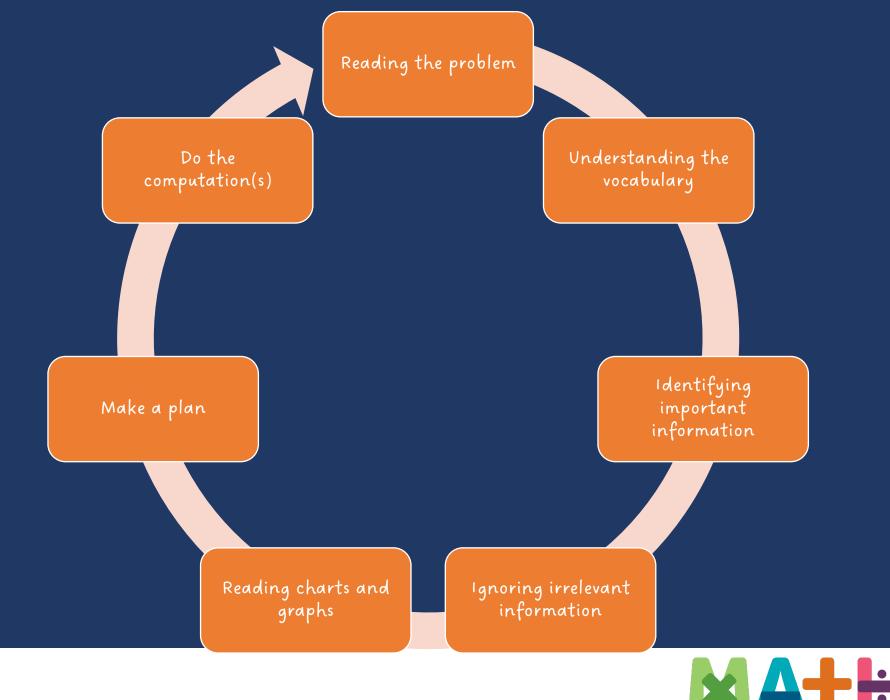

Teachers should use fluency building activities to build counting fluency and fluency with the operations.


Students should learn how to set up and solve word problems by combining an attack strategy with a focus on word-problem schemas.

Solve Word Problems

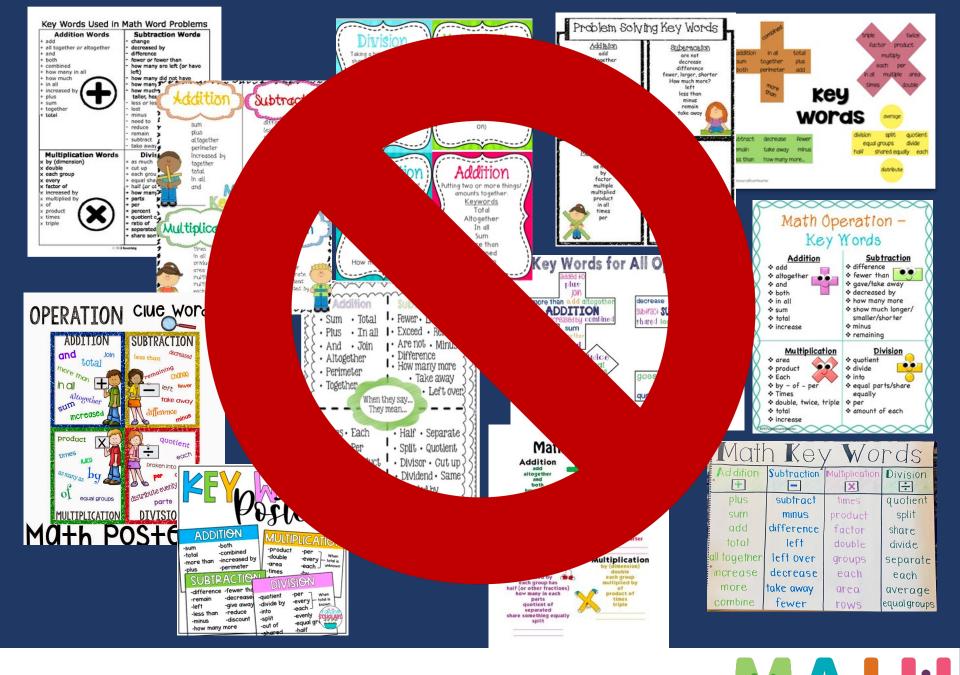


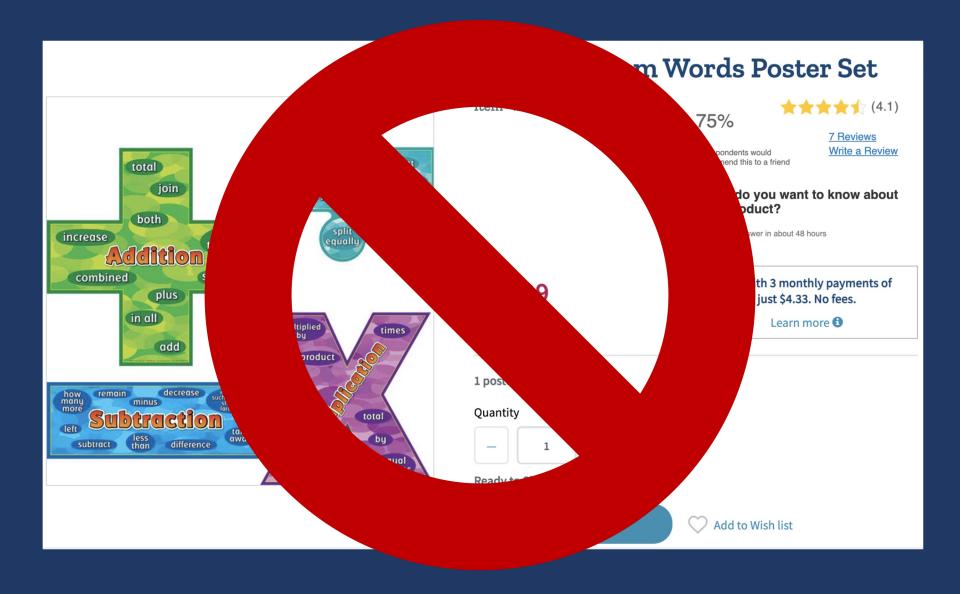
Key words tied to operations is an ineffective wordproblem strategy. (Karp et al., 2019; Powell et al., 2022)


Using a meta-cognitive strategy improves word-problem performance. (Freeman-Green et al., 2015; Krawec et al., 2012; Montague et al., 2011; Swanson et al., 2014)

A focus on schemas improves word-problem performance. (Alghamdi et al., 2020; Cook et al., 2020; Flores et al., 2016; Fuchs et al., 2021; Griffin et al., 2019; Jitendra et al., 2013; Lein et al., 2020; Peltier et al., 2020; Powell et al., 2022; Xin & Xhang, 2009; Zheng et al., 2013)

1. Keywords tied to operations





The bakery had 75 fewer cookies than brownies. If the bakery had 200 brownies, how many brownies did the bakery have?

The bakery had 75 fewer cookies than brownies. If the bakery had 200 cookies, how many cookies did the bakery have?

Description of Single-St	ep Word I	Problem	s (n = 132	2)							
					Scher	ma-			Keyword	(s) led	
	Occurre	nce of	An	y	spec	ific	Multi	ple	to corr	rect	
	scher	ma	keyw	ord	keywo	ords ^a	keywo	rds ^a	solutio	on ^a	
Schema	n	%	n	%	n	%	n	%	n	%	
Total	27	20.5	26	96.3	23	88.5	5	19.2	21	80.8	Π
Difference	17	12.9	17	100.0	14	82.4	2	11.8	12	70.6	
Change	11	8.3	7	63.6	5	71.4	5	71.4	2	28.6	
Equal groups	29	22.0	26	89.7	22	84.6	18	69.2	8	30.8	
Comparison	10	7.6	9	90.0	9	100.0	4	44.4	5	55.6	
Ratios or proportions	29	22.0	23	79.3	9	39.1	9	39.1	6	26.1	
Product of measures	9	6.8	9	100.0	8	88.9	1	11.1	5	55.6	
^a When a problem featu	Vhen a problem featured a keyword.					-					

p Word Prol	blems (n = a	84)				
Occurrence of schema*		Any keywor	ď	Keyword(s) led to correct solution ^b		
n	%	n	%	n	%	
40	47.6	39	97.5	3	7.7	
11	13.1	11	100.0	1	9.1	
21	23.8	19	95.0	1	5.3	
49	58.3	48	98.0	1	2.1	
7	8.3	7	100.0	0	0.0	
22	25.0	16	76.2	1	6.3	
7	8.3	7	100.0	2	28.6	
	Occurren schem n 40 11 21 49 7	Occurrence of schema* <u>n %</u> 40 47.6 11 13.1 21 23.8 49 58.3 7 8.3 22 25.0	schema* keywor n % n 40 47.6 39 11 13.1 11 21 23.8 19 49 58.3 48 7 8.3 7 22 25.0 16	Occurrence of schema* Any keyword n % n % 40 47.6 39 97.5 11 13.1 11 100.0 21 23.8 19 95.0 49 58.3 48 98.0 7 8.3 7 100.0 22 25.0 16 76.2	Occurrence of schema* Any keyword Keyword(s) I correct solu n % n 40 47.6 39 97.5 3 11 13.1 11 100.0 1 21 23.8 19 95.0 1 49 58.3 48 98.0 1 7 8.3 7 100.0 0 22 25.0 16 76.2 1	

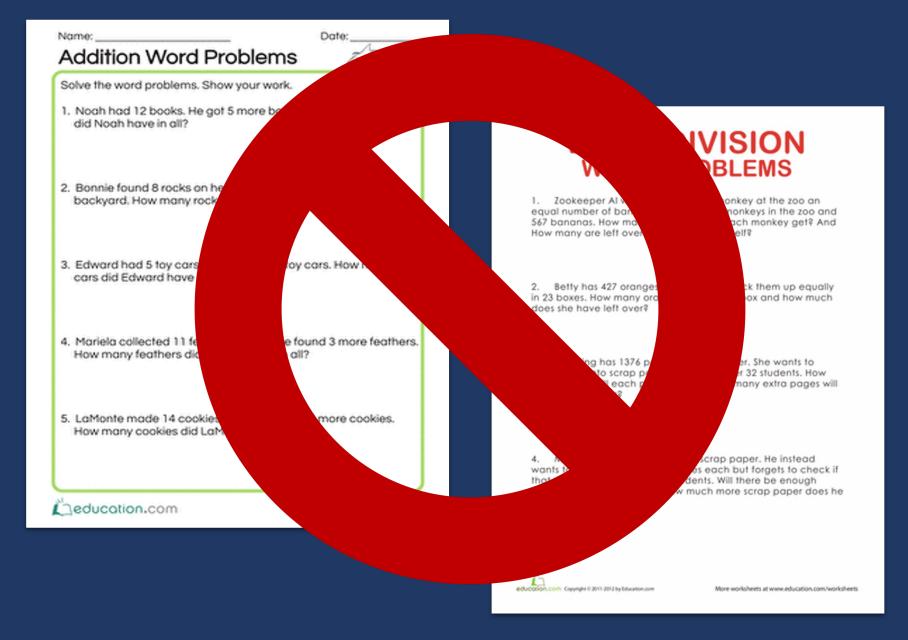
*Sum across schemas does not equal 100 because each word problem featured more than one schema.

^bWhen a problem featured a keyword.

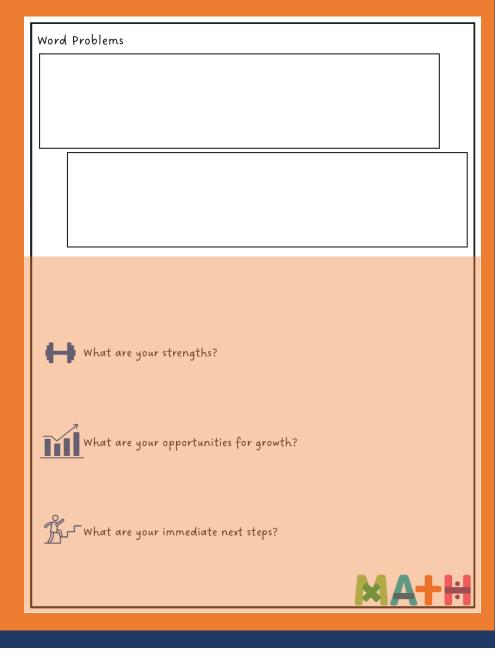
Talk about keywords ("What does *more than* tell you about?")

Keywords are the mathematical vocabulary that help an students understand what the story is about and what they need to do

Keywords are important to identify and understand



But, do not tie a keyword to a specific operation!



2. Presenting problems by operation

Teach an attack strategy

Teach about schemas

RIDE

Read the problem.

dentify the relevant information.

Determine the operation and unit for the answer.

Enter the correct numbers and calculate, then check the answer.

RICE

Read and record the problem. Illustrate your thinking. Compute. Explain your thinking.

RIDGES

Read the problem. I know statement. Draw a picture. Goal statement. Equation development. Solve the equation.

SUPER

Slowly read the story problem twice. Underline the question and circle the numbers you need. Picture it. Draw the scenario to show what is happening. Explain the problem with a number sentence. Rewrite the answer in a sentence.

SHINES

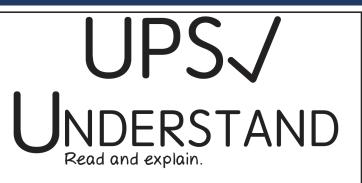
Slowly and carefully read the problem. Highlight or underline key information. Identify the question by drawing a circle around it.

Now solve the problem. Show your work. Examine your work for precision, accuracy, and clarity.

Share your answer by writing a sentence.

STAR

Stop and read the problem carefully. Think about your plan and the strategy you will use. Act. Follow your plan and solve the problem. <u>Review your answer</u>.



SOLVE

Study the problem. Organize the facts. Line up the plan. Verify the plan with computation. <u>Examine the answer.</u>

R-CUBES

Read the problem. Circle key numbers. Underline the question. Box action words. Evaluate steps. Solve and check.

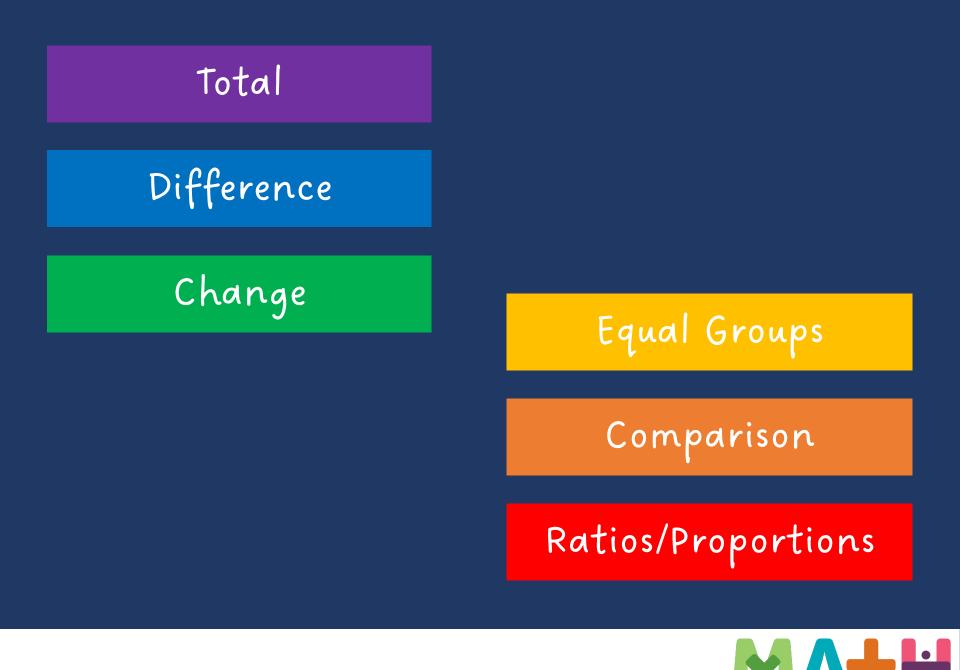
PLAN How will you solve the problem?

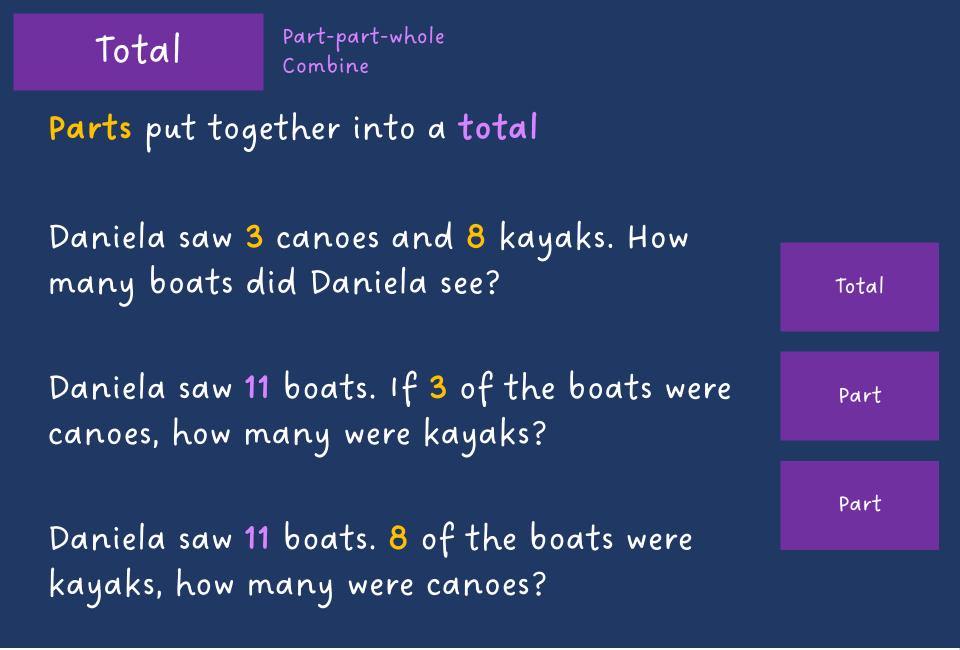
SOLVE Set up and do the math!

CHECK

Does your answer make sense?

MA+H


Share your favorite attack strategy.



Teach an attack strategy

Teach about schemas

XA+H

Difference Compo

Greater and lesser amounts compared for a difference

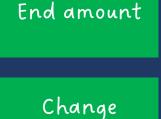
Adrianna has 10 pencils. Tracy has 4 pencils. How many more pencils does Adrianna have?

Adrianna has 6 more pencils than Tracy. If Tracy has 4 pencils, how many does Adrianna have?

Tracy has 6 fewer pencils than Adrianna. Adrianna has 10 pencils. How many pencils does Tracy have? Difference

Greater amount

Lesser amount



An amount that increases or decreases

Nickole had 6 notebooks. Then, she bought 3 notebooks. How many notebooks does Nickole have now?

Nickole had 6 notebooks. Then, she bought a few more notebooks. Now, Nickole has 9 notebooks. How many notebooks did she buy?

Nickole had some notebooks. Then, she bought 3 notebooks. Now, Nickole has 9 notebooks. How many notebooks did she have to start with?

amount

Start amount

Change

Separate

An amount that increases or decreases

Samantha baked 20 cookies. Then, she ate 3 of the cookies. How many cookies does Samantha have now?

Samantha baked 20 cookies. Then, she ate some of the cookies. Now, she has 17 cookies. How many cookies did Samantha eat?

Samantha baked some cookies. She ate 3 of the cookies and has 17 cookies left. How many cookies did Samantha bake? End amount

Change amount

start amount

Change

Equal Groups

Groups multiplied by number in each group for a product

Array

Vary

Toni has 2 boxes of crayons. There are 12 crayons in each box. How many crayons does Toni have altogether?

Toni has 24 crayons. They want to place them equally into 2 boxes. How many crayons will Toni place in each box?

Toni has 24 crayons. They put them into boxes with 12 crayons each. How many boxes did Toni use?

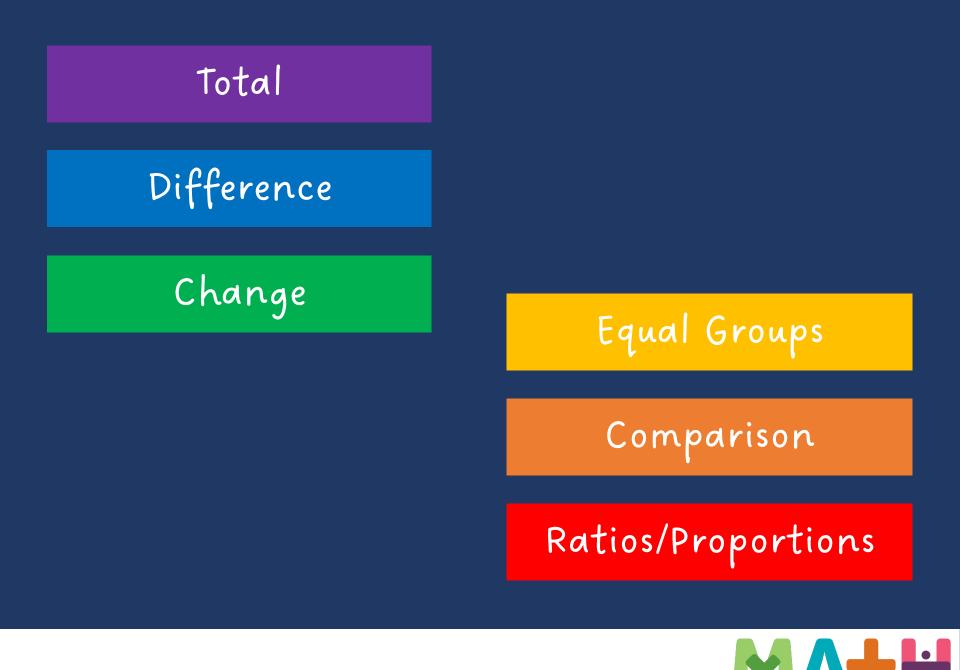
Product

Number in each group

Groups

set multiplied by a number of times for a product

Brooke ran 6 minutes. Shaleeni ran 4 times longer than Brooke. How many minutes did Shaleeni run?

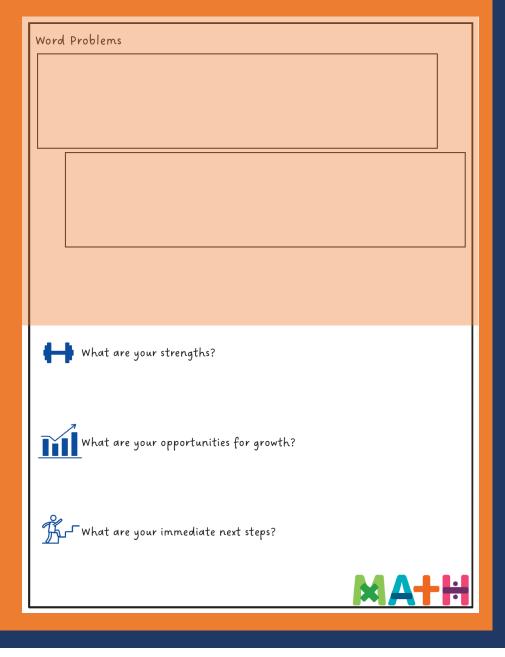

Ratios/Proportions

Description of relationships among quantities

Melissa baked cookies and brownies. The ratio of cookies to brownies was 3:5. If she baked 25 brownies, how many cookies did she bake?

Emma typed 56 words in 2 minutes. At this rate, how many words could Emma type in 7 minutes?

schema and Definition	Equations and Graphic Organizers	Examples			Variations
Total (Combine; Part-part- whole) Parts combined for a sum	P1 + P2 = T (part + part = total) (total) (part) (part)	Sum unknown: Lyle has 11 red apples and 18 green apples. How many apples does Lyle have altogether?	Part unknown: Lyle has 29 red and green apples. If 11 of the apples are red, how many green apples does Lyle have?		More than two parts: Lyle has 34 apples. Of the apples, 11 are red, 18 are green, and the rest are yellow. How many yellow apples does Lyle have?
Difference (Compare) Sets compared for a difference	B - s = D (bigger - imalier * difference) (greater - less * difference) (greater) (greater) (difference)	Difference unknown: Sasha wrote 85 words in her essay, and Tabitha wrote 110 words. How many fewer words did Sasha write than Tabitha?	Bigger/greater un- known: Tabitha wrote 25 more words than Sasha. If Sasha wrote 85 words, how many words did Tabitha write?	Smaller/lesser unknown: Tabitha wrote 110 words in her essay. Sasha wrote 25 words fewer than Tabitha. How many words did Sasha write?	(None)
Change (Join; Separate) An amount that increases or decreases	ST +/- C = E (start +/- change = end) (start) (change) (end)	End (increase) unknown: Jorge had \$52. Then, he earned \$16 babysitting. How much money does Jorge have now?	Change (increase) unknown: Jorge had \$52. Then, he earned some money babysitting. Now, Jorge has \$68. How much did Jorge earn babysitting?	Start (increase) un- known: Jorge has some money, and then he earned \$16 for babysitting. Now, Jorge has \$68. How much money did he have to start with?	Multiple changes: Jorge had \$78. He stopper and bought a pair of shoes for \$42 and then h spent \$12 at the grocery. How much money does Jorge have now?
	(beginning) (end)	End (decrease) unknown: Jorge had \$52. Then, he spent \$29 at the ballpark. How much money does Jorge have now?	Change (decrease) unknown: Jorge had \$52 but spent some money when he went to the ballpark. Now, Jorge has \$23. How much did Jorge spend at the ballpark?	Start (decrease) unknown: Jorge had some money. Then, he spent \$29 at the ballpark and has \$23 left. How much money did Jorge have before going to the ballpark?	


Schema and Definition	Graphic Organizers	Examples			Variations
Equal Groups (Vary) A number of equal sets or units	$GR \times N = P$ $(groups/units) \times (number/rate) = (product)$	Product unknown: Maria bought 5 cartons of eggs with 12 eggs in each carton. How many eggs did Maria buy?	Groups unknown: Maria bought 60 eggs. The eggs were sold in cartons with 12 eggs each. How many cartons of eggs did Maria buy?	Number unknown: Maria bought 5 cartons of eggs for a total of 60 eggs. How many eggs were in each carton?	With rate: Maria bought 5 cartons of eggs. Each carton cost \$2.95. How much did Maria spend on eggs?
Comparison One set as a multiple or part of another set	$S \times T = P$ (set) $(multiplier/(product))$ $(multiplier/(product))$	Product unknown: Malik picked 7 flowers. Danica picked 3 times as many flowers. How many flowers did Danica pick?	set unknown: Danica picked 3 times as many flowers as Malik. If Danica picked 21 flowers, how many flowers did Malik pick?	Times unknown: Malik picked 7 flowers. Danica picked 21 flowers. How many times more flowers did Danica pick?	With fraction: Malik picked 25 red and yellow flowers. If 1/5 of the flowers were yellow, how many were red?
Ratios/ Proportions (Percentages; Unit Rate) Relationships among quantities		subject unknown: Sally typed 56 words in 2 minutes. How many words could Sally type in 7 minutes?	Object unknown: Sally typed 56 words in 2 minutes. How many minutes would it take Sally to type 192 words?		With percentage: Watson received an 80% on his science quiz. If the test had 40 questions, how many questions did Watson answer correctly?
Ratio	$\frac{COMPARED}{BASE} = O(1)$	Base unknown: Justin baked cookies and brownies. The ratio of cookies to brownies was 3:5. If he baked 15 cookies, how many brownies did he bake?	Compared unknown: Justin baked cookies and brownies. The ratio of cookies to brownies was 3:5. If he baked 25 brownies, how many cookies did he bake?	Ratio unknown: Justin baked 15 cookies and 25 brownies. What's the ratio of cookies to brownies?	with unit rate: Paula bought 5 boxes of markers. She spent \$9.75. What is the price of one box of markers?
Material collec	ted from: Jitendra, DiPipi, & Perron	-Jones, 2002; Jitendra & Star, 2011; Jit	endra et al., 2009; Van de Walle et al.,	2013; Xin, Jitendra, & Deatline-Buchma	in, 2005; Xin & Zhang, 2009.

Teach an attack strategy

Teach about schemas

Students should learn how to set up and solve word problems by combining an attack strategy with a focus on word-problem schemas.

What are your strengths with word-problem solving?

What are the opportunities for growth?

What's one thing you can start doing next week?

Teachers should use systematic and explicit instruction to help students develop a strong foundation for specific mathematics skills.

Students require modeling and practice on how to use the language of mathematics.

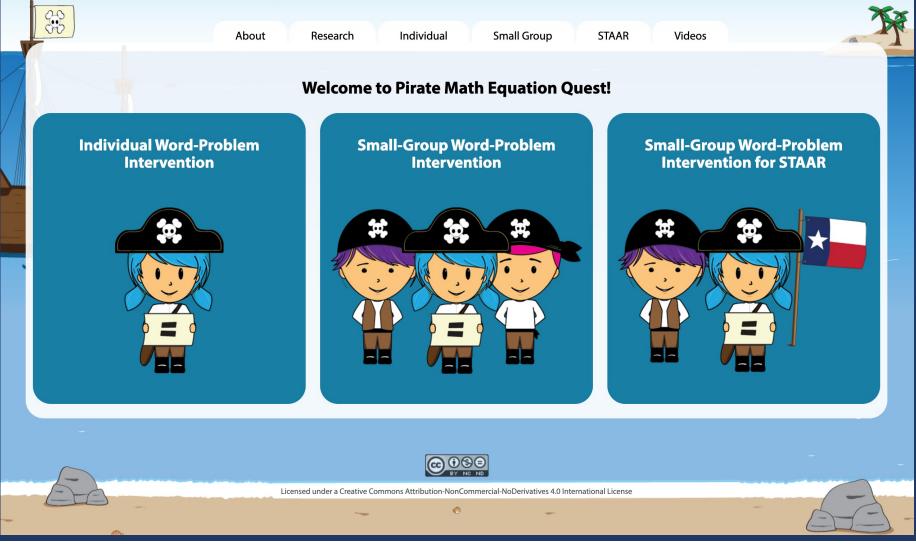
Students should use hands-on tools, virtual manipulatives, drawings, and other visuals to understand mathematics concepts and procedures.

Teachers should use fluency building activities to build counting fluency and fluency with the operations.

Students should learn how to set up and solve word problems by combining an attack strategy with a focus on word-problem schemas.

Checklist

Evidence-Based Practice	Description; Look-Fors



Describe evidence-based practices important for your teachers. What are the look-fors?

Pirate Math Equation Quest

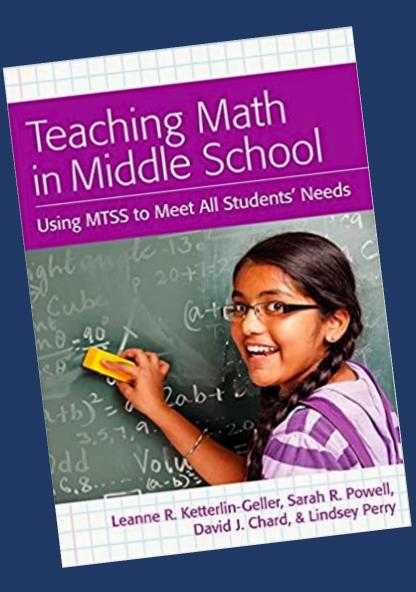
XA++

https://intensiveintervention.org/intensive-intervention-math-course

Intensive Intervention in Mathematics Course Content

NCII, through a collaboration with the University of Connecticut, developed a set of course content focused on developing educators' skills in designing and delivering intensive mathematics instruction. This content is designed to support faculty and professional development providers with instructing purservice and in-service educators who are developing and/or refining their implementation of intensive mathematics intervention.

Intensive instruction was recently identified as a high-leverage practice in special education^a, and DBI is a research based approach to delivering intensive instruction across content areas (NCII, 2013). This course provides learners with an opportunity to extend their understanding of intensive instruction through in-depth exposure to DBI in mathematics, complete with exemplars from actual classroom teachers.


NCII, through a collaboration with the University of Connecticut and the National Center on Leadership in Intensive Intervention and with support from the CEEDAR Center , developed course content focused on enhancing educators' skills in intensive mathematics intervention. The course includes eight modules that can support faculty and professional development providers with instructing pre-service and in-service educators who are learning to implement intensive mathematics intervention through data-based individualization (DBI). The content in this course complements concepts covered in the Features of Explicit Instruction Course and so we suggest that users complete both courses.

MODULE 5: INTENSIVE MATHEMATICS INTERVENTION: INSTRUCTIONAL STRATEGIES

https://www.amazon.com/Teaching-Math-Middle-School-Students/dp/1598572741

Sarah R. Powell, Ph.D.

Associate Professor The University of Texas at Austin

srpowell@utexas.edu

