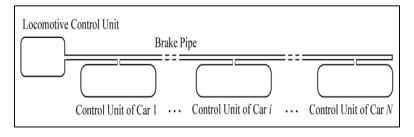


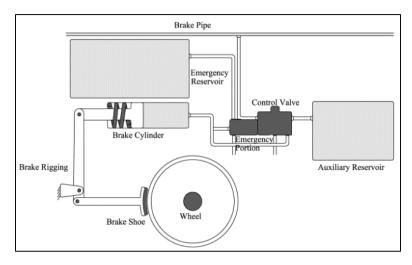
CDI Tutorial Creating an Air Brake Model in ATTIF


1 OVERVIEW

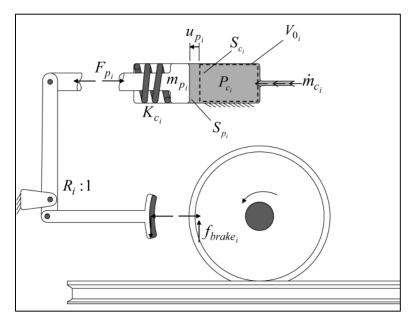
The full application of pneumatic brakes in a very long train can take several minutes, and the recharging of such a system will generally take even more time. This delayed process requires the engineers to model the pneumatic braking system of a long train using computer simulations. ATTIF (Analysis of Train/Track Interaction Forces) allows for such modeling through the integration of a pneumatic brake formulation that makes use of efficient longitudinal train force algorithms.

The air brake formulation used in ATTIF is briefly described and the procedure for creating an ATTIF model that makes use of the available air brake formulation is outlined in this document. The example given in this document can assist ATTIF users in developing their own detailed air brake models for investigations.

2 AIR BRAKE OUTLINE


The air brake formulation developed in ATTIF consists of the locomotive automatic brake valve, air brake pipe, and car control unit (CCU), as shown here:

Main Air Brake Components


The brake force model implemented in ATTIF accounts for the effects generated by the flow of air through long train pipes as well as the effect of leakage and branch pipe flows. This formulation can be used to study the dynamic behavior of the air flow in the train pipe and its effect on the longitudinal train forces during brake application and release. The ATTIF implementation also includes a detailed model of the locomotive automatic brake valve that can be used to define the inputs to the air brake pipe during the simulation. In addition, a detailed CCU, as shown here, is considered:

Car Control Unit Components

The coupling between the equations that detail the air brake, locomotive automatic brake valve, car control units, and train formulations is considered in ATTIF. The car brake forces, which depend on the locomotive automatic brake valve handle position, are applied to the wheels using the CCU located along the brake pipe, as shown here:

Brake Force on a Car Wheel

ATTIF has been used in different simulation scenarios in order to investigate the effect of the air brake forces on the train longitudinal dynamics. The numerical results of ATTIF have additionally been validated using experimental data.

3 MODEL CREATION & ADDING CARS

- A.) Select the "New" button from the interface toolbar in order to begin a creating a new model.
- B.) In the "Cars" page of the sidebar, select the type of car to add. For this example, the first car will be a "Box Car".
- C.) Click the "New 1-Body Car" button to add the car to the model.
- D.) Specify the position of the car along the length of the track in the "Initial Positions" box. For the first car, the default value does not need to be changed.

	dit View	_	ta Sim	ulation	Results	Help		
None	Data		Control	Results	Com	Car ponent	1 0	
	on Paramete Couplers			w Settings c/Spline F	Bushing Recorded Co		Joint Spring	Contact Bearing
-	ew 1-Body Ci			After a New Body	Copy y as Compon ents with Ma	Insert		Delete
Box Ca	ar	~			nt As Indepe			
		-						
-	notive Engine	e/Brake	a Adhe	sion W	heels & Axle:	s Brai	ke	Graphics
Locon	notive Engine Body	e/Brake		sion W es of Freedo			ke lesista	
Locon Body Body	notive Engine Body Information Car N Num. in Data	lum. [Degree	es of Freedo	x Car-Main I	F		
Locon Body Body Mass	notive Engine Body Information Car N Num. in Data and Inertia	lum. [Degree	es of Freedo	m	F		
Locon Body Body Mass Mass	notive Engine Body Information Car N Num. in Data and Inertia 50000.0	lum. [1 File [1	Degree	es of Freedo cription Βα	x Car- Main I	F	lesisti	
Locon Body Body Mass Mass box	Information Car Num. in Data 50000.0	lum. [1 File [1	Degree	es of Freedo cription Βα	x Car- Main I Positions 6.0	Body	0.	
Locon Body Body Mass Mass box	Information Car N Num. In Data 50000.0 100000.0	lum. [1 File [] bsy lyz	Degree Desc 0.0 0.0	cription Bo	x Car- Main I Positions	F Body Ro Yaw	0. 0.0	
Locon Body Body Mass Mass box	Information Car N Num. in Data and Inertia 50000.0 100000.0	lum. [1 File [1	Degree Desc 0.0 0.0	es of Freedo cription Βα	x Car- Main I Positions 6.0	Body	0.	
Body Body Mass box by Izz	Information Car N Num. In Data 50000.0 100000.0	lum. [1 File [] bsy lyz	Degree Desc 0.0 0.0	cription Bo	x Car- Main I Positions	F Body Ro Yaw	0. 0.0	
Body Mass box lyy Izz	notive Engine Body Information Car N Num. in Data 50000.0 100000.0 650000.0	lum. [1 File [] bsy lyz	Degree Degree Desc Desc Desc Desc Desc Desc Desc De	cription Bo	x Car- Main I Positions 6.0 2.5	F Body Ro Yaw	0. 0.0	
Body Body Mass box by Izz Initial	notive Engine Body Information Car N Num. in Data 50000.0 100000.0 650000.0 60000.0 Velocities	lum. [1 File [1 by lyz lzx	Degree Degree Desc Desc 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	cription Bo	x Car- Main I Positions 6.0 2.5 tant Loads	F Body Ro Yaw Pitch	0. 0.0 0.0	

E.) Under the "Resistance" sub-page of the sidebar, specify the "Car Location". For the first car of the model, the car location should be set to "Last Car".

File Edit View Data Simulation I	Results Help
None Data Control Results	Car 1 + of 1 Component 0 + of 0
	Bushing Pin Joint Contact ecorded Control Springs Bearings Coov Insert Delete
New 3-Body Car Add New Body Move Compone	as Component
Locomotive Engine/Brake Adhesion Wh Body Degrees of Freedon	eels & Axles Brake Graphics n Resistance
Aerodynamics Deperties) E.
Front	Rear
X Position of Area Center 6.0	-6.0
Y Position of Area Center 0.0 Z Position of Area Center -2.5	-2.5
Cross Section Area 10.2	10.2

Car Number	Car Type	Initial Positions	Car Location
1	Box Car	6.000	Last Car
2	Box Car	19.976	Middle Car
3	Box Car	33.952	Middle Car
4	Box Car	47.928	Middle Car
5	Box Car	65.904	Middle Car
6	Box Car	83.880	Middle Car
7	Box Car	97.856	Middle Car
8	Box Car	111.832	Middle Car
9	Box Car	125.808	Middle Car
10	Box Car	143.784	First Car

F.) The remaining cars of the model can be added using the same procedure, with the data below:

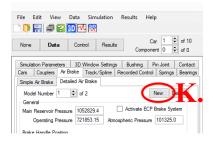
4 COUPLING THE CARS

- G.) In the "Couplers" page of the sidebar, in the "Detailed Coupler" subpage, click the "New" button.
- H.) The numbers of the cars connected by the coupler can be specified in the "Body Indices" box, under "Car I" and "Car J". The first coupler connects car numbers 1 and 2.
- I.) The attachment points of the coupler on the *ith* and *jth* cars can be defined under the "Attachment Point Relative to Body I CG" and "Attachment Point Relative to Body J CG" headings. The default values for the first coupler do not need to be changed.

Computational Dynamics Inc. (CDI)

	30 74 88		
None Data	Control	Results	Car 5 🗘 of
		Comp	oonent 0 🚖 of I
Simulation Parameters	3D Window	Settings Bushing	Pin Joint Con
		Spline Recorded Cor	
Simple Coupler Deta	siled Coupler		<u> </u>
Coupler Number 1	🗢 of 9		New De te
Body Indiana			New Delle
Carl		CarJ	2
Component		Company	-
		Comportant	
Coupler Data			
Coupler Type	Detailed/Linear		'
	 Coupler is Ac 	stve	
Body Data			
Attachment Point R	active to body 10	G T	
(×	5.848) 0. Z	-0.9
Direction Vector of 2			
x		Y 0.0 Z	0.0
EOC/Draft Gear Data	1		
Stiffness	3000000.0	Undeformed Length	0.2889
Damping	250000.0	Initial Displacement	0.0
Torsional Stiffness	30000000.0	Initial Angle	0.0
Torsional Damping	100000.0	Shank Length	0.7493
Friction Coefficient	0.25	Wedge Angle	0.5236
Body J Data			
Attachment Point	ative to Body	G	
(x	-5.848	70.0 Z	-0.9
Direction Vector of 3	en Ande		
x	-1.0	Y 0.0 Z	0.0
EOC/Draft Gear Data			
Stiffness	3000000.0	Undeformed Length	0.2889
Damping	250000.0	Initial Displacement	0.0
Torsional Stiffness	30000000.0	Initial Angle	3.1416
Torsional Damping	100000.0	Shank Length	0.7493
Friction Coefficient	0.25	Wedge Angle	0.5236
Shank Knuckle/Cha	asis Data		
Stiffness	50000000.0	Undeformed Length	0.2036
	5000000.0	Undeformed Length Free Slack	
Damping	133446000000		
Ultimate Strength	1334460000000	Chasis Stiffness	239700000000

J.) The remaining couplers can be added in a similar manner using the following data:


Coupler	Car I	Car J	X-Attachment Point	X-Attachment Point
Number			Relative to Body I CG	Relative to Body J CG
1	1	2	5.848	-5.848
2	2	3	5.848	-5.848
3	3	4	5.848	-5.848
4	4	5	5.848	-9.848
5	5	6	9.848	-5.848
6	6	7	5.848	-5.848
7	7	8	5.848	-5.848
8	8	9	5.848	-5.848
9	9	10	5.848	-9.848

5 DEFINING THE AIR BRAKE SYSTEM

K.) In the "Air Brake" page of the sidebar, in the "Detailed Air Brake" subpage, click "New" twice in order to add two new air brake models.

Computational Dynamics Inc. (CDI)

- L.) In the "Cars" page of the sidebar, in the "Brake" subpage, select the "Use Air Brake M133" checkbox for the first car.
- M.) The brake model number may be specified under "Brake M133 Number". The default value for the first car does not need to be changed.

File Edit View Data	i Simula	tion Results	Help		
🗅 🕞 🔚 🥔 🔁 🚺	∙∿ 👷				
None Data C	notrol F	lesuits	Car	1 🗘 of 10	
None Data Ci	ontrol H		ponent	0 💠 of 0	
Simulation Parameters 3) Window S	ettinas Bushina	Pin J	oint Contact	
Cars Couplers Air Brake	-			orings Bearings	5
New 1-Body Car	Insert Afte	r Copy	Insert	Delete	
		w Body as Compon		Delete	
New 3-Body Car		Components with Ma			
Box Car 🗸 🤟	Add Co	mponent As Indepe	ntent Bo	dy	
	_	-	-		
Body	Degrees of			sistance	
Locomotive Engine/Brake	Adhesion	Wheels & Axles	s Brak	e Graphics	Ļ
Use Air Brake M130				^	
Brake Model					
Air Brake M	30 Number				
Use Air Brake M133		•			
Car control one pata	-				
Brake M133 Number		Brake C		0.05067	
Auxiliary Res. Volume	0.0454	📕 🔻 🚽 🔤 🕹 🕹	Volume	0.004839	
Emergency Res. Volume	0.0605502	Frictio	n Coef.	0.35	
Pressure Difference	10342.0	Emergency Pressu	re Rate	-200000.0	
Relative Branch Pipe Pos.	0.0	Relative Pipe Er	nd Pos.	0.0	
Connecting Areas					
Brake Pipe-Auxiliary Res.	2.011E-06	Brake Pipe-Emer	g. Res.	1.096E-06	
Brake Pipe-Auxiliary Res. Brake Pipe-Atmosphere	2.011E-06	Brake Pipe-Emer Brake CylAuxilia	-	1.096E-06 2.0645E-0	
			ry Res.		
Brake Pipe-Atmosphere	1.267E-05	Brake CylAuxilia	ry Res.	2.0645E-0	
Brake Pipe-Atmosphere Brake CylEmerg. Res.	1.267E-05	Brake CylAuxilia Brake CylAtmo	ry Res. osphere	2.0645E-0	
Brake Pipe-Atmosphere Brake Cyl-Emerg. Res. <u>Brake Riqqinq</u> Ratio	1.267E-05 4.129E-06	Brake CylAuxilia Brake CylAtmo	ry Res. Isphere	2.0645E-0 4.458E-06	
Brake Pipe-Atmosphere Brake CylEmerg. Res. <u>Brake Rigging</u>	1.267E-05 4.129E-06	Brake CylAuxilia Brake CylAtmo	iry Res. Isphere	2.0645E-0 4.458E-06	

N.) The brake system may be defined for the remaining cars using a similar procedure and the data below:

Car Number	Brake M133 Number
1	1
2	1
3	1
4	1
5	-
6	2
7	2
8	2
9	2
10	-

6 LOADING A TRACK

- O.) In the "Track/Spline" Page, select "Open Default Track File".
- P.) Select "Load Track Data".

FINAL REMARKS 7

The proper braking procedure of a railroad vehicle system is crucial for stability and safety. The ability to numerically model and simulate a vehicle as the pneumatic brakes are applied and released can assist in the design and analysis of a proper braking method. This tutorial is intended to guide the user through some of the features of air brake modeling in ATTIF.

CDI will continue to develop ATTIF in order to provide users with an up-to-date tool for the simulation of detailed longitudinal train dynamics.