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A B S T R A C T

Much of our understanding of weed communities and their interactions with crops comes from studies

conducted at, or below, the spatial scale of individual fields. This scale allows for tight control of

experimental variables, but systematically ignores the potential for regional-scale environmental

variation to affect agronomic operations and thereby influence weed management outcomes. We

quantified linkages among agronomic, environmental and weed management characteristics of 174

commercial sweet corn fields throughout the north central United States and evaluated crop and weed

responses to these variables using classification and regression tree (CART) analysis. Multi-model

selection indicated that characteristics of weed management systems, especially total cost and herbicide

rate, were important predictors of weed diversity, interference and fecundity. Adding agronomic

variables, such as planting date, or environmental variables, such as latitude, explained additional

variation in weed floristic measures. We tested yield predictions of the most parsimonious CART model

against a verification data set comprised of over 1500 published observations from 25 experiments

conducted in the major North American regions where sweet corn is grown for processing. Yield values

fell within the 95% confidence interval of observed data for most branches of the tree, suggesting the

experimental and analytical approaches were reasonably robust. Several characteristics favoring sweet

corn productivity and weed management sustainability were identified. This work resulted in easily

interpretable models, both by scientists and producers, which place crop and weed responses within the

context of regional-scale variation in agricultural management and the environment.
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1. Introduction

Plant species composition and abundance at a given time reflect
outcomes from a suite of dynamic forces including environmental
characteristics, management practices and species interactions
(Harper, 1977). In agroecosystems, knowledge of weed community
structure is considered critical in the planning of sustainable weed
management systems and directing future research (Dewey and
Andersen, 2004; Thomas and Dale, 1991). This knowledge is
routinely used in a descriptive way, as when inventories of weed
species composition are used to characterize weed diversity of
specific agroecosystems, compare effectiveness of management
practices, and document changes in weed community structure
over time (Frick and Thomas, 1992; Van Acker et al., 2000; Webster
and Coble, 1997). Less frequent is the use of weed community data
to retrospectively understand the agronomic and environmental
forces shaping an agroecosystem.
* Corresponding author. Tel.: +1 217 2445476; fax: +1 217 3335251.

E-mail address: mmwillms@illinois.edu (M.M. Williams II).

0378-4290/$ – see front matter . Published by Elsevier B.V.

doi:10.1016/j.fcr.2009.05.005
The majority of North American sweet corn (Zea mays L.) is
grown for processing, with the Pacific Northwest and north central
region (NCR) accounting for most of the production. Illinois,
Minnesota, and Wisconsin account for 98% of the processing
production capacity in the NCR (U.S. Government Printing Office,
2006) and a majority of Canada’s sweet corn is produced in
southern Ontario (Statistics Canada, 2008). Environmental condi-
tions vary greatly within a growing season because sweet corn is
planted and harvested over a wide range of dates to optimize
processing plant capacity and extend market availability. More-
over, numerous crop production issues and niche produce markets
have resulted in some 600 commercial hybrids which vary
considerably in agronomic traits relevant to crop-weed interac-
tions (So et al., 2009; Williams et al., 2006).

Efficacy of weed management systems in sweet corn has
improved during the last five decades; however, weed interference
continues to compromise crop yield in a majority of fields despite
extensive use of herbicides (Williams et al., 2008b). Contradictory
experimental results among sites and years, particularly with non-
chemical tactics, call into question the extent that general weed
management recommendations can be broadly applied. We
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believe one reason for the lack of correspondence between weed
management research and performance in production fields may
be the small spatial scale at which most of our understanding of
weed–crop relations is constructed. Experimental data generated
and analyzed at, or below, the field scale may systematically ignore
salient variation in management and environmental factors that
are homogeneous within fields, but heterogeneous at a regional
scale. For instance, work by McDonald et al. (2004) identified
climatic drivers of competition between maize and velvetleaf
(Abutilon theophrasti Medik), namely, temperature following maize
establishment and water stress during exponential crop growth.
This knowledge improves not only the understanding of an
agroecosystem–environment interface, but will improve perfor-
mance of weed management decision support systems.
Fig. 1. Sampling locations (shaded counties)
The purpose of our work was to identify primary linkages
among agronomic, environmental and weed management char-
acteristics in commercial sweet corn production systems across
the NCR. We were particularly interested in how these linkages
relate to crop production issues such as weed interference and crop
yield.

2. Methods

One-hundred seventy-four fields grown under contract for
sweet corn were identified throughout the NCR in Illinois,
Minnesota and Wisconsin from 2005 to 2007 (Fig. 1). To help us
locate sweet corn fields over a range of harvest times (i.e. July
through early October), collaborators in the processing industry
of sweet corn fields from 2005 to 2007.



Table 1
Comparison of classification and regression tree (CART) models of sweet corn yield

and associated weed floristic measures in relation to agronomic, environmental and

weed management variables of commercial sweet corn fields in Illinois, Minnesota,

and Wisconsin in 2005 to 2007.

Dependent variable Predictorsa Size of treeb Variance explained (%)c

Crop yield E 0 0

A 4 24

W 1 27

E + A 8 41
E + W 1 5

A + W 9 38

E + A + W 3 21

Weed diversity E 2 38

A 6 37

W 7 40

E + A 1 35

E + W 1 35

A + W 8 51
E + A + W 1 35

Weed interference E 7 38

A 1 37

W 1 28

E + A 2 40

E + W 4 33

A + W 2 39

E + A + W 8 43

Weed fecundity E 2 33

A 1 12

W 2 12

E + A 1 19

E + W 8 46
A + W 1 21

E + A + W 1 43

a Abbreviations for classes of predictor variables: E = environmental (including

total precipitation from planting to harvest, growing degree days from planting to

harvest, latitude and state), A = agronomic (including planting date, hybrid

maturity and interrow cultivation), W = weed management (including herbicide

application timing (e.g. PRE, POST, both, or none), total herbicide application rate,

atrazine use and total weed management cost).
b Size of tree = the number of nodes in each CART.
c CART models for each dependent variable were built from factorial combina-

tions of the listed predictor variables, and the models explaining the greatest

proportion of observed variation in the data (shown in bold) were selected for

graphic presentation in Figs. 2–5.
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provided weekly lists of fields scheduled for harvest from which
random samples were drawn.

2.1. Data collection

The weed community at harvest (hereafter called ‘residual’
weed community) of each field was characterized using the
methodology of Thomas (1985) with some modification. Weed
species and density were enumerated in 30 1-m2 quadrats placed
randomly along a 300- to 500-m loop through the field, leaving a
20 m buffer area near field margins. Species that produced mature
(i.e. filled and hard) seed by the time of sweet corn harvest were
recorded. Based on weed community structure, crop and weed size
distributions, perceived loss of ear mass relative to weed-free
conditions, and expert opinion, fields were scored visually for
overall level of weed interference. One of four outcomes was used,
including 1 = no interference and yield loss unlikely; 2 = low
interference and yield loss of �5%; 3 = moderate interference and
yield loss >5 to �20%; and 4 = severe interference and yield loss
>20%. Complete details on weed sampling are provided by
Williams et al. (2008b).

After crop harvest, collaborators in the processing industry
provided copies of management records of sampled fields, from
which the following agronomic and environmental data were
extracted: previous crop, timing and type of tillage, crop row
spacing, irrigation practices, sweet corn hybrid, planting date,
herbicide usage (including preemergence herbicide (PRE) and/or
postemergence herbicide (POST) application dates and usage rates
of active ingredients), crop harvest date and yield. Based on tillage
and herbicide use in each field, weed management expenditures
were calculated using costs of herbicides (Boerboom et al., 2008)
and machinery costs for herbicide applications and tillage
practices (University of Minnesota Extension, 2008).

Daily rainfall and minimum and maximum air temperatures
were estimated for the period from planting to harvest from the
closest weather station to each field (Midwestern Regional Climate
Center, 2009). Growing degree days (GDD) were determined using
daily minimum and maximum air temperatures, where a base
temperature of 10 8C was used as the minimum temperature for
sweet corn growth. Cumulative GDD and cumulative precipitation
(PPT) were calculated for the periods of time including: planting to
application of POST herbicides (GDDPA, PPTPA), POST herbicide
application to harvest (GDDAH, PPTAH), and planting to harvest
(GDDPH, PPTPH).

2.2. Statistical analyses

The compiled data set for this study was large, encompassing
more than 20 environmental variables, more than 30 agronomic
variables, and floristic measures for 56 species. We used
classification and regression trees (CART; Breiman et al., 1984)
to highlight the primary associations between environmental,
agronomic and weed management variables to crop and weed
dependent variables, including crop yield, weed alpha diversity
based on the Shannon’s index, weed fecundity (number of species
producing viable seed) and level of weed interference. The number
of fields used for analyzing crop yield was 172; all other response
variables were analyzed with data from 174 fields.

The use of CART in analyzing complex ecological data sets has
become increasingly common due to the ability of this method to
describe patterns and processes for a wide range of data types,
including numerical and categorical data, with output that is
simple to understand (De’ath and Fabricius, 2000). The basic
algorithm underlying CART is to repeatedly partition a data set into
more and more homogeneous groups, evaluating the relative
‘‘impurity’’ of the data before and after a split to determine the
most parsimonious tree (Breiman et al., 1984). The output is
represented graphically as a dichotomous tree, with criteria for the
various splits (i.e. nodes) represented by values of classification or
numeric variables, dividing homogeneous groups onto terminal
branches (i.e. leaves). We implemented CART in the ‘‘rpart’’
package of R statistical computing software version 2.7.1 (R
Development Core Team, 2006). For each of the four dependent
variables, we found the most parsimonious model by examining
trees for the seven factorial combinations of environmental
(GDDPH, PPTPH, latitude and state), agronomic (interrow cultiva-
tion, irrigation practice, hybrid maturity and planting date), and
weed management variables (herbicide application timing [i.e.
PRE, POST, or both], total herbicide application rate, atrazine use
and total weed management costs) that maximized the proportion
of variance explained (Table 1). We evaluated the predictive power
of each candidate tree for each combination of dependent and
independent variables through 50 runs of 10-fold cross-validation,
in which nine-tenths of the data set was used to predict values in
the remaining tenth in each iteration (De’ath and Fabricius, 2000).

Following the reduction of data with CART models for each of
the four dependent variables of interest (crop yield and weed
diversity, interference and fecundity), we built multiple regression
models (Neter et al., 1996) for the same data types. Model selection
was accomplished in two phases. First, fitted CART models were
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used to help select independent variables to be included in the full
regression model for each dependent variable as follows: (a) crop
yield {cultivation (C), latitude (L), hybrid maturity (M), GDD,
planting date (P), C �M, C � L, GDD �M, M � L}; (b) weed
diversity {herbicide application rate (R), M, herbicide application
timing (H), P, management cost (Co), R �M, R � H, R � P}; (c) weed
interference {L, P, GDD, Co, PPT, L � P}; and (d) weed fecundity {L,
PPT, GDD, R, Co, state (S)}. Second, an automated maximum
likelihood model simplification routine (‘‘step’’) was used within
the lme4 library of R 2.7.1 (R Development Core Team, 2006) to
identify the most parsimonious model for each dependent variable
(i.e. the model that minimized the penalized log-likelihood
function, AIC, Akaike’s Information Criterion) out of the set of all
possible combinations of variables in the full model. Akaike
weights (wi), representing the weight of evidence in favor of the
selected model having the best fit to the data within the given set
of models, were calculated as

wi ¼
eð�1=2DiÞ

PR
r¼1 eð�1=2DrÞ

(1)

where Di represents the difference in AIC between the ith model in
the set (for which wi is being calculated) and the best model in the
set, R represents the total number of models within the set being
considered, and r represents individual models within the set
(Burnham and Anderson, 2002). Regression diagnostics were used
to determine whether the selected models met assumptions of
normality and homoscedasticity (Crawley, 2007). All models
performed well according to these criteria, therefore no transfor-
mations were applied. Finally, linear associations between
variables were quantified using Pearson correlation coefficients.
Fig. 2. Final classification and regression tree for crop yield. Mean sweet corn yield (Mt/

Explanation of variables: GDDPH, cumulative growing degree days from planting to ha
2.3. Yield model verification

A total of 25 experiments were conducted in recent years to
quantify crop-weed interactions in sweet corn under a range of
environmental conditions and agronomic practices, including
locations in Illinois, Oregon, Washington, and Ontario, Canada
(So et al., 2009; Williams, 2006, 2008; Williams and Masiunas,
2006; Williams et al., 2006, 2008a, 2009). Yield of 30 sweet corn
hybrids was quantified in the research under varying weed
management treatments (e.g. season-long weedy, partial weed
control, and season-long weed-free) that resulted in a range of
interference from weed species common to North America. Data
from this research were compiled into two verification sets; one
that included crop yields in all treatments regardless of weed
management level (ALL trts) and another that only included
experimental yield in weed-free treatments (WF trts), for a total of
1595 and 415 observations, respectively. Using the final CART
model for crop yield, each experimental observation was classified
to the appropriate leaf according to environmental and agronomic
variables specific to the observation. Experimental yield means
were compared to CART model yields using 95% confidence
intervals.

3. Results

3.1. Crop yield

The regression tree model explaining the largest amount of
variation in crop yield (41%) had eight nodes using only two
environmental variables (latitude and GDDPH) and three agro-
nomic variables (interrow cultivation, hybrid maturity and
ha) is reported below each node and leaf, with the number of fields in parentheses.

rvest; maturity, maturity of sweet corn hybrid; PD, crop planting date.
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planting date) (Table 1). The combination of interrow cultivation,
use of hybrids that matured in less than 84 days, and fields located
above 44.38N had the highest sweet corn yields (mean = 19.0 Mt/
ha) (Fig. 2). In contrast, fields requiring more than 1044 GDDPH

located above 41.98N without interrow cultivation had the lowest
yields (mean = 8.7 Mt/ha). The effect of planting earlier in the
season (before May 3) was associated with higher yields of most
hybrids (<84 days maturity) for interrow cultivated fields located
below 44.38N.

3.2. Weed diversity

The CART model with eight nodes using two agronomic
variables (hybrid maturity and planting date) and three weed
management variables (total herbicide rate, herbicide timing, and
weed management cost) was the most parsimonious model for
weed diversity (Table 1). Fields that received the highest herbicide
rates (�4.52 kg/ha) had the most diversity (Shannon’s
index = 1.59) (Fig. 3). In contrast, several fields receiving less than
1.42 kg/ha of herbicide had the lowest weed diversity (Shannon’s
index = 0.30). In some cases, fields planted on or after May 6 had
lower weed diversity indices than in fields planted before May 6.
See Williams et al. (2008b) for a detailed characterization of weed
species communities in these fields.

3.3. Weed interference

A combination of environmental, agronomic and weed manage-
ment variables resulted in a CART model accounting for most of the
variation in weed interference (43%) observed in growers’ fields
Fig. 3. Final classification and regression tree for weed diversity. Mean weed diversity (S

parentheses. Explanation of variables: cost, total weed management costs; maturity, ma

rate; timing, herbicide application timing (e.g. PRE, POST, both, or none).
(Table 1). Specific variables included planting date, weed manage-
ment cost, latitude, GDDPH and PPTPH. The highest weed
interference (mean = 2.9) was observed in fields below 42.28N,
planted before June 15, and when weed management costs
exceeded $142/ha (Fig. 4). In contrast, fields located above 42.28N
and planted after May 31 had among the lowest weed interference
(mean = 1.2). Low precipitation from planting to harvest
(<210 mm) and longer periods of crop growth were associated
with fields with greater weed interference.

3.4. Weed fecundity

The CART model explaining the largest amount of variation in
weed fecundity (46%) had eight nodes using four environmental
variables (latitude, state, and GDDPH and PPTPH) and two weed
management variables (total herbicide rate and weed manage-
ment cost) (Table 1). Fields with the lowest fecundity (mean = 0.5
species/field) were in Illinois and Minnesota above 41.98N when
PPTPH was �186 mm (Fig. 5). The combined effect of weed
management costs less than $148/ha, PPTPH < 209 mm, and fields
below 41.98N had the highest weed fecundity (mean = 5.2 species/
field). In fields below 41.98N, greater PPTPH (�209 mm), longer
crop growth periods (�991 GDDPH), and lower herbicide use
(<4.25 kg/ha) were associated with reductions in weed fecundity.

3.5. Comparison of CART and multiple regression

The most parsimonious multiple regression models for each of
the four dependent variables of interest provided strong support
for the effects of agronomic, environment, and weed management
hannon’s index) is reported below each node and leaf, with the number of fields in

turity of sweet corn hybrid; PD, crop planting date; rate, total herbicide application



Fig. 4. Final classification and regression tree for weed interference. Mean weed interference (scale from 1 = none to 4 = severe) is reported below each node and leaf, with the

number of fields in parentheses. Explanation of variables: cost, total weed management costs; GDDPH, cumulative growing degree days from planting to harvest; maturity,

maturity of sweet corn hybrid; PD, crop planting date; PPTPH, cumulative precipitation from planting to harvest.
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effects on sweet corn yield and weed floristic measures described
by the CART models (Table 2). For instance, the multiple regression
model for crop yield showed a cultivation by latitude interaction
(p < 0.001). This interaction is evident in the CART yield model
(Fig. 2), whereby in the absence of interrow cultivation, crop yield
is superior at lower latitudes (i.e. <41.98N). However when
cultivation is practiced, crop yield is superior in northern latitudes
(i.e.>44.38N). While the multiple regression models also provide a
quantitative description of response variables, the benefit of the
CART approach is that the models are readily interpretable and
could be used for educational purposes.

3.6. CART yield model verification

Greater parsimony was observed between yields in the CART
model and field experiments when the verification data set
contained data only from weed-free plots. The CART yields at
leaves b, c, d, e, and i were within the 95% confidence intervals of
the weed-free experimental yields (Fig. 6). The CART yields were
less than weed-free experimental yields for leaves f and g. In
contrast, experimental yields of the complete verification data set
(all treatments) were in agreement with CART yields only at leaves
d, e, and i.

4. Discussion

By using CART analysis on agricultural and environmental data
from �172 fields, we identified the combination of best predictors
of crop yield and residual weed diversity, interference and
fecundity. The most parsimonious models explained between
41% and 51% of the variation observed in several crop and weed
floristic measures. Including additional explanatory variables (e.g.
fertility practices, soil moisture and disease severity) might explain
small amounts of additional variation; however, our analysis
resulted in models that explained the most variation possible with
the fewest variables for which reliable information could be
obtained (Breiman et al., 1984). This work is practical, in that easily
interpretable models were developed, reflecting crop and weed
responses relevant to the current agriculture–environment inter-
face.

Use of the longest maturing hybrids in the northern latitudes of
the NCR is currently avoided, likely because of concern of
insufficient thermal time to maturity. This was supported by the
relationship between latitude and maximum hybrid maturity,
where a strong negative correlation (�0.982; p = < 0.001) was
observed at latitudes above 418N. However, as long as a particular
hybrid maturity group was appropriate to a shorter season, these
northern latitudes provided more favorable growing conditions
than to the south, as evidenced by the highest crop yields (Fig. 2).
High temperatures and drought are two major abiotic stresses
continuing to limit yield improvement in maize (Duvick, 2005).
Higher yields in the model in the most northern latitudes (e.g.
>448N) are likely due to decline in the frequency of heat stress with
increasing latitudes in the NCR (Midwestern Regional Climate
Center, 2009). In the rest of the production region (e.g. <448N),
planting earlier in the season (e.g. <May 3) resulted in higher



Fig. 5. Final classification and regression tree for weed fecundity. Mean weed fecundity (no. species producing viable seed/field) is reported below each node and leaf, with the

number of fields in parentheses. Explanation of variables: cost, total weed management costs; GDDPH, cumulative growing degree days from planting to harvest; maturity,

maturity of sweet corn hybrid; PPTPH, cumulative precipitation from planting to harvest; rate, total herbicide application rate.
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yields than later plantings (Fig. 2). Compared to earlier plantings,
later plantings at these latitudes are subject to more biotic and
abiotic stresses, and sometimes decreased yield potential (Wil-
liams, 2008). For instance, populations of several serious insect and
disease pests of sweet corn are transported from the south and
increase during the planting season, creating more stressful
environmental conditions to later-planted sweet corn (Revilla
and Tracy, 1997; Tracy, 2001).

Agreement between CART yields and weed-free experimental
yields showed relatively robust linkages among agronomic and
environmental variables that comprised the final CART yield model
(Fig. 6). However, yield for leaves f and g was not consistent with
experimental yields. The verification data set testing leaf g

represented data entirely from central Illinois. In previous work
(Williams et al., 2008b), we found yield loss due to weed
interference in growers’ fields in Illinois was higher than fields
in Minnesota and Wisconsin. Perhaps the weed-free data in the
verification failed to accurately characterize the extent of weed
interference more commonly observed in growers’ fields at leaf g.
This is supported by the observation that the CART model yield
exceeded experimental sweet corn yield at leaf g when the
complete verification data set (ALL trts) was used (Fig. 6). Higher
CART yield, relative to yield in the complete verification data set
(ALL trts), may be explained by severe weed treatments (e.g.
season-long weedy) resulting in artificially high yield losses,
skewing experimental yields below that of growers’ fields. Also, the
CART model showed lower sweet corn yield at leaf f. The
verification data set testing leaf f was represented heavily by
experimental data from Washington; the warm days, cool nights,
irrigation, and low humidity result in higher-yielding plants with
fewer disease issues compared to the NCR (Tracy, 2001; U.S.
Government Printing Office, 2006; Williams et al., 2006). By
limiting the verification data set to only NCR fields, CART model
yield was similar to the complete verification data set yield (data
not shown).

An unexpected result was that weed diversity was highest in
fields that received the highest herbicide rates (e.g. >4.52 kg/ha),
and diversity was low in fields receiving some of the lowest
herbicide rates (e.g. <1.42 kg/ha) (Fig. 3). Greater herbicide use is
unlikely to be a cause of higher weed diversity; herbicide rates
were more likely increased in response to greater severity of local
weed problems. The decline in weed diversity in fields planted on
or after May 6 is likely the result of several factors associated with
later-season plantings, including: reduced weed seedbank den-
sities (Buhler and Gunsolus, 1996; Gower et al., 2002), decreased
emergence frequency of early emerging species, and for mid-June
and July plantings, greater weed suppressive ability of sweet corn
(Williams, 2006, 2009). Several researchers have discussed
potential benefits of maintaining weed diversity in agroecosys-
tems below levels resulting in crop losses (Clements et al., 1994;
Dekker, 1997). In this work, a positive correlation (0.204, p = 0.007)
was observed between weed diversity and weed interference,
indicating more diverse fields were associated with greater weed
interference and crop yield loss.



Table 2
Multiple regression models of agronomic, environmental, and weed management effects on sweet corn yield and weed floristic measures of commercial sweet corn fields in

Illinois, Minnesota and Wisconsin in 2005–2007.

Dependent variable Predictorsa Parameter estimates Model performancec

F(dfn,dfd) P > F R2 wi

Crop yield Intercept �7.22 6.05(5,166) <0.0001 0.13 0.50

Cultivation 29.28

Maturity 0.34*b

Latitude �0.15

C �M �0.55**

C � L �0.43y

Weed diversity Intercept �2.76* 10.45(6,166) <0.0001 0.25 0.42

Herbicide (none) 0.94y
Herbicide (POST) 0.33*

Herbicide (PRE) 0.16*

Maturity 0.034*

Herbicide a.i. kg ha�1 0.22***

Weed control cost 0.0019y

Weed interference Intercept 4.43* 5.41(4,168) <0.001 0.10 0.39

GDD 0.001y
Latitude �0.065*

Planting date �0.0089**

Weed control cost 0.0044*

Weed fecundity Intercept 12.53* 12.57(4,169) <0.0001 0.21 0.47

State (MN) �1.35*

State (WI) �0.24*

PPT �0.004y
Latitude �0.209y

a Explanation of predictor abbreviations: cultivation = interrow cultivation used in production system; maturity = hybrid maturity; herbicide a.i. kg ha�1 = kilograms of

herbicide active ingredient applied per hectare; GDD = growing degree days (base 10) accumulated between planting and harvest; PPT = precipitation (mm) accumulated

between planting and harvest.
b The symbols y, *, ** and *** denote significance of individual regression parameters at the 0.10, 0.05, 0.01 and 0.001 a levels, respectively.
c Explanation of model performance abbreviations: dfn and dfd = numerator and denominator degrees of freedom, respectively; wi ¼ Akaike weights.
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The greatest weed interference was observed in fields located in
the southern part of the production region, planted before mid-
June, and when weed management costs exceeded $142/ha (Fig. 4).
Greater weed interference in earlier plantings was consistent with
other work (Williams, 2006, 2009; Williams and Lindquist, 2007)
that also documented more competitive weed communities in
April and May plantings, compared to later-season plantings.
Later-planted fields generally had less weed interference in this
work, too, as evidenced by a negative correlation (�0.19; p = 0.013)
Fig. 6. Verification of final classification and regression tree (CART) for sweet corn

yield. Leaves correspond to terminal nodes of the CART shown in Fig. 2. The CART

yield represents observed sweet corn yield from 172 growers’ fields in Illinois,

Minnesota, and Wisconsin. Experimental yield is sweet corn yield from

independent field experiments (25 experiments total) conducted in Illinois,

Oregon, Washington (U.S.), and Ontario (Canada). Experimental yield included

data sets that contained all weed management treatment levels (ALL trts) and only

weed-free treatments (WF trts). Error bars represent 95% confidence intervals.
between weed interference and harvest date. Finally, greater weed
interference in fields with low precipitation and long periods of
crop growth could be explained in part by reduced uptake and
efficacy of PRE and POST herbicides under dry conditions (Medd
et al., 2001), as well as decline in soil herbicide bioavailability over
time (Appleby, 1985).

In the NCR, sweet corn is often rotated with field corn or
soybean (Glycine max (L.) Merr.). Unlike sweet corn, which has a
relatively short growth period, weeds persisting in field corn and
soybean often complete their life cycle, senesce, and annual species
produce abundant viable seed. Not all weed species selected under
these long-season conditions produce viable seed by the time of
sweet corn harvest (Williams, 2009; Williams et al., 2008b).
Further evidence of the severity of weed populations in the
southern part of the production region was that latitude was the
strongest predictor of fecundity, with higher fecundity in most
Illinois fields compared to Minnesota and Wisconsin (Fig. 5). This
work shows that low precipitation is associated with increased
fecundity, which could be attributed to reduced herbicide activity
mentioned earlier, and reduced growth and interference from the
crop. Furthermore, the highest weed fecundity was observed when
weed management costs were below $148/ha. The lower weed
management costs were the result of using less-expensive
herbicides, which may have had a narrower spectrum or poorer
level of control. For some fields, lower herbicide use was associated
with reduced weed fecundity. Most newer herbicides are applied
at considerably lower use rates than older herbicides such as
atrazine (6-chloro-N-ethyl-N0-(1-methylethyl)-1,3,5-triazine-2,4-
diamine), the most widely used herbicide in North American sweet
corn. In this work, atrazine was applied to all fields where>3 kg/ha
of total herbicide was applied. We saw no difference in weed
management expenditures between programs that did or did not
include atrazine (data not shown). Again, it appears the weediest
fields (in terms of weed diversity, interference and fecundity)
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received the highest rates of herbicides. Because atrazine is
relatively inexpensive and largely effective, the herbicide con-
tinues to be used extensively, particularly in fields with a weed
community that is difficult to manage.

5. Conclusion

This research quantified linkages between the environment and
agricultural practices, and their relation to crop and weed
responses in North American sweet corn production. Using a
CART modeling approach, characteristics of weed management
systems such as total cost and herbicide rate were important
predictors of all weed response variables. Adding agronomic
variables (e.g. planting date) or environmental variables (e.g.
latitude, GDDPH, PTPH) helped explain additional variation in weed
diversity, interference and fecundity. Several characteristics of
more sustainable weed management systems were identified,
including: (1) planting weediest fields in June or July, (2) adequate
precipitation or irrigation likely improved herbicide activity, (3)
the northern part of the NCR (above �428N) has lower weed
interference and fecundity in sweet corn, and (4) while particularly
weedy fields may be receiving greater herbicide use (in terms of
multiple applications and elevated rates), these inputs are unlikely
to be highly effective and protect yields compared to less-weedy
fields with lower weed seedbanks. In addition, several character-
istics that benefit sweet corn productivity were identified,
including: (1) use of interrow cultivation, (2) planting less-weedy
fields before June, and (3) choosing the latest maturing hybrid
within each site-specific growing season. Results from this analysis
are intuitive and supported by published literature. Clear trends
emerged from data on fields dispersed in space and time,
suggesting a robust approach to quantifying crop and weed
responses to the agroecosystem–environment interface.
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