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Abstract

The first ever human vs. computer no-limit Texas hold ’em competition took place from April 24–
May 8, 2015 at River’s Casino in Pittsburgh, PA. In this article I present my thoughts on the competition
design, agent architecture, and lessons learned.

1 Introduction

The first ever human vs. computer no-limit Texas hold ’em competition took place from April 24–May
8, 2015 at River’s Casino in Pittsburgh, PA, organized by Carnegie Mellon University Professor Tuomas
Sandholm. 20,000 hands of two-player no-limit Texas hold ’em were played between the computer program
“Claudico” and four of the top human specialists in this variation of poker, Dong Kim, Jason Les, Bjorn Li,
and Doug Polk (so 80,000 hands were played in total).1

To evaluate the performance, we used “duplicate” scoring, in which the same hands were played twice
with the cards reversed to reduce the role of luck (and thereby the variance).2 Each human was given a
partner, who played the identical hands against Claudico with the cards reversed. Polk was paired with Les,
and Kim was paired with Li. The players played in two different rooms of the casino simultaneously, with
one player from each of the pairings in each room. In total, the humans ended up winning the match by
732,713 chips, which corresponds to a win rate of 9.16 big blinds per 100 hands (BB/100),3 a common
∗Copyright c© 2015 Sam Ganzfried. Initially posted on September 23, 2015.
†The competition was organized by Professor Tuomas Sandholm, and the agent was created by Noam Brown, Sam Ganzfried,

and Tuomas Sandholm. This article contains the author’s personal thoughts on the event. Some of the work described in this
article was performed while the author was a student at Carnegie Mellon University before the completion of his PhD. The article
reflects the views of the author alone and not necessarily those of Carnegie Mellon University. The work done at Carnegie Mellon
University was supported by the National Science Foundation under grants IIS-1320620, IIS-0964579, and CCF-1101668, as well
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1Doug Polk tweeted a list on 2/28/2015 ranking himself at number one, Kim number two, Li number three, and Les
(according to speculation on his screenname) within the top ten, https://twitter.com/DougPolkPoker/status/
571647246074163201. Several other players have also created lists placing Polk at number one (e.g., Nick Frame tweeted
one on 9/28/2014, https://twitter.com/TCfromUB/status/516396810433486848). While these rankings are
largely subjective, they are based on some objective factors; e.g., if player A beats player B over a significant sample of hands,
or if player A is willing to play against player B but player B refuses to play against player A (i.e., by leaving the table when
player A sits in against him), then these indicate an advantage of player A over player B. If one player contests the ranking
and believes he is better than someone ranked higher, then a challenge can ensue (e.g., Kim and Frame played a challenge
match in February 2015, https://www.pokerstars.com/en/blog/2015/dong-donger-kim-kyu-and-nick-
tcfromub-frame-on-their-unique-heads-up-challenge-up-challenge-154091.shtml).

2For example, suppose human A has pocket aces and the computer has pocket kings, and A wins $5,000. This would indicate
that the human outplayed the computer. However, suppose human B has the pocket kings against the computer’s pocket aces in
the identical situation and the computer wins $10,000. Then, taking both of these results into account, an improved estimator of
performance would indicate that the computer outplayed the human, after the role of luck in the result was significantly reduced.

3The small blind (SB) and big blind (BB) correspond to initial investments, or “antes” of the players. In the match, the SB was
50 chips and the BB was 100 chips.
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metric used to evaluate performance in poker. This was a relatively decisive win for the humans and was
statistically significant at the 90% confidence level, though it was not statistically significant at the 95%
level.4

The chips were just a placeholder to keep track of the score and did not represent real money; the
humans were paid at the end from a prize pool of $100,000 which had been donated from River’s Casino
and Microsoft Research. The human with the smallest profit over the match received $10,000, while the
other humans received $10,000 plus additional payoff in proportion to the profit above the lowest profit.
Formally, let x1, x2, x3, x4 denote the profits of the four humans from highest to smallest, and let pi denote
the corresponding payoffs. Then

If x1 > x4 (1)

p1 = $10, 000 + $60, 000 · x1 − x4
x1 + x2 + x3 − 3x4

(2)

p2 = $10, 000 + $60, 000 · x2 − x4
x1 + x2 + x3 − 3x4

(3)

p3 = $10, 000 + $60, 000 · x3 − x4
x1 + x2 + x3 − 3x4

(4)

p4 = $10, 000 (5)

Else (6)

p1 = p2 = p3 = p4 = $25, 000 (7)

This scheme ensured that all players received at least $10,000 and that payoffs were increasing in profit,
giving each human a financial incentive to try their best individually.

While this was the first man vs. machine competition for the no-limit variant of Texas hold ’em, there had
been two prior competitions for the limit variant. In the limit variant all bets are of a fixed size, while in no-
limit bets can be of any number of chips up to the amount remaining in a player’s stack (the stacks are reset to
a fixed amount of 200 big blinds at the start of each hand). Thus, the game tree for no-limit has a much larger
branching factor and is significantly larger; there are 10165 nodes in the game tree for no-limit, while there
are around 1017 nodes for limit [16]. In 2007 a program called Polaris that was created by researchers at the
University of Alberta played four duplicate 500-hand matches against human professionals. The program
won one match, tied one, and lost two, thus losing the match overall. In 2008 an improved version of Polaris
competed against six human professionals in a second match, this time coming out victorious (three wins,
two losses, and one tie). There have also been highly-publicized man vs. machine competitions for other
games; for example, chess program Deep Blue lost to human expert Garry Kasparov in 1996 and beat him
in 1997, and Jeopardy agent Watson defeated human champions in 2011.

Claudico is Latin for “I limp.” Limping is the name of a specific play in poker. After the initial antes
have been paid, the first player to act is the small blind and he has three available actions; fold (forfeit the
pot), call (match the big blind by putting in 50 chips more), or raise by putting in additional chips beyond
those needed to call (a raise can be any integral amount from 200 chips up to 20,000 chips in this situation).
The second option of just calling is called “limping” and has traditionally been viewed as a very weak play
only made by bad players. In one popular book on strategy, Phil Gordon writes, “Limping is for Losers.
This is the most important fundamental in poker—for every game, for every tournament, every stake: If you
are the first player to voluntarily commit chips to the pot, open for a raise. Limping is inevitably a losing

4To put these results into some perspective, Dong Kim won the challenge described above against Nick Frame by 13.87
BB/100 (he won by $103,992 over 15,000 hands with blinds SB=$25, BB=$50), http://www.pokergurublog.com/
content/donger-kim-wins-heads-challenge-against-tcfromub, and Doug Polk defeated Ben Sulsky in an-
other high-profile challenge match by 24.67 BB/100 (he won by $740,000 over 15,000 hands with blinds SB = $100, BB =
$200), http://www.pokernews.com/news/2013/10/doug-polk-defeats-ben-sulsky-16618.htm.
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play. If you see a person at the table limping, you can be fairly sure he is a bad player. Bottom line: If
your hand is worth playing, it is worth raising” [13]. Claudico actually limps close to 10% of its hands,
and based on discussion with the human players who did analysis it seems to have profited overall from the
hands it limped. Claudico also makes several other plays that challenge conventional human poker strategy;
for example it sometimes makes very small bets of 10% of the pot, and sometimes very large all-in bets for
many times the pot (e.g., betting 20,000 into a pot of 500). By contrast, human players typically utilize a
small number of bet sizes, usually between half pot and pot.

2 Agent Architecture

Claudico was an improved version of an earlier agent called Tartanian7 that came in first place in the 2014
AAAI computer poker competition, beating each opposing agent with statistical significance. The architec-
ture of that agent has been described in detail in a recent paper [3]. At a very high level, the design of the
agent follows the three-step procedure depicted in Figure 1, which is the leading paradigm used by many of
the strongest agents for large games.

Nash equilibrium Nash equilibrium 

Original game 

Abstracted game 

Abstraction algorithm 

Custom algorithm 

for finding a Nash 

equilibrium 

Reverse mapping 

Figure 1: Leading paradigm for solving large games.

In the first step, the original game is approximated by a smaller abstract game that hopefully retains
much of the strategic structure of the initial game. The first abstractions for two-player Texas hold ’em were
manually generated [2, 22], while current abstractions are computed algorithmically [9, 10, 12, 18, 23]. For
smaller games, such as Rhode Island hold ’em, abstraction can be performed losslessly, and the abstract
game is actually isomorphic to the full game [11]. However, for larger games, such as Texas hold ’em, we
must be willing to incur some loss in the quality of the modeling approximation due to abstraction.

The second step is to compute an ε-equilibrium in the smaller abstracted game, using a custom iterative
equilibrium-finding algorithm such as counterfactual regret minimization (CFR) [24] or a generalization of
Nesterov’s excessive gap technique [14].

The final step is to construct a strategy profile in the original game from the approximate equilibrium
of the abstracted game by means of a reverse mapping procedure. When the action spaces of the original
and abstracted games are identical, this step is often straightforward, since the equilibrium of the abstracted
game can be played directly in the full game. However, even in this simplified setting often significant
performance improvements can be obtained by applying a nontrivial reverse mapping. Several procedures
have been shown to significantly improve performance that modify the action probabilities of the abstract
equilibrium strategies by placing more weight on certain actions [3, 8]. These post-processing procedures
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are able to achieve robustness against limitations of the abstraction and equilibrium-finding phases of the
paradigm.

When the action spaces of the original and abstracted games differ, an additional procedure is needed to
interpret actions taken by the opponent that are not allowed in the abstract game model. Such a procedure is
called an action translation mapping. The typical approach for performing action translation is to map the
opponent’s action to a nearby action that is in the abstraction (perhaps probabilistically), and then respond
as if the opponent had taken this action.

An additional crucial component of Claudico, that was not present in Tartanian7 due to a last-minute
technical difficulty (thought a version of it was present in prior agent Tartanian6), is an approach for real-time
computation of solutions in the part of the game tree that we have reached to a greater degree of accuracy
than in the offline computation, called endgame solving, which is depicted in Figure 2 [7]. At a high level,

Figure 2: Endgame solving (re-)solves the relevant endgame that we have actually reached in real time to a
greater degree of accuracy than in the offline computation.

endgame solving works by assuming both agents follow the precomputed approximate equilibrium strategies
for the trunk portion of the game prior to the endgame; then the endgame induced by these trunk strategies
is solved, using Bayes’ rule to compute the input distributions of players’ private information leading into
the endgame. In general, such a procedure could produce a non-equilibrium strategy profile (even if the
full game has a unique equilibrium and a single endgame); for example, in a sequential version of rock-
paper-scissors where player 1 acts and then player 2 acts without observing the action taken by player 1, if
we fix player 1 to follow his equilibrium strategy of randomizing equally among all three actions, then any
strategy for player 2 is an equilibrium in the resulting endgame, because each one yields her expected payoff
0. In particular, the equilibrium solver could output the pure strategy Rock for her, which is clearly not an
equilibrium of the full game. On the other hand, endgame solving is successful in other games; for example
in a game where player 1 first selects an action ai and then an imperfect-information game Gi is played,
we could simply solve the Gi corresponding to the action ai that is actually taken, provided that the Gi are
independent and no information sets extend between several Gi. Furthermore, endgame solving has been
previously demonstrated to improve performance empirically against strong computer programs in no-limit
Texas hold ’em [7].

We used the endgame solver to compute our strategies in real time for the final betting round of each
hand, called the river.5 Despite the theoretical limitation of the approach, Doug Polk related to me in
personal communication after the competition ended that he thought the river strategy of Claudico using the
endgame solver was the strongest part of the agent.

2.1 Offline abstraction and equilibrium computation

Claudico’s action abstraction was manually generated and consisted of sizes ranging from 0.1 pot in certain
situations to all-in (wagering all of one’s remaining chips). The information abstraction was computed using

5There are (up to) four betting rounds in a hand of Texas hold ’em poker. First both players are dealt two private cards and there
is an initial round called preflop. Then three public cards are dealt and there is the flop. Then there is one more additional public
card on the turn, followed by one final public card in the river betting round.
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a hierarchical algorithm that first clustered the three-card public flop boards into public buckets, then clus-
tered the private information states for each postflop round (i.e., flop, turn, river) separately for each public
bucket (no information abstraction was performed for the preflop round) [3]. This hierarchical abstraction
algorithm allowed us to apply a new scalable distributed version of CFR [3]. We ran the equilibrium-finding
algorithm for several months on Pittsburgh’s Blacklight supercomputer using 961 cores (60 blades of 16
cores each, plus one core for the head blade, with each blade having 128 GB RAM).

2.2 Action translation

For the action translation mapping, we used the pseudo-harmonic mapping, which maps a bet x of the
opponent to one of the nearest sizes in the abstraction A,B according to the following formula, where f(x)
the probability that x is mapped to A [6]:

f(x) =
(B − x)(1 +A)

(B −A)(1 + x)
.

This mapping was derived from analytical solutions of simplified poker games and has been demonstrated
to outperform prior approaches in terms of exploitability in simplified games, as well as the best prior
approach in terms of empirical performance against no-limit Texas hold ’em agents. The mapping also
satisfies several axioms and theoretical properties that the best prior mappings do not satisfy, for example it
is Lipschitz continuous in A and B, and therefore robust to small changes in the actions used in the action
abstraction.

As an example to demonstrate the operation of the algorithm, suppose the opponent bets 100 into a pot
of 500, and that the closest sizes in our abstraction are to “check” (i.e., bet 0) or to bet 0.25 pot: so A = 0
and B = 0.25. Plugging these in gives f(x) = 1

6 = 0.167. This is the probability we map his bet down to 0
and interpret it as a check. So we pick a random number in [0,1], and if it is above 1

6 we interpret the bet as
0.25 pot, and otherwise as a check.

2.3 Post-processing

We used additional post-processing techniques to round the action probabilities that had been computed by
the offline equilibrium-finding algorithm [8]. We used a generalization of the prior approach that applied
a different rounding threshold for each betting round (i.e., action probabilities below the threshold were
rounded to zero and then all probabilities were renormalized), with a more aggressive (i.e., larger) threshold
used for the later betting rounds, since the equilibrium-finding algorithm obtains worse convergence for
those rounds due to having fewer samples. We did not apply any post-processing for ourselves on the river
when using the endgame solver, and assumed neither agent used any post-processing in the generation of
the trunk strategies used as inputs to the endgame solver.6

6It may seem somewhat strange that we applied post-processing for our own play, but assumed that no post-processing was
applied for the trunk strategies entering the endgame, and that this may be problematic due to the mismatch between our own
strategy and the model of it entering the endgame. We chose to do this because the endgame solving approach can be less robust if
the input strategies have weight on only a small number of hands (as an extreme example, if all the weight was on one hand, then
the endgame solver would assume that the other agent knew our exact hand, and the solution would require us to play extremely
conservatively). The approach is much more robust if we include a small probability on many different hands before the post-
processing was applied. We believed that the gain in robustness outweighed the limitation of the mismatch (in addition to the
reasons given above, we already expect there to be a mismatch between the input trunk strategy for the opponent, which is based
off our offline equilibrium computation, and his own actual strategy, and thus we would not be removing this mismatch completely
even if we eliminated it for our own strategy).

5



2.4 Endgame solving

The endgame solving algorithm consists of several steps [7]. First, the joint hand-strength input distributions
are computed by applying Bayes’ rule to the precomputed trunk strategies, utilizing a recently developed
technique that requires only a linear number of lookups in the large strategy table (while the naı̈ve approach
requires a quadratic number of lookups and is impractical). Then the equity is computed for each hand, given
these distributions.7 Then hands are bucketed separately for each player based on the computed equities for
the given situation by applying an information abstraction algorithm. Finally an exact Nash equilibrium is
computed in the game corresponding to this information abstraction and an action abstraction that had been
precomputed for the specific pot and stack size of the current hand. All of this computation was done in
real time during gameplay. To compute equilibria within the endgames, we used Gurobi’s parallel linear
program solver [15] to solve the sequence-form optimization formulation [19].

3 Problematic Hands

Several notable hands stood out during the course of the competition that highlighted weaknesses of the
agent, which have been singled out in a thread that was devoted entirely to the competition on the most
popular poker forum, the Two Plus Two Poker Forum.8

1. In one hand, we had A4s (ace and four of the same suit) and folded preflop after we had put in over
half of our stack (the human opponent had 99). This is regarded as a bad play, since we would only
need to win around 25% of the time against the opponent’s distribution for a call to be profitable at this
point (we win about 33% of the time against the hand he had). The problem was that our translation
mapping mapped the opponent’s raise down to a smaller size, which caused us to look up a strategy for
ourselves that had been computed thinking that the pot size was much smaller than we thought it was
(we thought we had invested around 7,000 when we had actually invested close to 10,000—recall that
the starting stacks are 20,000). These translation issues can get magnified further as the hand develops
if we think we have bet a percentage (e.g., 2

3 ) of the (correct) size of the pot, while the strategies we
have precomputed assumed a different size of the pot.

2. In another hand we had KT and folded to an all-in bet on the turn after putting in about 3
4 of our stack

despite having top pair and a flush draw (there were three diamonds on the board and we had the king
of diamonds; the opponent actually had A2 with the ace of diamonds, for a better flush draw but worse
hand due to us having a pair already). The issue for this hand was that the human made a raise on
the flop which was slightly below the smallest size we had in our abstraction in that situation, and we
ended up mapping it down to just a call (it was just mapped down with around 3% probability in that
situation, and so we ended up getting pretty “unlucky” that we mapped it in the “wrong” direction).
This ended up causing us to think we had committed far fewer chips to the pot at that point than we
actually had.

7The equity of a hand against a distribution for the opponent is the probability of winning plus one half times the probability of
tying.

8The thread discussing the event has 232,252 views and 1,609 posts as of September 23, 2015, http:
//forumserver.twoplustwo.com/29/news-views-gossip-sponsored-online-poker-report/
wcgrider-dong-kim-jason-les-bjorn-li-play-against-new-hu-bot-1526750/. Here are links to
some of the posts in the thread that relate to the hands described: hand 1 http://forumserver.twoplustwo.com/
showpost.php?p=46888848&postcount=1275, hand 2 http://forumserver.twoplustwo.com/showpost.
php?p=46802181&postcount=831, hand 3 http://forumserver.twoplustwo.com/showpost.php?p=
46773302&postcount=457. Note a minor clarification that Claudico invested closer to 75% than 80% of its stack in hand 2.
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The problem in these hands was not due simply to a flaw in the action translation mapping, or even to
a flaw in the action abstraction (though of course improvements to those would be very beneficial as well);
even if we had used a different translation mapping and/or used different action sizes in the abstraction, we
would still have potentially sizable gaps between certain sizes of the abstraction due to the fact that we can
only select so many to keep the abstraction sufficiently small so that it can be solved within time and memory
limits. That means that, given the current paradigm, we will necessarily have to map bets to sizes somewhat
far away with some probability, which will cause our perception of the pot size to be incorrect, as these hands
indicate. This is called the “off-tree problem,” which has received very little study thus far. Some agents,
such as versions of the agent from the University of Alberta, attempt to mitigate this problem by specifically
taking actions aimed to get us back on the tree (e.g., making a bet that we would not ordinarily make to
correct for the pot size disparity). However, this is problematic too, as it requires us to take an undesirable
action. The endgame solving approach provides a solution to this problem by inputting the correct pot size to
the endgame solving algorithm, even if this differs from our perception of it at that point due to the opponent
having taken an action outside of the action abstraction. In general, real-time endgame solving could correct
for many misperceptions in game state information that have been accumulated along the course of game
play; however, this would not apply to the preflop, flop, and turn rounds, where we are not using endgame
solving. Thus it is necessary to explore additional approaches to this problem; improved algorithms for real-
time computation for the earlier rounds is a potentially promising direction, and perhaps new approaches
can also be developed for addressing the off-tree problem independently of endgame solving.

We went over the log files for these two specific hands with Doug Polk in person after the competition
had ended, and he agreed that our plays in both hands were reasonable had the pot size been what our
computed strategies perceived it to be at that point. Of course, we both agree that the hands were both major
mistakes if you include the misperception of the pot size. Even though these were only low probability
mistakes due to the randomization outcome selected by the translation mapping, these types of mistakes can
become a significant liability in aggregate, particularly when playing against humans who are aware of them
and actively trying to exploit them. Doug alluded to this point as well in an interview after the competition.9

Based on Doug’s interview and subsequent conversations it seems that he views this as Claudico’s biggest
weakness, and it will be interesting to see what improvements can be found, and whether those can be
exploited in turn by good countermeasures.

3. In one other problematic hand, we made a large all-in bet (of around 19,000) into a relatively small
pot of around 1700. There were three of a suit (spades) on the board, and we had a very weak hand
without a fourth spade (so our bet was a “bluff,” hoping the opponent would fold a stronger hand).
The problem is not that we made a large bet per se, or even that we did it with a very weak hand;
extremely large bets are correct and part of equilibrium strategy in certain situations,10 and in such
situations they must be made with some weak hands as bluffs to balance with the very strong “value”
hands or else our strategy would be too predictable (if we never bluffed, then the opponent would
just fold everything except his hands that beat half of our value hands, and then the bets with the

9 http://www.highstakesdb.com/5793-exclusive-interview-with-no1-hunl-player-doug-
wcgrider-polk.aspx

10As one example, Ankenman and Chen describe a game called the “Clairvoyance Game” where player 1 is dealt a winning/losing
hand with probability 1

2
each, and is allowed to bet any amount up to initial stack n into a pot of 1; then player 2 can call or fold [1].

(Player 1 knows whether he has a winning or losing hand, while player 2 does not know player 1’s hand.) They analytically
solve for the unique Nash equilibrium of the game, and it has player 1 betting all-in for n with his winning hand, and betting
all-in with some probability with his losing hand, and checking with some probability (the probability is selected to make player
2 indifferent between calling and folding); player 2 then calls and folds with some probability (which is selected to make player
1 indifferent between “bluffing” and checking with his losing hand). This solution holds regardless of the stack size n; so even if
n = 1, 000, 000, it would be optimal for player 1 to bet all-in for 1,000,000 to win a pot of 1 (a sketch of Ankenman and Chen’s
argument with the computed equilibrium strategies also appears in [6]). Thus, it is clear that at least in certain situations extremely
large bets, both with strong and weak hands, are part of optimal strategies.
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bottom half of our value hands would be unprofitable). Thus, making large bets as bluffs is needed
in certain situations. The problem is that certain hands are much better suited for them than others.
For example, suppose the board was JsTs4sKcQh, and suppose we could have 3c2c (three and two of
clubs) vs. 3s2c (three of spades and two of clubs). Both hands are extremely weak (they produce the
worst possible five-card hand); however, if we have the 3s, it actually has a subtle and very significant
benefit: it significantly reduces the probability that the opponent holds an extremely strong hand (e.g.,
an ace-high or king-high flush) because several of the hands that would constitute that strength would
contain that card, e.g., As3s and Ks3s. Thus, this would make a much better choice for our hand
to make a large bet with, since he is less likely to have a hand strong enough to call, making the
bluff bet more effective. Our endgame-solving algorithm described in Section 2.4 takes this “card
removal” factor into account to an extent, since the equities are computed for each hand against the
distribution the opponent could hold given that hand; however, this does not fully take into account the
card removal effect. For example, the 3c2c and 3s2c hands would both have the lowest possible equity
(it would be slightly above zero only because of possible ties), and would be necessarily grouped into
the same bucket by our endgame information abstraction algorithm (the worst bucket) despite the fact
that they have very different card removal properties.

Doug Polk said that he thought the river strategy using the endgame solver overall was the strongest
part of Claudico; however, he thought that utilizing the large betting sizes without properly accounting for
card removal was actually a significant weakness, since we would be bluffing with non-optimal hands. We
came to this conclusion ourselves as well during the competition, and for this reason decided to take out the
large bets for ourselves from the endgame solver partway through the competition, since this issue is most
problematic for those bet sizes (for smaller bet sizes, card removal is still important, but significantly less
important since we are not just trying to “block” the opponent from having a small number of extremely
strong hands, since he will be calling with many more hands). Interestingly, Dong Kim told me after the
competition that they had conducted analysis and we were actually profiting on the large bet sizes during
the time we used them, despite the theoretical issue described above. I think everyone agrees that massive
“overbets” are part of full optimal strategies, and likely underutilized by even the best human players. But
card removal is also particularly important for these sizes, and I think for an agent to use them successfully
an improved algorithm for dealing with blockers/card removal would need to be developed, though I am still
quite curious how well we would have performed if we continued with those sizes included in the agent.

4 Conclusion

It is one thing to evaluate a poker agent against other computer agents, who largely also play static approxi-
mations of equilibrium strategies; it is another to compete against the strongest human specialists, who will
adapt and attempt to capitalize on even the smallest perceived weaknesses. This was the first time a no-limit
Texas hold ’em agent has competed against human players of this caliber, and we really had no idea what to
expect entering the competition, as previously all of our experiments had been against computer agents from
the AAAI Annual Computer Poker Competition. We learned many valuable lessons that will be pivotal in
developing improved agents going forward. We have highlighted the two most important avenues for future
research. The first is to develop an improved approach for the “off-tree” problem where we make a mistake
due to a misperception of the actual size of the pot after translating an action for the opponent that is not in
our action abstraction. We have outlined promising agendas for attacking this problem, including improved
action abstraction and translation algorithms, novel approaches for real-time computation that address the
portion of the game prior to the final round, and entirely new approaches specifically geared at solving the
off-tree problem independently of the other problems. And the second is to develop an improved approach
for information abstraction that better accounts for card removal/“blockers” (i.e., that accounts for the fact
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that us having certain cards in our hand modifies the probability of the opponent having certain hands). This
issue is most problematic within the information abstraction algorithm for the endgame, where the card re-
moval effect is most significant due to the distributions for us and the opponent being the most well defined
(i.e., there is no more potential remaining in the hand due to uncertainty of public cards, and this relative
certainty will likely cause the distributions to put positive weight on fewer hands), and it limits our ability to
utilize large bet sizes, which have been demonstrated to be optimal in certain settings. Of course, it would
be beneficial to develop an improved information abstraction algorithm that accomplishes this in the part of
the game prior to the endgame as well.

At first glance it may appear that these issues are purely pragmatic and specific to poker. While one
of the main goals is certainly to produce a poker agent that can beat the strongest humans in two-player
no-limit Texas hold ’em, there are deeper theoretical questions related to each component of the agent that
has been described. Endgame solving has been proven to have theoretical guarantees in certain games while
it can lead to strategies with high exploitability in others (even if the full game has a single Nash equilibrium
and just a single endgame is considered) [7]. It would be interesting to prove theoretical bounds on its
performance on interesting game classes, perhaps classes that include variants of poker. Empirically the
approach appears to be very successful on poker despite its lack of theoretical guarantees. Recently an
approach has been developed for game decomposition that has theoretical guarantees [4], however from
personal communication with the authors I have learned that the approach performs worse empirically than
our approach that does not have a worst-case guarantee.

The main abstraction algorithms that have been successful in practice are heuristic and have no theoret-
ical guarantees. It is extremely difficult to prove meaningful theoretical guarantees when performing such
a large degree of abstraction, e.g., approximating a game with 10165 states by one with 1014 states. There
has been some recent work done on abstraction algorithms with theoretical guarantees, though that work
does not scale to games nearly as large as no-limit Texas hold ’em. One line of work performs lossless ab-
straction, that guarantees that the abstract game is exactly isomorphic to the original game [11]. This work
has been applied to compute equilibrium strategies in Rhode Island hold ’em, a medium-sized (3.1 billion
nodes) variant of poker. Recent work has also presented the first lossy abstraction algorithms with bounds
on the solution quality [20]. However, the algorithms are based on integer programming formulations, and
only scale to a tiny poker game with a 5-card deck. It would be very interesting to bridge this gap between
heuristics that work well in practice for large games with no theoretical guarantees, and the approaches with
theoretical guarantees that have more modest scalability.

Scalable algorithms for computing Nash equilibria have diverse applications, including cybersecurity
(e.g., determining optimal thresholds to protect against phishing attacks), business (e.g., auctions and ne-
gotiations), national security (e.g., computing strategies for officers to protect airports), and medicine. For
medicine, algorithms that were created in the course of research on poker [17] have been applied to com-
pute robust policies for diabetes management [5]; recently it has been proposed that equilibrium-finding
algorithms are applicable to the problem of treating diseases such as the HIV virus that can mutate adver-
sarially [21].

For the pseudo-harmonic action translation mapping, in addition to showing that it outperforms the
best prior approach in terms of exploitability in several games, we have also presented several axioms and
theoretical properties that it satisfies; for example, it is Lipschitz continuous in A and B, and therefore
robust to small changes in the actions used in the action abstraction [6]. Another mapping that has very
high exploitability in several games also satisfies these axioms, and further investigation can lead to deeper
theoretical understanding of this problem and potentially new improved approaches.

Even the post-processing approaches, which appear to be purely heuristic, have interesting theoretical
open questions. For example, it has been shown that purification (i.e., selecting the highest-probability action
with probability 1) leads to an improved performance in uniform random 4× 4 matrix games using random
3 × 3 abstractions when playing against the Nash equilibrium of the full 4 × 4 game for the opponent [8].
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These results were based off simulations that were statistically significant at the 95% confidence level, and
it would be interesting to provide a formal proof. Furthermore, that paper provided a conjecture for the
specific supports of the games for which the approach would improve or not change performance, which
was also based on statistically-significant simulations. It would be interesting to prove this formally as
well, and to generalize the results to games of arbitrary size. On a broader level, there is relatively little
theoretical understanding for why the post-processing approaches—which one would expect to make the
strategies more predictable—have been shown to be consistently successful. Surprisingly, the improvements
in empirical performance do not necessarily come at the expense of worst-case exploitability, and a degree
of thresholding has been demonstrated to actually reduce exploitability for a limit Texas hold ’em agent [8].
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