คู่มือการใช้งานเครื่อวัดเสียง XL2 สำหรับวัดอะคูสติกภายใน ห้องประชุม ห้องเรียน ห้องสัมมนา

by บริษัท เก็ต เบสท์ โซลูชั่น จำกัด

ความสำคัญของการวัดอะคูสติกภายในห้องฯ

- เพื่อยืนยันว่าสภาพอดูสติกภายในห้องมีความเหมาะสมในการใช้งาน
- ผู้ฟังสามารถเข้าใจความหมายของการสื่อสารของผู้บรรยายได้เป็นอย่างดี
- ค่าที่ใช้ในการประเมินสภาพอะคูสติกภายในห้อง
 - ค่าความเงียบภายในห้อง (ค่าระดับเสียง LAeq, LAmax)
 - ค่าความก้องภายในห้อง (Reverberation Time, T20)
 - ค่าความดังของระบบเครื่องขยายเสียง (Sound Level,LAeq)
 - ค่าความชัดเจนของเสียงพูด (Speech Transmission index, STIPA)

ค่าความเงียบภายในห้อง (ค่าระดับเสียง LAeq, LAmax)

ค่าความเงียบภายในห้อง (ค่าระดับเสียง LAeq, LAmax)

- ค่าระดับความเงียบภายในห้อง จำเป็นต้องควบคุม หากห้องเงียบไม่พอ จะมีผลให้ ผู้ฟังขาดความชัดเจนและเข้าใจความหมายของการฟังเสียงพูดหรือเสียงบรรยาย
- นอกจากนั้นห้องที่มีความเงียบไม่พอ จะรบกวนสมาธิของผู้ฟัง
- ในทางเทคนิคเรียกค่าความเงียบห้องว่า ค่าระดับเสียงพื้นฐาน (Background Noise)
- ตัวแปรที่ใช้ในการวัดค่าความเงียบ คือ LAeq, LAmax

้ค่าความเงียบภายในห้องที่เหมาะสม

อ้างอิงจากมาตรฐาน Well Building Standard ได้กำหนดความเงียบที่เหมาะสมไว้ ดังต่อไปนี้

- ค่า LAeq ระยะเวลาการวัด 5 นาที ต้องไม่เกิน 40-45 dBA
- ค่า LAmax ระยะเวลาการวัด 5 นาที ต้องไม่เกิน 50-55 dBA

ตำแหน่งและจำนวนการวัดความเงียบภายในห้อง

- เงื่อนใขและตำแหน่งการทดสอบค่าระดับเสียงพื้นฐาน
- ดำแหน่งการวัด : ต้องห่างอย่างน้อย 1 เมตร จาก หน้าต่างหรือผนัง
- 🔹 ความสูงของไมโครโฟน : สูงจากพื้น 1.2 เมตร
- ระยะห่างระหว่างการวัดแต่ละตำแหน่ง อย่างน้อย 3 เมตร
- ในการวัดจะต้องมีการเปิดใช้งานระบบปรับอากาศด้วย เสมือนการใช้งานจริง
- ประตูหน้าต่างจะต้องปิด เหมือนการใช้งานจริง
- จำนวนการตรวจวัด และระยะเวลาที่ทำการวัดค่าระดับเสียงพื้นฐาน
- พื้นที่ทั่วไปวัด 1 ตำแหน่ง ใช้เวลา 5 นาที
- 🛛 พื้นที่เปิดกว้าง ให้วัดทุกๆ 46 ตารางเมตร ใช้เวลา 30 วินาทีต่อครั้ง

13

14

ค่าความก้องภายในห้อง (Reverberation Time,T20)

ค่าความก้องภายในห้อง (Reverberation Time, T20)

- ค่าความก้องมีผลอย่างมากต่อความชัดเจนของเสียงที่ผู้ฟังได้ยิน
- ความก้องมากจะทำให้ผู้ฟังไม่เข้าใจความหมายของการสื่อสาร
- ความก้องที่เหมาะสมภายในห้องขึ้นกับปริมาตรห้องและรูปแบบการใช้งาน
- ห้องที่เล่นดนตรีต้องการความก้องมากกว่าห้องที่ใช้บรรยาย เพราะความก้อง ช่วยเชื่อมประสานเสียงตัวโน๊ตให้เพลงฟังแล้วรู้สึกไพเราะ
- ตัวแประที่ใช้ระบุค่าความก้องคือ **T20**

ค่าก้องที่เหมาะสมภายในห้อง

อ้างอิงจากมาตรฐาน Well Building Standard ได้กำหนดความก้องที่เหมาะสมไว้ดังต่อไปนี้ โดยพิจารณ์ค่า T20 ที่ความถี่ 500 Hz เป็นหลัก

พื้นที่สำหรับการเรียนการสอน และการประชุม ระ	ัมาตร น้อยกว่า 280 หว่าง 280 ถึง 570	น้อยกว่า 0.6 ระหว่าง 0.5 ถึง 0.8
มาก	กกว่า 570	ไม่เกิน 1.5

เงื่อนไขการวัดค่าความก้องภายในห้อง

- ตำแหน่งการวัด อย่างน้อยห่างจากแหล่งกำเนิดเสียง 1 เมตร
- ความสูงไมโครโฟนเท่ากับ 1.2 เมตร
- ห่างจากผนัง หรือวัตถุสะท้อนเสียงอย่างน้อย 1.5 เมตร
- ระยะห่างระหว่างการวัดแต่ละตำแหน่งอย่างน้อย 3 เมตร
- ปิดอุปกรณ์ต่างๆที่สามารถสร้างเสียงรบกวนได้ เช่น เครื่องปรับอากาศ หรือระบบเสียง และ หยุดการทำงานใดๆ ที่ทำให้เกิดเสียงดังรบกวน

Table A.1 — Minimum r	umber of measurement points
Acoustically distinguishable area m ²	Minimum number of measurement points
Less than 25	1
25 to less than 100	3
100 to less than 500	6
500 to less than 1 500	10
1 500 to less than 2 500	15
Greater than 2 500	15 per 2 500 m ²

ค่าความชัดเจนของเสียงพูด (Speech Transmission index, STIPA)

ค่าความชัดเจนของเสียงพูด (Speech Transmission index, STIPA)

- เป็นค่าที่ช่วยยืนยันว่า ผู้ฟังจะสามารถเข้าใจความหมายของเสียงบรรยายได้อย่างชัดเจน
- ค่าความชัดเจนมีความสำคัญมากในการวัดอะคูสติกโดยเฉพาะห้องเรียน ห้องบรรยาย
- ค่า STIPA ยิ่งมากยิ่งแสดงว่าเสียงมีความชัดเจนเข้าใจง่าย
- ปัจจัยที่ส่งผลต่อค่า STIPA ได้แก่ สัดส่วนระหว่างความดังของเสียงจากแหล่งกำเนิด เทียบกับความเงียบภายในห้อง หรือที่เรียกว่า Signal to Noise Ratio และค่าความก้อง ภายในห้อง

ค่า STIF	PA ที่เหล	มาะสม		
สำหรับห้องเรียน ห้องบรรยาย ค่า STIPA ไม่ควรต่ำกว่า 0.6	Band	STI Range	Examples of typical uses	
	A+	> 0.76	recording studios	
	A	0.72 - 0.76	theatres, speech auditoria, parliaments, courts	
	В	0.68 - 0.72	theatres, speech auditoria, parliaments, courts	
	С	0.64 - 0.68	teleconference, theatres	
	D	0.60 - 0.64	class rooms, concert halls	
	E	0.56 - 0.60	concert halls, modern churches	
	F	0.52 - 0.56	PA in shopping malls, public offices, cathedrals	
	G	0.48 - 0.52	PA in shopping malls, public offices	
	н	0.44 - 0.48	PA in difficult acoustic environ- ments	
		0.40 - 0.44	PA in very difficult spaces	
	J	0.36 - 0.40	not suitable for PA systems	
	U	< 0.36	not suitable for PA systems 27	

เงื่อนไขการวัดค่าความ STIPA ภายในห้อง

- ตำแหน่งการวัด อย่างน้อยห่างจากแหล่งกำเนิดเสียง 1 เมตร
- ความสูงไมโครโฟนเท่ากับ 1.2 เมตร
- ห่างจากผนัง หรือวัตถุสะท้อนเสียงอย่างน้อย 1.5 เมตร
- ระยะห่างระหว่างการวัดแต่ละตำแหน่งอย่างน้อย 3 เมตร
- ปิดอุปกรณ์ต่างๆที่สามารถสร้างเสียงรบกวนใด้ เช่น เครื่องปรับอากาศ หรือระบบเสียง และ หยุดการทำงานใดๆ ที่ทำให้เกิดเสียงดังรบกวน

$AOC < 30m^2$ 2 $30m^2 < AOC < 60m^2$ 4 $60m^2 < AOC < 180m^2$ 6-8
$30m^2 < AOC < 60m^2$ 4 $60m^2 < AOC < 180m^2$ 6-8 $100m^2 < AOC < 180m^2$ $100m^2 < 180m^2$
60m ² < AOC < 180m ² 6–8
$AOC \ge 180m^2 \qquad \qquad \frac{AOC[m^2]}{24[m^2]}$

ค่าระดับความดังของเครื่องขยายเสียง (ค่าระดับเสียง LAeq)

- การวัดค่าระดับความดังของเครื่องขยายเสียงมีความจำเป็น
- เพื่อเป็นการยืนยันว่า เสียงจากลำโพง มีความดังเพียงพอสำหรับผู้ฟังภายในห้อง
- ตัวแปรที่ใช้ในการวัดค่าความดัง คือ LAeq

ี่ค่าความดังที่เหมาะสมจากระบบเครื่องขยายเสียง

- ค่าความดังแต่ละตำแหน่งภายในห้อง จะมีค่าความดังอยู่ในช่วง
 85-90 dBA
- •โดยแต่ละตำแหน่งจะต้องความดังแตกต่างกันไม่เกิน +- 3 dBA

จำนวนจุดที่ใช้วัดความดังของเสียงจากลำโพงภายในห้อง

AREA OF COVERAGE (AOC)	NUMBER OF MEASUREMENT POINTS
AOC < 30m ²	2
30m ² < AOC < 60m ²	4
60m ² < AOC < 180m ²	6–8
$AOC \ge 180m^2$	AOC[m ²] 24[m ²]

Measurement Positions

- Minimum 3 meter distance between mic positions
- Minimum 1.5 meter for boundaries or large reflecting obstacles
- Mounting at normal head height
 - for a person seated 1.2m +/- 0.1 m
 - for a person standing 1.7m +/- 0.2 m

36

การตั้งตัวแปรผลวัดเสียง					
ทำการเปิดสัญญาณ Pink Noise จาก	าระบร	บเครื่องขยา	ยเสียงให้มีระดับค ว	ามดังที่เหมาะ	สม
ค่าระดับเสียงแบบ Real time	-	(SLMeter 12 LAS	4.0dB		
ค่าระดับเสียงแบบ MAX ค่าระดับเสียงเฉลี่ย	→ →	LASmax LAeq IIIIIIIII 20 RHGE 120	dB dE str 00:00:19 → 00:00:00		
		Poomo	hai Prasertkunlavong Ac www.go	oustical Engineer etbestsound.com	Get Best

