Math 4315 - PDEs Home Work 1

1. Solve the following PDEs by using the chain rule $u_{s}=u_{x} \cdot x_{s}+u_{y} \cdot y_{s}$
(i) $2 u_{x}-3 u_{y}=1$,
(ii) $x u_{x}+(x+2 y) u_{y}=x$,
(iii) $x u_{x}+(u+y) u_{y}=1$,
(iv) $u_{x}+2 x u_{y}=4 x y, \quad u(x, 0)=x^{4}$,
(v) $x u_{x}+2 y u_{y}=u+x^{2}, \quad u(x, x)=x^{2}+1$.
2. Show that under the change of variables

$$
r=R(x+y), \quad s=s(x, y),
$$

the PDE

$$
u_{x}-u_{y}=0,
$$

becomes

$$
u_{s}=0 .
$$

For the following boundary conditions, show that it is possible to choose $R(x+y)$ and $s(x, y)$ such that the boundary in the (r, s) plane is $s=0$ and the two boundaries can be connected via $x=r$.

$$
\begin{aligned}
\text { (i) } \quad u(x, 0) & =f(x) \\
\text { (ii) } \quad u(x, 1) & =f(x) \\
\text { (iii) } u(x, x) & =f(x) \\
\text { (iv) } u\left(x, x^{2}\right) & =f(x)
\end{aligned}
$$

Due: Sept. 15, 2023.

