Critical Design Review (CDR) Presentation

AIAA OC Section 2018-2019 January 7, 2018

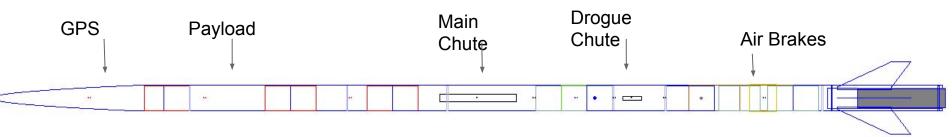
Contents

- Launch Vehicle
- Key Features
- Motor and Stability
- Recovery
- Calculations
- Test Plans and Procedures

- Scale Model Flight
- Energetics Testing
- Final Payload Overview
- Interfaces
- Requirement Verification

Launch Vehicle

Final Launch Vehicle and Payload Dimensions


Length: 149.325 inches

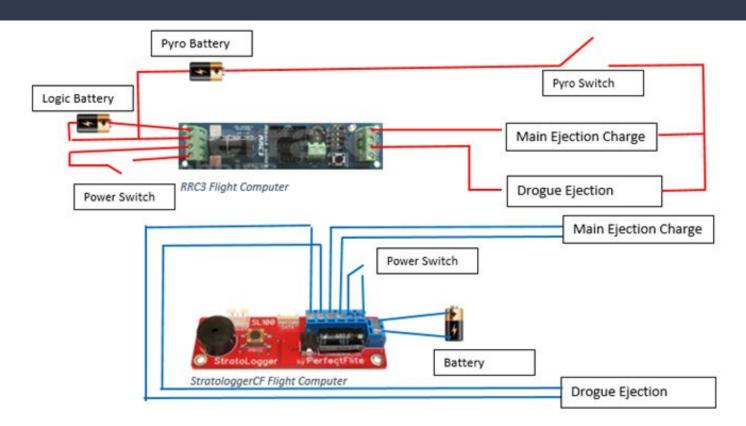
Diameter: 4 inches

Semi-Span of Fins: 3.25 in

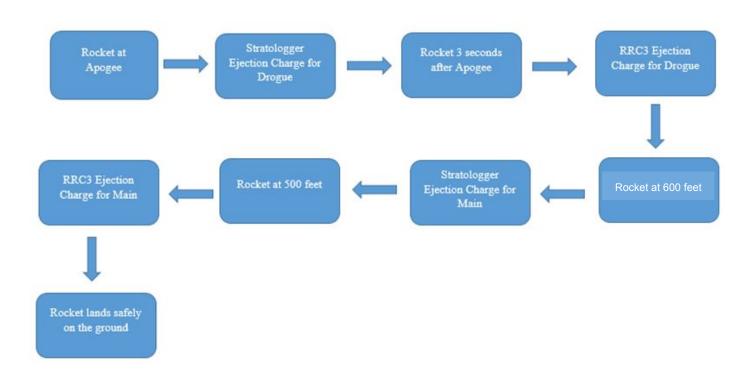
Total Mass: 11.074951 kg

Motor Choice: Cesaroni K1085WT

Key Features


Key Design Features of Launch Vehicle

- Avionics
 - Redundant Dual Deploy System
- Payload
- Air Brakes


Key Design Features of Avionics

- Stratologger CF (primary)
- RRC3 (backup)
- 2 9V batteries
- 4 Terminals in the bulkheads
 - 2 for main Stratologger and main RRC3
 - 2 for drogue Stratologger and drogue RRC3

Proof of Redundancy

Recovery Algorithm Flowchart

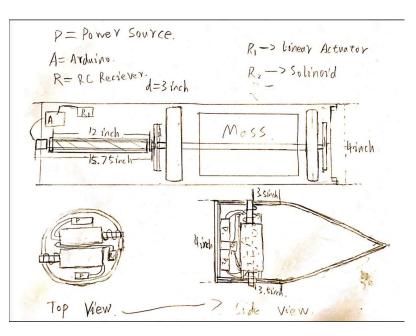
Key Design Features of Payload

- Piston Release Mechanism (now released from the nose cone)
- Rover that will be manually released using RC control

Release Mechanism

A track linear actuator that moves a piece along the track.

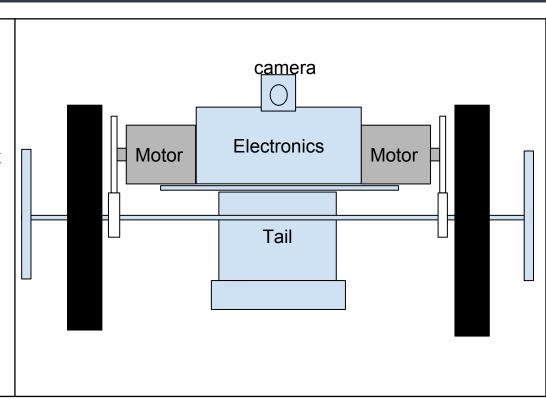
Pros:


- Small but still provides enough force.

Cons:

- Harder to implement and need modification.

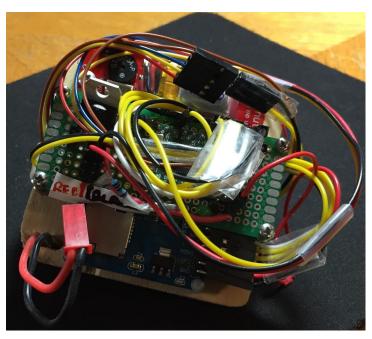
Decision: Chosen because of its size and weight, and easier to modify.



Payload Design

Longer rover body
Pros: more gaps between bottom and top
of wheels and the body, allowing for
overcoming obstacles
Cons: Requiring more space in the rocket

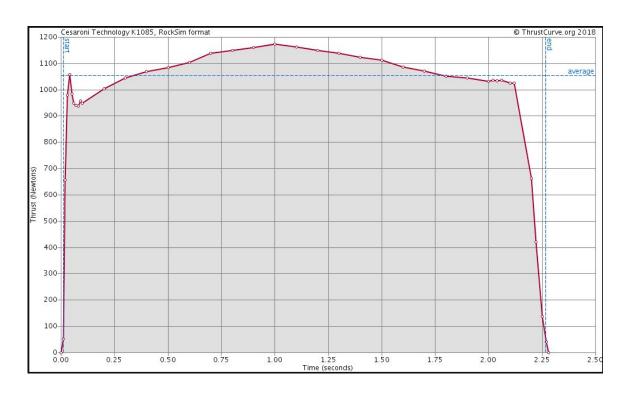
Cons: Requiring more space in the rocket

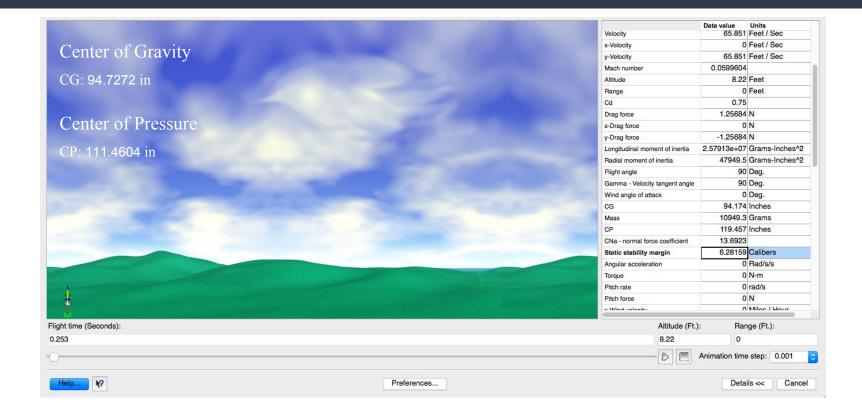

for the payload section

Key Design Features of Air Brakes

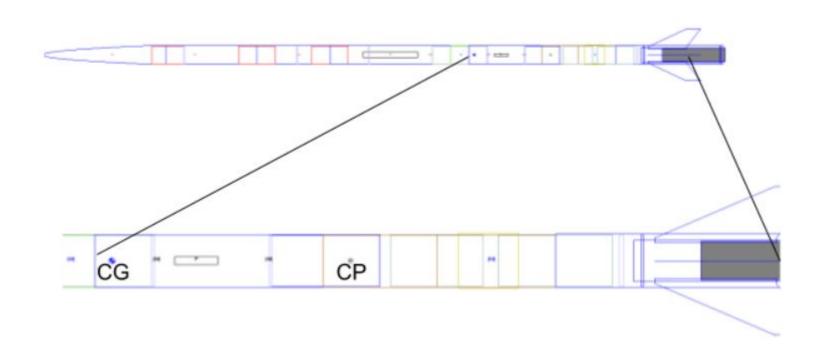
• Servo Design

Air Brakes



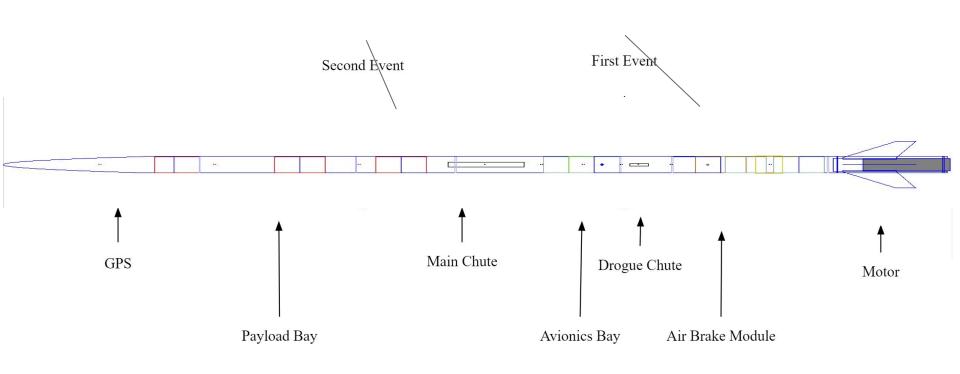

Motor and Stability

Final Motor Choice


Cesaroni K1085WT

Rocket Flight Stability in Static Margin Diagram

Rocket Flight Stability in Static Margin Diagram



Thrust-to-Weight Ratio and Rail Exit Velocity

Thrust:Weight = 1:10.74

Rail Exit Velocity = 65.851 ft/s

Mass Objects and Separation Points

Recovery

Parachute Sizes, Recovery Harness Type, Size, Length, and Descent Rates			
Recovery System Properties - Dro	gue Parachute	Recovery System Properties - Ma	ain Parachute
Manufacturer/Model	Fruity Chutes	Manufacturer/Model	Fruity Chutes
Size or Diameter (in or ft)	18"	Size or Diameter (in or ft)	72"
Main Altimeter Deployment Setting	Apogee	Main Altimeter Deployment Setting (ft)	600
Backup Altimeter Deployment Setting	1 seconds after Apogee	Backup Altimeter Deployment Setting (ft)	500

Size or Diameter (in or ft)		18"	
Main Altimeter Deployment Setting		Apogee	
Backup Altimeter Deployment Setting		1 seconds after Apogee	
Velocity at Deployment (ft/s)		0 ft/s (main) 75.582 ft/s (Backup)	
Terminal Velocity (ft/s)		95.244	
Recovery Harness Material, Size, and Type (examples - 1/2 in. tubular Nylon or 1 in. flat Kevlar strap)		1" Tubular Nylon	
Recovery Harness Length (ft)		25 ft	
Harness/Airframe Interfaces	Machine-closed stainless steel eye bolts, tubular nylon shock cord		

Manufacturer/Model	Fruity Chutes
Size or Diameter (in or ft)	72"
Main Altimeter Deployment Setting (ft)	600
Backup Altimeter Deployment Setting (ft)	500
Velocity at Deployment (ft/s)	95.244
Terminal Velocity (ft/s)	21.388
Recovery Harness Material, Size, and Type (examples - 1/2 in. tubular Nylon or 1 in. flat Kevlar strap)	1" Tubular Nylon
Recovery Harness Length (ft)	25 ft

Harness/Airframe Interfaces

Machine-closed stainless steel eye bolts, tubular nylon shock cord

Calculations

Kinetic Energy

Kinetic Energy of	Section 1	Section 2	Section 3
Each Section (Ft-lbs) (Drogue)	819.86	323.57	1027.93

Kinetic Energy of	Section 1	Section 2	Section 3
Each Section (Ft-lbs) (Main)	34.63	13.67	43.4

Predicted Drift

```
3.4.8.1 0 MPH Wind
```

[(1 second 82.43 feet)(4600-600 ft)+(1 second 16.94 feet)(600 ft)] (0 miles 1 hour)(5280 feet 1 mile)(1 hour 3600 seconds) = **0** ft

3.4.8.2 5 MPH Wind

[(1 second82.43 feet)(4600-600 ft)+(1 second16.94 feet)(600 ft)] (5 miles1 hour)(5280 feet1 mile)(1hour3600 seconds) = **615.597755 ft**

3.4.8.3 10 MPH Wind

[(1 second 82.43 feet)(4600-600 ft)+(1 second 16.94 feet)(600 ft)] (10 miles 1 hour)(5280 feet 1 mile)(1 hour 3600 second s) = 1231.19551 ft

3.4.8.3 15 MPH Wind

 $[(1 second 82.43 feet)(4600-600 ft)+(1 second 16.94 feet)(600 ft)] \ (15 miles 1 hour)(5280 feet 1 mile)(1 hour 3600 seconds) = \textbf{1846.793265 ft}]$

3.4.8.4 20 MPH Wind

 $[(1\ second 82.43\ feet)(4600-600\ ft)+(1\ second 16.94\ feet)(600\ ft)]\ (20\ miles 1\ hour)(5280\ feet 1\ mile)(1hour 3600\ second s)=\textbf{2462.39102}\ ft$

Test Plans and Procedures

Replace the battery, then ziptie them Risk: Battery falls out
Attach the wires according to color (green to green, white to white, etc) • Risk: Drogue or main is ejected at the wrong time • Note: Attach orange and green wires first, and have orange, green, blue, and yellow in the same side. • Note: The bulkhead with blue and yellow is at the bottom, and the bulkhead with white and purple is at the top.
 Unlock the keys for stratologger and check the beeps according to key card Risk: What if something is wrong with the stratologger?
Unlock the keys for RRC3 and check the beeps according to key card • Risk: What if something is wrong with the RRC3?
Attach ejection charges Risk: Parachutes don't eject PPE: goggles

Recovery Preparation Checklist

** Mr. Koepke (our mentor) will be building the K1085 Motor.

Setup on Launcher Checklist
 Tilt the rail back Risk: Beware of not catching it before it falls too fast! Lower it slowly so the launchpad and people aren't damaged. Note: If necessary, use hard hats.
Mount the rocket and slide it all the way down. • Note: Make sure the rail buttons align and are in the right place. Also check to make sure no screws conflict with the rail.
Tilt the rail back up.
Level the launch pad accordingly. • Note: The rocket must not point toward people in the proximity of the launchpad.

Twist the igniter leads. • Risk: Accidental ignition can damage rocket during launch if the rocket is not fully set up and poses a risk to Student Launch members. Twist the leads!

Risk: accidental ignition when transporting the rocket, which can lead to injuries and rocket damage

Risk: The igniter must be as far up the motor as possible in order to have contact with the solid fuel.

Install the rocket on the launch pad and arm the avionics before placing the igniter.

Note: The coil will help maintain how far the igniter is inside the motor.

Risk: The igniter will fall out and the rocket won't launch

Coil the igniter after it is pushed in all the way.

Untwist igniter leads and attach the alligator clips.

Risk: If skipped, the rocket will not launch.

Risk: If skipped, the rocket may not launch.

Replace the plug

Check for continuity.

Igniter

Note: Wear clothing that does not generate static electricity. An accidental discharge of static electricity may cause the igniter to ignite. This is much more dangerous around the black powder charges.
 Mark how far up the igniter should be prior to installation

Igniter Installation Checklist **Mr. Koepke (mentor) will be inserting the igniter

Mark how far up the igniter should be prior to installation

• Risk: The rocket will not launch even if the igniter goes off.

• Note: The igniter must be as far up the motor as possible in order to have contact with the solid fuel.

Post-Flight Inspection Checklist
Once the rocket has landed, approach carefully and inspect any major issues, dangers, or damages done to the rocket.
Each team member should grab a section of the rocket or the parachute and bring back to the team table where the rocket was constructed.
Hear the altitude of the rocket with the beeps from the avionics bay.

Open avionics bay, payload bay, and airbrake module and check for any visible issues.

Cut the power source and retrieve data from the rover and air brakes.

Wrap

Wrap the parachutes and place them back into the their respective body tubes to avoid damage.

Post Flight

Energetics Testing

Scale Model Flight

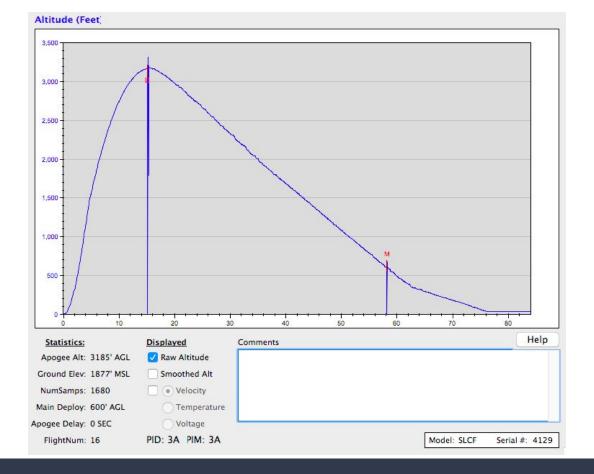
Launch Results

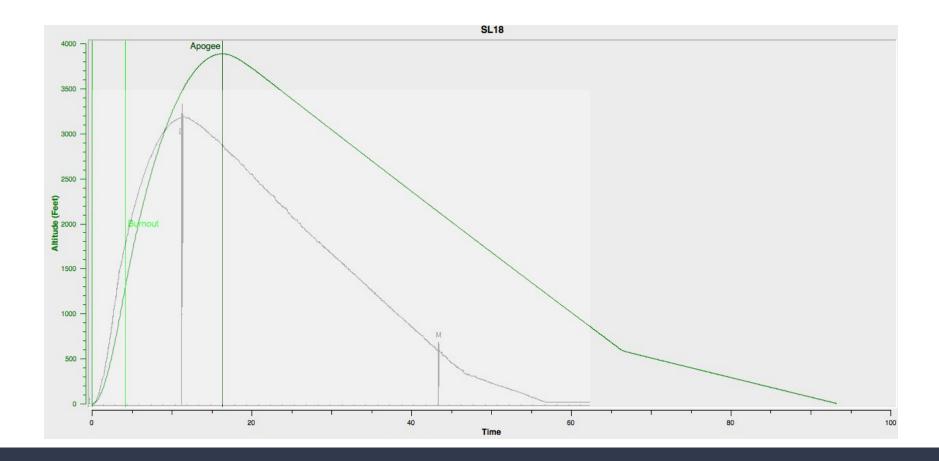
Max Altitude: 3185 feet

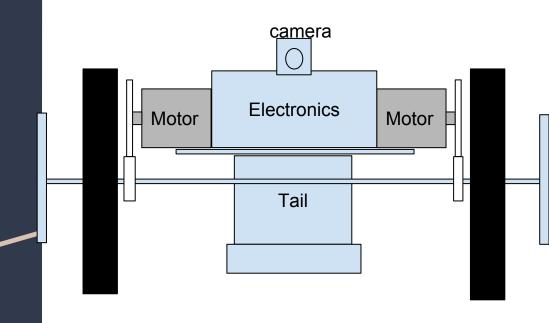
Motor Used: CTI J295

The success of the subscale indicates that the omission of the aft fins will work well.

Due to safety concerns with the avionics, the launch was postponed to January 5th



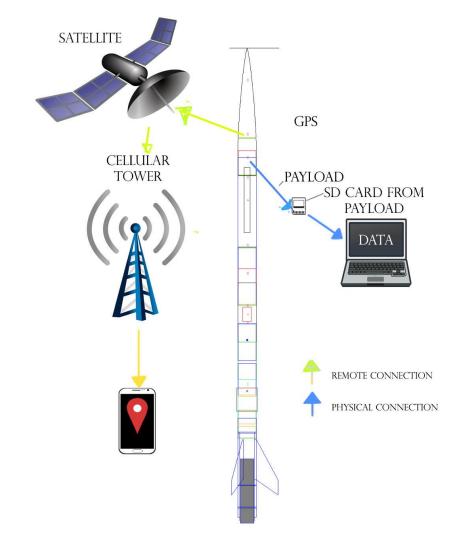




Final Payload Overview

Final Payload Design Overview

Payload Integration Plans


The rover will be secured with the solenoid acting as a pin to connect the nose cone and the payload body tube.

Interfaces

Interfaces

- Internal
 - Air Brakes
 - Avionics
 - Payload
- External
 - GPS and smartphone
 - Igniter

Requirement Verification

Vehicle Verification

To test the vehicle, we performed a series of analyses to ensure that it works properly. To make sure that the rocket is designed properly, we placed the design in RockSim 9 to predict the rocket's behavior, such as its velocity at rail exit. We also calculated the drift of the design, its kinetic energy at which it lands, and its stability margin. If the rocket was unable to perform correctly in simulation or fails to meet the SL requirements for safe ascent and descent, we continued adjusting the rocket until it reached SL requirements.

Recovery Verification

Stratologger CF

Present number - 1 through 9

Main Deploy Altitude

Long beep if Apogee delay set

Altitude of last flight (Warble = Power lost)

Battery Voltage

Continuity beeps (repeats every 0.8 seconds)

Zero beeps = no continuity

One beep = Drogue OK

Two beeps = Main OK

Three beeps = Drogue + Main OK

RRC3

5 second long beep (init mode)

10 second baro history init time (silence)

Battery Voltage

10 second launch commit test time (silence)

Launch Detect mode (continuity beeps)

A long beep indicates no continuity on any event terminal.

One short beep indicates continuity on only the drogue terminal.

Two short beeps indicate continuity on only the main terminal.

Three short beeps indicate continuity on the main and drogue terminals.

Safety

Safety Standards

The AIAA OC Section team will abide by all safety standards set by NASA and by the team.

Safety requirements may be found on the report, Section 4

Thank You