

Research Article

A study on Baby Diaper with Indigenous-Absorbent-Core material in Ethiopian context

Beletech Alemu Reta, G. Nalankilli*

Textile Chemistry Research and Innovation Centre, Ethiopian Institute of Textile and Fashion Technology (EiTEX), Bahir Dar University, Bahir Dar, Ethiopia.

*Corresponding author's e-mail: gnalankilli@yahoo.com

Abstract

Although disposable diapers are superior in performance when compared with their reusable counterparts, a majority of Ethiopian parents use the latter for their babies. The key factors for this choice are limited availability (in rural areas) and high cost. This research proposes to reduce the cost of disposable diapers by making them semi-reusable. The objective was to prepare alternative inside absorbent core from indigenous materials and replace the core from normal disposable diapers after use (especially liquid insult). Such replacement would retain some functionalities of the disposable article while reducing the overall cost to parents. The materials investigated for producing the alternate core were eucalyptus bark and paper (A4 waste paper). It was found that treatment of alternative core material with a hydrophilic softener such as glycerin greatly enhanced the absorbent capacity. The average performance of diapers with the alternate core was comparable to those of original diapers. Then the alternative inside core performs better than commercial diaper. The remaining water volume was less than the commercial diaper. Similarly the weight of inside core and speed of absorption proved that was developed core than a commercial as compare to that is estimated that the cost of using normal disposable diaper is about 80 ETB per day which is probable cost of 17 ETB per day case of developed core. It may be concluded from this investigation that the abundant waste paper (from offices and universities in Ethiopia) is an excellent low-cost source to produce alternate absorbent core in baby diapers.

Keywords: Liquid absorbent; Disposable diaper; Reusable diaper; Indigenous diaper product; Hydrophilic softener.

Introduction

Among all the recent developments in the absorbent core technology area, the most prominent one has been the application of the preformed structures of one type or another. In sanitary napkin products, the use of preformed air laid materials with short fibers has grown but in baby diapers and adult rapidly, incontinence products their adoption has been much slower than generally expected [1,2]. One major applications of disposable of the nonwovens is in absorbent materials, which constitute a broad range of products, including baby diapers, personal hygiene and adult incontinent pads, tampons, paper towels, tissues and sponges. In designing absorbent products such as diapers and sanitary pads, one of the aims is to reduce the size or weight without compromising the fluid holding capacity. This is usually accomplished in some structures by incorporating a percentage of superabsorbent polymers along with the main material in the core. In such instances, because of the enormous capacity of the superabsorbent to absorb fluid into its internal structure and swell while maintaining high gel strength, the thickness of the web could be expected to actually increase. There has been a general tendency towards using the so-called superabsorbent material in such products as sanitary napkins, baby diapers, and adult incontinent pads [3,4]. Traditionally, superabsorbent used has been in the form of powder, or very short fibers, but in recent years the material has also become available in the form of staple fibers. The idea of using fibers is novel in the sense that the material could be controlled and handled better than possible with

Received: 06.11.2017; *Received after Revision:* 22.11.2017; *Accepted:* 22.11.2017; *Published:* 29.11.2017 ©2017 The Authors. Published by G J Publications under the CC BY license. Beletech Alemu Reta and Nalankilli, 2017. Baby diaper with indigenous-absorbent-core material in Ethiopian context

the powder. The superabsorbent fiber could be blended with the bulk and dispersed uniformly throughout the structure or positioned biased at strategic points in the product. The superabsorbent materials have great capacity to swell and retain fluids many times their weight by chemical bonding [4-8]. Disposable diapers are mostly made using the following components and materials viz., Bottom back sheet. Polypropylene Non-woven - Hydrophobic and Hydrophilic, Absorbent core - Wood pulp fluff, Absorbent Polymers, Super Elastics Lycra/Spandex, Quick wicking layer, Adhesive -Hot melts and Elastomeric, Fastening tape -Stick type/Hook and loop type, Moisturizer lotions and fragrance lotions and Breathable/Cloth-like back sheet. Among all parts, first four are very essential layers in a diaper. Most disposable diapers are made with these basic components [9-15].

In Ethiopia, as in other parts of the world, baby hygiene uses either disposable or reusable diapers. But disposable diapers are generally expensive (about 600 ETB; Ethiopian Birr, per pack of 100 diapers) and available mostly in urban areas. As a majority of Ethiopian babies are in rural areas they use normal cloth diapers. Further, cloth diaper absorbency characteristics and design are not satisfactory. Hence the new idea is to prepare indigenous absorbent core for use in a disposable diaper and reduce the cost. In Ethiopia, babies use disposable diapers to protect their health. But babies in rural areas use normal cloth diaper because of high cost and nonavailability of disposable diaper. Based on the fact that a baby uses 4-8 diaper in a day the average expense amounts to about 30 ETB. Hence, there is a need for a cheaper alternative.

The scope of the present work is to create absorbent core from indigenous material, to produce absorbent core by using grinder machine to create pulp from waste materials and to improve absorbent properties of pulp with specific objective of identifying the types of disposable products available in local market, to create absorbent core from indigenous material and to evaluate absorbency characteristic of developed core.

Materials and methods

Research design and Data collection procedure

Design of core: Research design indicates the typical structure to produce inside core of

disposable diaper from indigenous alternate material.

Data collection procedure: Collected information on diapers available in Ethiopia about brands, price, etc to evaluate the absorbency and liquid retention capacity of available diapers in Bahir Dar. This information was used for comparison with modified diaper that uses indigenous absorbent core. Absorbent core was made from pulp obtained from different papers like A4 paper and from eucalyptus bark.

Material and equipment

A4 paper: It is normal paper after changed in to powder. It is used as absorbent core.

Eucalypts bark: Developing eucalypts bark's use as absorbent pulp which is also anti-microbial so there is high advantage for customer.

Chemicals: Glycerin used to increase absorbency Grinder machine: It is used to change the materials in to powder form

Electronic balance: For measuring chemicals or powder

Filter paper: Used to separate water from paper powder

Manual sprayer: Used to uniformly spray PVA solution on the fabric

Methodology

Steps preparation of inside core

Step 1: Paper converted in to powder form

First different papers and eucalyptus bark is collected, cleaned and stored, the raw material was cut into small pieces. Then by using dry grinder machine changed in to powder (pulp) form as shown in Fig. 1.

Fig. 1. Paper and eucalyptus powder after powdering in machine

Step 2: Test the absorption and compare modified core with commercial core

Most common synthetic polymers are said to be water fearing, which means that they do not absorb water. There are also water-loving polymers. Many natural polymers such as cotton fibers are hydrophilic. However, the polymer found in the diaper is an example of a synthetic, hydrophilic polymer. Therefore, from this comparison absorbent capacity of waste paper and eucalyptus bark was less than the commercial diaper. Hence, paper needs the treatment of hydrophilic softener.

Step 3: Treatment with the powder for increasing absorbency by hydrophilic softener

Test three samples by taking any amount of gram pulp. Prepared 20, 40 and 60 g of glycerin dissolved 1 li of water with the pulp dip from the bottom of beaker. Squeeze and dry by 105-degree centigrade for 30 min and repeat until test three sample. Finally measure the absorbent pulp by treated glycerin. Here, before untreated absorbent core of waste paper and eucalyptus bark was less than the original or the commercial diaper but after treated by using hydrophilic softener they have the same absorbent level.

Step 4: Testing the maximum liquid absorbent by using absorbency test

- 1. Wettability/absorbency test: Drop of water is place on the sample of fabric and the time it takes for the drop to penetrate the fabric is record. Wettability is determined by counting the second between the contact of the water drop with the fabric and disappearance of the drop in to the fabric [16,17].
- 2. Sinking time test: The sample will be sinking at the required time from the bottom of beaker.
- 3. Capillary test: is used for Wettability/absorbency determination. In this test, know the length web, which absorbed water in 5 min.

Results and Discussion

Fig. 1 shows the images of both paper and eucalyptus bark powder. These are the two basic materials used across this study. The images show the pulp or powder for inside cores. A summary of this result is found in each table. In particular, eucalyptus -based materials have two excellent functions namely as absorbent core and as anti-microbial agent.

Tests for determination of fluid holding capacity

Test one: Inside core, added in the solution

Test the absorbent capacity of 50 grams of absorbent core by soaking in the 75 ml of water. After 10 min, out the absorbed core in the solution and measure how much solution is remaining in the beaker [18]. The results are shown in Table 1.

Table 1. The maximum liquid holding capacity after treating with glycerin

Type of test	Sample 1 20 g glycerin	Sample 2 240 g glycerin	Sample 3 60 g glycerin	Average sample
Water drop absorbency test (3-5 sec)	4 sec	5 sec	6 sec	5 sec
Sinking time test (5-10 sec)	9 sec	10 sec	10 sec	Above 9 sec
Capillarity test (min)	5	5	5	5

The mean comparison and independent samples test for inside core, added in the solution between pampers diaper and new diaper & super soft diaper and new diaper was not significantly Therefore. different. thev have equal performance and equal value. Thus, the customers can use either modified diaper or commercial diaper. It has enough evidence from the results presented in Table 2 that the mean of remaining water for predo and new diaper is different particularly the remaining water new diaper is less than the remain water of predo diaper. Similarly, since 0.004 < 0.05, as conclusion, it has enough evidence to conclude that the mean remaining water for morfix and diaper is different, particularly new for independent samples test for inside core, added in the solution the remaining water new diaper is less than remain water of morfix diaper.

The mean comparison independent samples test for inside core, added in the solution between a baby diaper and dew diaper was not significantly different. Therefore, they have equal performance and equal value. Thus, the customers can use either modified diaper or marketing diaper. Since 0.025 < 0.05, indicating that the mean remaining water for sleepy and new diaper are different. Particularly the independent samples test for add solution on the inside core remain water of new diaper is less than remaining water of sleepy diaper.

Table 2. Remaining water in the beaker afterwater absorption in the inside core

Comparis on of diaper	Sample	Brand Name	Test 1	Test 2	Test 3	Total	Average
	1	Pampe	1.2	2	1.7	4.9	1.6
	2	rs Super soft	1.3	1.1	1	3.1	1.1
Original diaper	3	Predo	2.3	2.4	2.3	6.1	2.0
di di	4	Molfix	2.3	3.1	3.2	8.6	2.9
5	5	Can	1.2	1.2	1.3	3.4	1.2
		baby					
	6	Sleepy	1.8	2.2	1.5	5.5	1.8
Modifie d diaper	1	New diaper	1	1.1	1.2	3.3	1.1

Test two: Adding solution on the inside core

Test the absorbent capacity of by taking 50 gram of absorbent core diaper and 75 ml of water. The water pours directly onto the center of the diaper. This show effectively tests how well the liquid is absorbed and dispersed throughout the absorbent core (ISO 9073-17:2008). From Fig. 2 one can observe that the mean remaining water for pampers and new diaper is different. Particularly the independent samples test for add solution on the inside core of the remaining water of new diaper is less than the remaining water of pampers diaper. The mean comparison and independent samples test for added solution on the inside core between Supper soft diaper and new diaper was not significantly different. Therefore, they have equal performance and equal value. Thus, the customers can use either modified diaper or marketing diaper.

From Fig. 2, we can also conclude that independent samples test for added solution on the inside core that the mean remaining water for prido and new diaper are different, particularly the remaining water of new diaper is less than the remaining water of prido diaper. It is evident that independent samples test for added solution on the inside core that the mean remaining water for molfix and new diaper is different, particularly remain water of new diaper is less than the remaining water of molfix diaper. The mean comparison and independent samples test for added solution on the inside core between can baby diaper and new diaper was not significantly different, therefore they have equal performance and equal value. Hence the customers can use either modified diaper or commercial diaper. It is also understood from the study that independent samples test for added solution on the inside core, that the mean of remaining water for sleepy and new diaper are different, particularly the remaining water new diaper is less than the remaining water of sleepy diaper as indicated in Table 3.

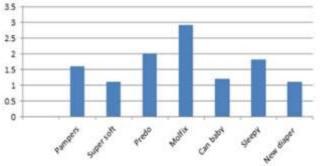


Fig. 2. Comparison of remaining water in *ml* in different diapers

Test three: Weight difference between the dry and the wet

By calculating the difference between the dry weight and the wet weight and determining the amount of liquid that was absorbed by subtract in dry (initial weight) from the wet (final weight), the mass was determined. Since the weight of the actual diaper materials does not change, the difference in these two weights is the weight of liquid absorbed [19]. From Fig. 3, we understand that the independent samples test for weight of inside core, after water absorption indicates that the mean of weight for pampers and new diaper are different, particularly the weight of new diaper is higher than the pampers diaper.

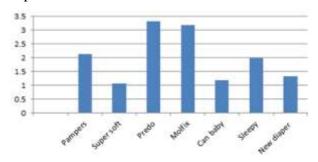


Fig. 3. Comparison of remaining water

Table 3. Remaining water in the beaker after water absorption

Comparison of diaper	Sample	Name of diaper	Test 1	Test 2	Test 3	Total	Average
	1	Pampers	2.2	2.3	1.9	6.4	2.13
2	Super soft	1.1	1.1	1.0	3.2	1.06	
gina	per 3	Predo22	3.3	3.4	3.3	10	3.3
Original Diaper 5 2 2	Molfix	3.3	3.1	3.2	9.5	3.17	
	Can baby	1.2	1.2	1.1	3.5	1.17	
	6	Sleepy	1.9	2.2	1.8	5.9	1.97
Modified Diaper	1	New diaper	1.0	1.5	1.4	3.9	1.30

The mean comparison and independent samples test for weight of inside core, after water absorption between supper soft diaper and new diaper was not significantly different, therefore they have equal performance and equal value, thus customers can use either modified diaper or commercial diaper. From Fig. 4, we observe that the independent samples test for weight of inside core, after water absorption indicates the mean weight for predo and new diaper are different, particularly the weight new diaper was higher than the predo diaper. The mean comparison and independent samples test for weight of inside core, after water absorption between molfix diaper and new diaper was not significantly different, therefore they have equal performance and equal value, Hence, customers can use either modified diaper or commercial diaper.

The mean comparison and independent samples test for weight of inside core as can be seen from Table 4, after water absorption between commercial baby diaper and new diaper & Sleepy diaper and new diaper was not significantly different, therefore, they have equal performance and equal value. Hence, customers can use either modified diaper or commercial diaper.

Test four: Speed of absorption test

The samples are prepared in the same way as that of horizontal rewet test and the solution being applied without pressure. The absorption speeds of each solution are recorded to provide a Performance Indicator for this character [20].

The results are shown in Fig. 4 from which it is understood that independent of samples test for absorption speed of inside core indicates, the mean speed of absorption for pampers and new diaper are different. particularly the speed of absorption new diaper is higher than the pampers diaper. The mean comparison and independent samples test for absorption speed of inside core, between supper soft diaper and new diaper was not significantly different, therefore, they have equal performance and equal value, Hence, customers can use either modified diaper or commercial diaper.

Table. 4 Weight of inside core after water absorption

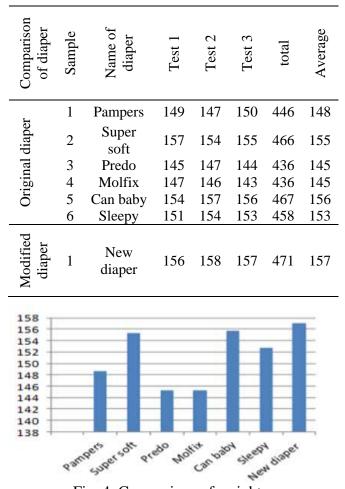
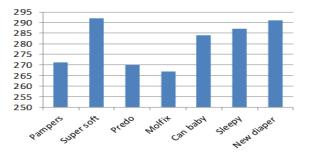
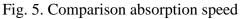


Fig. 4. Comparison of weight


Table 5. Absorption Speed of inside core (ml/min)


From Table 5 and Fig. 5, one can understand that independent of samples tested for absorption speed of inside core, the mean speed of absorption for predo and new diaper & molfix and new diaper are different, particularly the speed of absorption of new diaper is higher

Beletech Alemu Reta and Nalankilli, 2017.

than the predo diaper and molfix diaper. The mean comparison and independent samples test for absorption speed of inside core, between sleepy diaper and new diaper was not significantly different, therefore they have equal performance and equal value.

Comparison of diaper	Sample	Name of diaper	Test 1	Test 2	Test 3	Total	Average (ml)
	1	Pampers	270	271	273	814	271
er	2	Super	293	290	294	877	292
iap		soft					
ld	3	Predo	270	271	270	811	270
ina	eu 4	Molfix	265	270	267	802	267
Original diaper	5	Can	284	287	282	853	284
0		baby					
	6	Sleepy	288	286	289	863	287
Modified diaper	1	New diaper	290	292	292	874	291

Test five: Rewet or retention test

First, modified absorbent core was prepared, 40 ml of water and 5 kg of weight was used. 40 ml of water was added in the front of (in side) diaper and wait 10 min. Place copper salt for treated filter papers about 5 kg of weight and wet in 2 min as shown in Fig. 6. Remove weight and check by coloring method and Calculation method. If the color of filter paper is blue it predicted to have rewet so it is bad and if the color of paper is white it cannot present rewet so it is good and continue the test by adding 40 ml of salt water at 45, 90 and 135 min (ISO 9073-12:2002).

Calculation rewet or retention test

Rewet value (g) = wet weight of filter papers (g) - dry weight of filter papers (g)

Rewet value (g) = 249 - 100 (g) = 147

Both the paper powder and eucalyptus bark have a similarity of high absorption. As

previously mentioned, diaper absorption is directly related to diaper retention. However, the relative difference between retention and absorption is not constant. In particular, paper absorbs about six times as much liquid as it retains whereas eucalyptus powder absorbs about four times. Paper powder and eucalyptus almost absorbs and retains the same amount of liquid.

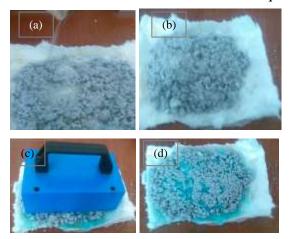


Fig. 6. Rewet or retention test (a) 40 ml of water (b) copper salt added (c) 5 kg of weight added (d) Evaluation of color

Then, the alternative inside core performs better than prido, molfix, sleepy and pampers. The remaining water volume was less than the commercial diaper. Similarly, the weight of inside core and speed of absorption proved that it was better in developed core than the commercial.

Total material cost of new diaper

400 g of inside core = 4 ETB (50 g with marketing diaper used for one time, totally 400 gram of inside core with marketing diaper used for 8 times in one day. 100 gram of hydrophilic softener (glycerin) = 3 ETB. Original (marketing) diaper =10 ETB. Total cost of new diaper = 17 ETB.

As compared to the estimated cost of using normal disposable diaper at about 80ETB per day, which is probable, the cost has come down to 17 ETB per day in case of developed core.

Conclusions

Based on the investigation, it was concluded that test of inside absorbent core was getting different absorptions without mixing or combining any foreign products (bamboo fiber). After preparing inside core from indigenous product, with addition of Hydrophilic softener, it reaches the maximum liquid holding capacity. The main target of this work to create inside absorbent core from indigenous product was successfully established that inside absorbent core can be made by combining or mixing different indigenous (local available) products. However, in these cases, the absorbent core predictably yielded the expected result. Mixing different inside core products can make the improvement in absorbency.

Acknowledgement

The authors would like to thank Ethiopian Institute of Textile and Fashion Technology [EiTEX] for supporting financially and allowing to avail required laboratory facilities.

Conflicts of Interest

Authors declare no conflict of interest

References

- [1] Hirko Y, Masko N. Changes in disposable diaper properties caused by wetting. Textile Research Journal. 2007;70(2):135-141.
- [2] Janniger C.K, Thomas I. Diaper dermatitis: An approach to prevent employing effective diaper care. Paediatric Dermatology. 1993;52(2):153-155.
- [3] Hong KH, Kim SC, Kang TJ. Effect of abrasion and absorbed water on the handle of nonwoven for disposable diaper. Textile Research Journal. 2005;75(7):544-550.
- [4] Chellamani KP. Cotton for diapers. Textile Asia. 2001;32(6):68-74.
- [5] Flory. Principles of Polymer Chemistry. Cornell U. Press; 1953.
- [6] Stacey F, Shawn D. Novel elastic baby nappy fastener systems. International Textile Bulletin.1996;42(4):32-34.
- [7] Cottenden AM, Thombum PH, Dean GE, Fader MJ. Wet comfort of small disposable incontinence pads. Textile Research Journal. 1998;68(7):479-487.
- [8] Yokur H, Niva M. Objective hand evaluation of nonwoven used for nappies.

Textile Research Journal. 1997;9(3):207-213.

- [9] Buchholz FL, Graham AT. Modern Superabsorbent Polymer Technology. John Wiley & Sons, New York; 1998.
- [10] Chatterjee, P.K, Gupta, P.S, Absorbent Polymers, AMCOL International Corporation Report on Household & Personal care products; 1996.
- [11] Shanmugasundaram OL, Mahendra G. Development and characterization of of Bamboo and organic cotton fibre blended baby diapers. Indian Journal of Fibre & Textile Research. 2010;35(3):201-205
- [12] McKhann CF, George Bricmont AB. The baby's diaper with suggestions for its improvement. The Journal of Pediatrics. 1998;84(2):131-138.
- [13] Cottenden AM, Dean GE, Brookes RJ.Predicting the leakage performance of bodyworn disposable incontienece pads. Medical Engineering Physics. 1997;19(6):556-563
- [14] Lane AT, Rehder PA. Evaluation of diapers containing absorbent gelling materials with disposable diapers in new born infants. American Journal of Diseases Child. 1990;14(4):135-142
- [15] Kosemund K, Schlatter H, Ochsenhirt JL, Krause EL, Marsman DS, Erasala GN. Safety Evaluation of super absorbant baby diapers. Regulatory Toxicology and Pharmacy. 2009;53(2);81-89
- [16] ISO 9073-12:(2002)Textiles Test methods for water absorbency.
- [17] ISO 9073-13:(2006). Textiles Test methods for Repeated liquid strike-through time.
- [18] ISO 9073-17:(2008) Textiles Test methods for Determination of water penetration.
- [19] ISO 9073-6:(2000) Textiles Test methods for nonwoven Absorption.
- [20] ISO 9073-8:(1995)Textiles Test methods for nonwovens Part 8: Determination of liquid strike-through time (simulated urine).
