Academic Session 2020-21
 Home Assignment - I
 Subject: Chemistry

 Class: XII

 Class: XII}

Chapter - Solution

Numerical Questions

1. Calculate the molarity and normality of a solution containing 9.8 g of $\mathrm{H}_{2} \mathrm{SO}_{4}$ in $250 \mathrm{~cm}^{3}$ of the solution?
2. What is the concentration of glucose in $\mathrm{mol} \mathrm{L}^{-1}$ of it is dissolved in enough water to make a final volume up to 2L?
3. Calculate the normality of a solution of $\mathrm{FeSO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ containing $2.4 / 100 \mathrm{ml}(\mathrm{Fe}=56, \mathrm{~S}=32$, $\mathrm{O}=16, \mathrm{H}=1$) which converts to ferric form in a reaction.
4. Calculate the mole fraction of Ethylene glycol $\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2}\right)$ and water in a solution containing 20% of $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2}$ by mass.
5. A solution contains 25% water 25% ethanol and 50 percent acetic by mass. Calculate the mole fraction of each component.
6. Calculate the number of milliequivalent gram eq. weight in grams and number of moles contained in 10 litres of $0.5 \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}$ solution. $(\mathrm{Ba}=137)$
7. If N_{2} gas is bubbled through water at 293 K how many millimoles of N_{2} gas would be dissolved in 1 litre of water? Assume that N_{2} exerts a partial pressure of 0.987 bar. Given that Henry's law constant for N_{2} at 293 K is 76.48 Kbar
8. What is the strength in grams per litre of a solution of $\mathrm{H}_{2} \mathrm{SO}_{4}, 12 \mathrm{cc}$ of which neutralizes 15 CC of $\mathrm{N} / 10 \mathrm{NaOH}$ solution?
9. 2.82 gram of glucose (mol . Mass=180) are dissolved in 30 gram of water. Calculate the (i) molality of solution (ii) mole fraction of Glucose, water
10. At what partial pressure, Oxygen will have a solubility of $0.05 \mathrm{~g} \mathrm{~L}^{-1}$ in water at 293 K ? Henry's constant $\left(\mathrm{K}_{\mathrm{H}}\right)$ for O_{2} in water at 293 K is 34.86 Kbar . Assume the density of the solution to be same as that of the solvent.
11. 100 mL of $0.6 \mathrm{NH}_{2} \mathrm{SO}_{4}$ and 200 mL of 0.3 NHCl were mixed together. What will be the normality of the resulting solution?
12. Calculate the number of molecules of oxalic acid $\left(\mathrm{CH}_{2} \mathrm{C}_{2} \mathrm{O}_{4} .2 \mathrm{H}_{2} \mathrm{O}\right)$ in 100 ml of 0.2 N Oxalic acid solution.
13. The mole fraction of helium in a saturated solution at 20 C is 1.2×10^{-6}. Find the pressure of helium above the solution. Given Henry's constant at 20C=144.97 Kbar
14. Methanol and ethanol form nearly ideal solution at 300 K . A solution is made by mixing 32 g methanol and 23 g ethanol at 300 K . Calculate the partial pressure of its constituents and the total pressure of the solution.
Given: At 300K, $\mathrm{PCH}_{3} \mathrm{OH}=90 \mathrm{~mm} \mathrm{Hg}, \mathrm{PC}_{2} \mathrm{H}_{5} \mathrm{OH}=51 \mathrm{~mm} \mathrm{Hg}$.
15. What will be the normality of the resulting solution of example 10 if it is diluted to 600 mL ?
16. What concentration of nitrogen should be present in a glass of water at room temperature? Assume a temperature of 25 C , a total pressure of 1 atmosphere and mole fraction of nitrogen in air as 0.78 [K_{H} for nitrogen $\left.=8.42 \times 10^{-7} \mathrm{M} / \mathrm{mm} \mathrm{Hg}\right]$
17. Vapour pressure of two liquids A and B are 120 and 180 mm Hg at a given temperature. $1 / 2$ mole of A and 3 mole of B are mixed to form an ideal solution, calculate the vapour pressure of solution at the same temperature.
18. One gram-atom of Ca was burnt in excess of oxygen and the oxide was dissolved in water to make up a 1 -litre solution. Calculate the normality of the alkaline solution.
19. Vapour pressure of water at 293 K is 17.51 mm . lowering of vapour pressure of a sugar solution is 0.0614 mm . calculate (i) relative lowering of vapour pressure (ii) vapour pressure of the solution (iii) mole fraction of water.
20.5 g of NaCl is dissolved in 1000 g of water. If the density of the resulting solution is 0.991 g per cc, calculate the molality, molarity, normality and mole fraction of the solute.
20. The vapour pressure of a 5% aqueous solution of a non-volatile organic substance at 373 K is 745 mm . calculate the molar mass of the solute.
21. A solution of ethanol in water is 10% by volume. If the solution and pure ethanol have densities of $0.9866 \mathrm{~g} / \mathrm{cc}$ and $0.785 \mathrm{~g} / \mathrm{cc}$ respectively, find the percent by weight.
22. A current of dry air was passed through a solution of 2.5 g of a non-volatile substance in 100 g of water and then through water alone. The loss of weight of the former was 1.25 g and that of the latter was 0.05 g . calculate:
(i) mole fraction of the solute in the solution (ii) molecular weight of the solute
23. Calculate the osmotic pressure at $17^{\circ} \mathrm{C}$ of an aqueous solution containing 1.75 g of sucrose per 150 mL solution.
24. The osmotic pressure of a non- volatile solution in $\mathrm{C}_{6} \mathrm{H}_{6}$ at $25^{\circ} \mathrm{C}$ is $20.66 \mathrm{Nm}^{-2}$. If the solution had a concentration of $2 \mathrm{~g} / \mathrm{dm}^{3}$, what is mol. Wt. of solute?
25. At $27^{\circ} \mathrm{C}, 36 \mathrm{~g}$ of glucose per litre has an O.P. of 4.92 atm . If the osmotic pressure of solution is 1.5 atm at the same temperature, what should be its concentration?
26. 2.5 g of a substance is present in 200 mL of solution showing the osmotic pressure of 60 cm Hg at $15^{\circ} \mathrm{C}$. Calculate the molecular weight of substance. What will be the osmotic pressure if temperature is raised to $25^{\circ} \mathrm{C}$?
27. Calculate O.P. of a solution obtained by mixing 100 mL of 3.4% solution (wt./vol.) of urea (m. wt. 60) and 100 mL of 1.6% solution (wt./vol.) of cane sugar (m. wt. 342) at $20^{\circ} \mathrm{C}$.
28. A 10 g mixture of glucose and urea present in 250 mL solution shows the osmotic pressure of 7.4 atm at $27^{\circ} \mathrm{C}$. Calculate \% composition of mixture.
29. At $25^{\circ} \mathrm{C}$, a solution containing 0.2 g of polyisobutylene in 100 mL of benzene developed a rise of 2.4 mm at osmotic equilibrium. Calculate the molecular weight of polyisobutylene if the density of solution is $0.88 \mathrm{~g} / \mathrm{mL}$.

Link of Online Tutorials of Chemistry
https://www.youtube.com/channel/UC3Zv0XxBjYIWMjbMv8ODE8Q/videos

