Math 4315 - PDEs Sample Test 3 Solutions

1. Determine the Fourier series for
(i)

$$
f(x)=\left\{\begin{array}{cc}
1 & \text { if }-2 \leq x<0 \\
x+1 & \text { if }
\end{array} 0 \leq x \leq 2\right.
$$

(ii)

$$
f(x)=\left\{\begin{aligned}
-x & \text { if }-1 \leq x<0 \\
x^{2} & \text { if } \quad 0 \leq x \leq 1
\end{aligned}\right.
$$

Solution $1 i$

$$
\begin{aligned}
& a_{0}=\frac{1}{2} \int_{-2}^{0} 1 d x+\frac{1}{2} \int_{0}^{2}(x+1) d x=3 \\
& a_{n}=\frac{1}{2} \int_{-2}^{0} \cos \frac{n \pi x}{2} d x+\frac{1}{2} \int_{0}^{2}(x+1) \cos \frac{n \pi x}{2} d x=\frac{2(\cos n \pi-1)}{n^{2} \pi^{2}} \\
& b_{n}=\frac{1}{2} \int_{-2}^{0} \sin \frac{n \pi x}{2} d x+\frac{1}{2} \int_{0}^{2}(x+1) \sin \frac{n \pi x}{2} d x=-\frac{2 \cos n \pi}{n \pi}
\end{aligned}
$$

The solution is

$$
\begin{aligned}
f(x) & =\frac{a_{0}}{2}+\sum_{i=1}^{\infty} a_{n} \cos \frac{n \pi x}{2}+b_{n} \sin \frac{n \pi x}{2} \\
& =\frac{3}{2}+\sum_{i=1}^{\infty} \frac{2(\cos n \pi-1)}{n^{2} \pi^{2}} \cos \frac{n \pi x}{2}-\frac{2 \cos n \pi}{n \pi} \sin \frac{n \pi x}{2}
\end{aligned}
$$

Solution 1ii

$$
\begin{aligned}
& a_{0}=\int_{-1}^{0}-x d x+\int_{0}^{1} x^{2} d x=\frac{5}{6} \\
& a_{n}=\int_{-1}^{0}-x \cos n \pi x d x+\int_{0}^{1} x^{2} \cos n \pi x d x=\frac{3 \cos n \pi-1}{n^{2} \pi^{2}} \\
& b_{n}=\int_{-1}^{0}-x \sin n \pi x d x+\int_{0}^{1} x^{2} \sin n \pi x d x=\frac{2(\cos n \pi-1)}{n^{3} \pi^{3}}
\end{aligned}
$$

The solution is

$$
\begin{aligned}
f(x) & =\frac{a_{0}}{2}+\sum_{i=1}^{\infty} a_{n} \cos n \pi x+b_{n} \sin n \pi x \\
& =\frac{5}{12}+\sum_{i=1}^{\infty} \frac{3 \cos n \pi-1}{n^{2} \pi^{2}} \cos n \pi x+\frac{2(\cos n \pi-1)}{n^{3} \pi^{3}} \sin n \pi x .
\end{aligned}
$$

2. Solve

$$
u_{t}=u_{x x}, \quad 0<x<L,
$$

subject to the initial condition and boundary conditions

$$
\begin{array}{r}
\text { (i) } u(x, 0)=5 x-x^{2}, \quad u(0, t)=0, \quad u(4, t)=4 \\
\text { (ii) } u(x, 0)=\left\{\begin{array}{ll}
x^{2}+1 & \text { if } 0<x<1, \\
2(x-2)^{2} & \text { if } 1<x<2 .
\end{array} \quad u(0, t)=1, \quad u(2, t)=0\right.
\end{array}
$$

Solution $2 i$

Before we can use separation of variables, it is necessary to transform this problem to one that has fixed zero boundary conditions. If we let

$$
u=v+a x+b
$$

imposing the boundary conditions gives

$$
\begin{aligned}
& u(0, t)=v(0, t)+a \cdot 0+b \\
& u(4, t)=v(4, t)+a \cdot 4+b
\end{aligned}
$$

and substituting the actual BCs and the desired ones gives

$$
\begin{array}{r}
0=0+b \\
4=0+4 a+b
\end{array}
$$

giving $a=1$ and $b=0$. We now consider the IC

$$
u(x, 0)=v(x, 0)+x
$$

giving

$$
v(x, 0)=4 x-x^{2} .
$$

Thus, the new problem is

$$
\begin{aligned}
v_{t}=v_{x x}, & 0<x<L \\
v(x, 0)=4 x-x^{2}, \quad v(0, t)=0, & v(4, t)=0
\end{aligned}
$$

If we assume separable solutions in the form $v=X(x) T(t)$, then PDE separates giving

$$
\frac{T^{\prime}}{T}=\frac{X^{\prime \prime}}{X}
$$

from which we obtain

$$
T^{\prime}=\lambda T, \quad X^{\prime \prime}=\lambda X
$$

The boundary conditions become $X(0)=0, \quad X(4)=0$. The solution of the X equation is

$$
X=c_{1} \sin k x+c_{2} \cos k x
$$

where $\lambda=-k^{2}$. To satisfy both BCs we must choose $k=\frac{n \pi}{4}$ and $c_{2}=0$. This then gives

$$
X=c_{1} \sin \frac{n \pi}{4} x
$$

Solving for T gives

$$
T=c_{3} e^{-\frac{n^{2} \pi^{2}}{16} t}
$$

which in turn gives

$$
v=\sum_{n=1}^{\infty} b_{n} e^{-\frac{n^{2} \pi^{2}}{16} t} \sin \frac{n \pi}{4} x
$$

where we have taken $b_{n}=c_{1} c_{3}$. Imposing the initial condition gives

$$
b_{n}=\frac{2}{4} \int_{0}^{4}\left(4 x-x^{2}\right) \sin \frac{n \pi}{4} x d x=\frac{64(1-\cos n \pi)}{n^{3} \pi^{3}}
$$

This then gives the solution as

$$
v=\sum_{n=1}^{\infty} \frac{64(1-\cos n \pi)}{n^{3} \pi^{3}} e^{-\frac{n^{2} \pi^{2}}{16} t} \sin \frac{n \pi}{4} x
$$

and u is

$$
u=x+\sum_{n=1}^{\infty} \frac{64(1-\cos n \pi)}{n^{3} \pi^{3}} e^{-\frac{n^{2} \pi^{2}}{16} t} \sin \frac{n \pi}{4} x
$$

Solution 2 ii

Before we can use separation of variables, it is necessary to transform this problem to one that has fixed zero boundary conditions. If we let

$$
u=v+a x+b
$$

we find that choosing $a=-1 / 2$ and $b=1$ given the new problem to solve

$$
v(x, 0)= \begin{cases}v_{t}=v_{x x}, \quad 0<x<2 \\ x^{2}+\frac{x}{2} & \text { if } 0<x<1, \quad v(0, t)=0, \quad v(2, t)=0 . \\ 2 x^{2}-\frac{15}{2} x+7 & \text { if } 1<x<2 .\end{cases}
$$

If we assume separable solutions in the form $u=X(x) T(t)$, then PDE separates giving

$$
\frac{T^{\prime}}{T}=\frac{X^{\prime \prime}}{X}
$$

from which we obtain

$$
T^{\prime}=\lambda T, \quad X^{\prime \prime}=\lambda X
$$

The boundary conditions become $X(0)=0, \quad X(2)=0$. The solution of the X equation is

$$
X=c_{1} \sin k x+c_{2} \cos k x
$$

where $\lambda=-k^{2}$. To satisfy both BCs we must choose $\lambda=\frac{n^{2} \pi^{2}}{4}$ and $c_{2}=0$. This then gives

$$
X=c_{1} \sin \frac{n \pi}{2} x
$$

Solving for T gives

$$
T=c_{3} e^{-\frac{n^{2} \pi^{2}}{4} t}
$$

which in turn gives

$$
u=\sum_{n=1}^{\infty} b_{n} e^{-\frac{n^{2} \pi^{2}}{4} t} \sin \frac{n \pi}{2} x
$$

where we have taken $b_{n}=c_{1} c_{3}$. Imposing the initial condition gives

$$
\begin{aligned}
b_{n} & =\frac{2}{2} \int_{0}^{1}\left(x^{2}-\frac{x}{2}\right) \sin \frac{n \pi}{2} x d x+\frac{2}{2} \int_{1}^{2}\left(2 x^{2}-\frac{15 x}{2}+7\right) \sin \frac{n \pi}{2} x d x \\
& =\frac{\left(-16-16 \cos \frac{n \pi}{2}+32 \cos n \pi\right)}{n^{3} \pi^{3}}+\frac{24 \sin \frac{n \pi}{2}}{n^{2} \pi^{2}}
\end{aligned}
$$

This then gives v as

$$
v=\sum_{n=1}^{\infty} b_{n} e^{-\frac{n^{2} \pi^{2}}{4} t} \sin \frac{n \pi}{2} x
$$

and u as

$$
u=-\frac{1}{2} x+1+\sum_{n=1}^{\infty} b_{n} e^{-\frac{n^{2} \pi^{2}}{4} t} \sin \frac{n \pi}{2} x
$$

3. Solve Laplace's equation

$$
u_{x x}+u_{y y}=0, \quad 0<x<L, \quad 0<y<L
$$

subject to the boundary conditions

$$
\text { (i) } u(x, 0)=0, \quad u(0, y)=0, \quad u(x, 1)=x^{2}, \quad u(1, y)=0
$$

(ii) $u(x, 0)=0, \quad u(0, y)=0, \quad u(x, 2)=0, \quad u(2, y)=2 y-y^{2}$.

Solution 3i

If we assume separable solutions of the form

$$
u(x, y)=X(x) Y(y)
$$

then

$$
X^{\prime \prime} Y+X Y^{\prime \prime}=0
$$

or

$$
\frac{X^{\prime \prime}}{X}+\frac{Y^{\prime \prime}}{Y}=0
$$

This gives

$$
\frac{X^{\prime \prime}}{X}=\lambda, \quad \frac{Y^{\prime \prime}}{Y}=-\lambda, \quad \lambda \quad \text { constant } .
$$

The boundary conditions become

$$
X(0)=0, \quad X(1)=0, \quad Y(0)=0
$$

In order to satisfy the X BCs, we need $\lambda=-k^{2}$ and so solving for X gives

$$
X=c_{1} \sin k x+c_{2} \cos k x
$$

The X boundary conditions gives $k=n \pi, k \in \mathbb{Z}^{+}$and $c_{2}=0$ so

$$
X(x)=c_{1} \sin n \pi x
$$

and further

$$
Y(y)=c_{3} \sinh n \pi y+c_{4} \cosh n \pi y .
$$

Since $Y(0)=0$ this implies $c_{4}=0$ so

$$
u=\sum_{n=1}^{\infty} a_{n} \sin n \pi x \sinh n \pi y . \quad\left(a_{n}=c_{1} c_{3}\right)
$$

From the last boundary condition

$$
u(x, 1)=x^{2}=\sum_{n=1}^{\infty} a_{n} \sin n \pi x \sinh n \pi,
$$

If $A_{n}=a_{n} \sinh n \pi$, then

$$
A_{n}=\frac{2}{1} \int_{0}^{1} x^{2} \sin n \pi x d x=\frac{4(\cos n \pi-1)}{n^{3} \pi^{3}}-2 \frac{\cos n \pi}{n \pi} .
$$

Thus, the solution is

$$
u(x, y)=\sum_{n=1}^{\infty}\left(\frac{4(\cos n \pi-1)}{n^{3} \pi^{3}}-2 \frac{\cos n \pi}{n \pi}\right) \sin n \pi x \frac{\sinh n \pi y}{\sinh n \pi}
$$

Solution 3ii

If we assume separable solutions of the form

$$
u(x, y)=X(x) Y(y)
$$

then

$$
X^{\prime \prime} Y+X Y^{\prime \prime}=0
$$

or

$$
\frac{X^{\prime \prime}}{X}+\frac{Y^{\prime \prime}}{Y}=0
$$

This gives

$$
\frac{X^{\prime \prime}}{X}=\lambda, \quad \frac{Y^{\prime \prime}}{Y}=-\lambda, \quad \lambda \quad \text { constant } .
$$

The boundary conditions become

$$
X(0)=0, \quad Y(0)=0, \quad Y(2)=0
$$

In order to satisfy the Y BCs, we need $\lambda=k^{2}$ and so solving for Y gives

$$
Y=c_{1} \sin k y+c_{2} \cos k y
$$

The Y boundary conditions gives $k=\frac{n \pi}{2}, \quad k \in \mathbb{Z}^{+}$and $c_{2}=0$ so

$$
Y(y)=c_{1} \sin \frac{n \pi}{2} y
$$

and further

$$
X(x)=c_{3} \sinh \frac{n \pi}{2} x+c_{4} \cosh \frac{n \pi}{2} x .
$$

Since $X(0)=0$ this implies $c_{4}=0$ so

$$
u=\sum_{n=1}^{\infty} a_{n} \sinh \frac{n \pi}{2} x \sin \frac{n \pi}{2} y . \quad\left(a_{n}=c_{1} c_{3}\right)
$$

From the last boundary condition

$$
u(2, y)=2 y-y^{2}=\sum_{n=1}^{\infty} a_{n} \sinh n \pi \sin \frac{n \pi}{2} y
$$

If $A_{n}=a_{n} \sinh n \pi$, then

$$
A_{n}=\frac{2}{2} \int_{0}^{2}\left(2 y-y^{2}\right) \sin \frac{n \pi}{2} y d y=\frac{16(1-\cos n \pi)}{n^{3} \pi^{3}}
$$

Thus, the solution is

$$
u(x, y)=\sum_{n=1}^{\infty} \frac{16(1-\cos n \pi)}{n^{3} \pi^{3}} \frac{\sinh \frac{n \pi}{2} x}{\sinh n \pi} \sin \frac{n \pi}{2} y
$$

