Math 3331 ODEs
 Sample Test 1 - Solutions

1. $\frac{d y}{d x}=\frac{x}{y}+\frac{1}{y}+x+1$.

Solution: After factoring, the equation separates

$$
\begin{aligned}
\frac{d y}{d x} & =\left(\frac{1}{y}+1\right)(x+1) \\
\frac{y}{y+1} d y & =(x+1) d x \\
y-\ln |y+1| & =\frac{1}{2} x^{2}+x+c .
\end{aligned}
$$

2. $x \frac{d y}{d x}+2 y=x^{2} y^{2}$.

Solution: The equation is Bernoulli, so we put in standard form

$$
\begin{aligned}
x \frac{d y}{d x}+2 y & =x^{2} y^{2} \\
\frac{d y}{d x}+\frac{2}{x} y & =x y^{2} \\
\frac{1}{y^{2}} \frac{d y}{d x}+\frac{2}{x} \frac{1}{y} & =x
\end{aligned}
$$

We let $u=\frac{1}{y}$ so $\frac{d u}{d x}=-\frac{1}{y^{2}} \frac{d y}{d x}$ and substituting gives

$$
\begin{aligned}
-\frac{d u}{d x}+\frac{2}{x} u & =x \\
\frac{d u}{d x}-\frac{2}{x} u & =-x, \quad\left(\text { the integrating factor is } \mu=\frac{1}{x^{2}}\right) \\
\frac{d}{d x}\left(\frac{1}{x^{2}} u\right) & =-\frac{1}{x}
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
\frac{1}{x^{2}} u & =c-\ln |x| \\
u & =x^{2}(c-\ln |x|) \\
\frac{1}{y} & =x^{2}(c-\ln |x|) \\
y & =\frac{1}{x^{2}(c-\ln |x|)}
\end{aligned}
$$

3. $\frac{d y}{d x}-y=2 e^{x}, \quad y(0)=3$.

Solution: The equation is linear and already in standard form. The integrating factor is $\mu=e^{-x}$. Thus,

$$
\begin{aligned}
\frac{d}{d x}\left(e^{-x} y\right) & =2 \\
e^{-x} y & =2 x+c, \text { from the IC } c=3 \\
e^{-x} y & =2 x+3 \\
y & =(2 x+3) e^{x}
\end{aligned}
$$

4. $\frac{d y}{d x}=\frac{1-2 x y^{2}}{1+2 x^{2} y^{2}}, \quad y(1)=1$.

Solution: The equation is exact. The alternate form is

$$
\left(2 x y^{2}-1\right) d x+\left(2 x^{2} y+1\right) d y=0
$$

and it is an easy matter to verify

$$
\frac{\partial M}{\partial y}=4 x y=\frac{\partial N}{\partial x},
$$

so u exists such that

$$
\begin{aligned}
& \frac{\partial u}{\partial x}=M=2 x y^{2}-1 \Rightarrow u=x^{2} y^{2}-x+A(y) \\
& \frac{\partial u}{\partial y}=N=2 x^{2} y+1 \Rightarrow u=x^{2} y^{2}+y+B(x)
\end{aligned}
$$

so we can choose A and B giving $u=x^{2} y^{2}-x+y$ and the solution as $x^{2} y^{2}-x+y=c$. Since $y(1)=1$, this give $c=1$ and the solution $x^{2} y^{2}-x+y=1$.
5. $\frac{d y}{d x}=(\ln y-\ln x+1) \frac{y}{x}$.

Solution: The equation is homogeneous. We re-write it as

$$
\frac{d y}{d x}=\left(\ln \frac{y}{x}+1\right) \frac{y}{x}
$$

If we let $y=x u$ so $\frac{d y}{d x}=x \frac{d u}{d x}+u$ then

$$
x \frac{d u}{d x}+u=(\ln u+1) u
$$

which separates

$$
\frac{d u}{u \ln u}=\frac{d x}{x} \Rightarrow \ln \ln u=\ln x+\ln c \quad \Rightarrow \quad u=e^{c x} .
$$

Therefore,

$$
\frac{y}{x}=e^{c x} \quad \text { or } \quad y=x e^{c x}
$$

