Math 3331 ODEs
Sample Test 1 - Solutions
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Solution: After factoring, the equation separates

4y = (;+1) (x+1),
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Ldy = (x+1)dx,
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y—Inly+1| = §x2+x+c.
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2. x%+2y = x%y.
Solution: The equation is Bernoulli, so we put in standard form
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Welet u = ; SO % = —% Z—z and substituting gives
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Integrating gives

2l = c—Inj|x]|,
u = x*(c—1In|x]),
L. x(c—In|x|),
Yy
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Solution: The equation is linear and already in standard form. The integrating factor is
u = e *. Thus,

%(e‘xy) = 2,
ey = 2x+¢, fromthelICc =3,
e’y = 2x+3,
y = (2x+3)e".
dy 1—2xy?
.a:m, y(l) =1.

Solution: The equation is exact. The alternate form is

(2xy? — 1)dx + (2x*y +1)dy = 0,

and it is an easy matter to verify

so u exists such that

g—z = M=2xy> -1 = u=xy*—x+A(y),
3—: = N=2x2y+1 = u:x2y2+y+B(x),

so we can choose A and B giving u = x?y?> — x + y and the solution as x>y?> — x +y = c.
Since y(1) = 1, this give ¢ = 1 and the solution x?y> — x +y = 1.
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Solution: The equation is homogeneous. We re-write it as
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which separates

du —d—x = Inlhu=Ihx+Inc = u=e
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