## Post-Launch Assessment Review (PLAR)

## Mailing Address:

15 Wyoming
Irvine, CA 92606

AIAA OC Section
4/27/18

Albert (team leader)
Brenda; Kushagra; Sahil

## Table of Contents

1 Recap: Launch Vehicle and Payload ..... 1
1.1 Team name ..... 1
1.2 Motor used ..... 1
1.3 Payload ..... 1
1.4 Vehicle dimensions ..... 2
2 Launch Review ..... 3
2.1 Altitude Reached ..... 3
2.1.1 Vehicle Summary ..... 3
2.1.2 Data Analysis and Results of Vehicle ..... 3
2.1.3 Scientific Value ..... 4
2.2 Visual Data Observed ..... 4
2.2.1 Overall Flight ..... 4
2.2.2 Drift ..... 4
3 Hindsight ..... 5
3.1 Lessons Learned ..... 5
3.2 Summary of Overall Experience ..... 5
4 Educational Engagement Summary ..... 5
5 Budget Summary ..... 6

# 1 Recap: Launch Vehicle and Payload 

### 1.1 Team name

AIAA OC Section

### 1.2 Motor used

CTI K661

### 1.3 Payload

The payload we utilized was a sensor that helped to track $\mathrm{CO}_{2}$ levels based on altitude.

### 1.4 Vehicle dimensions

| Vehicle Properties | 144.75 |
| :--- | :--- |
| Total Length (in) | 4 |
| Diameter (in) | 27.61 |
| Gross Lift Off Weigh (lb.) | Fiberglass |
| Airframe Material(s) | Fiberglass |
| Fin Material and Thickness <br> (in) | Minimum is 4" |
| Coupler Length/Shoulder <br> Length(s) (in) |  |


| Stability Analysis |  |
| :--- | :--- |
| Center of Pressure (in from <br> nose) | 105.3845 |
| Center of Gravity (in from <br> nose) | 85.9246 |
| Static Stability Margin (on <br> pad) | 3.33 |

## 2 Launch Review

### 2.1 Altitude Reached

Altitude (Feet)


The altitude reached was $4218^{\prime}$ AGL.

### 2.1.1 Vehicle Summary

### 2.1.2 Data Analysis and Results of Vehicle

The flight reached an altitude lower than 5280 ft , or 1 mile, due to the rocket's weight. Overall, the flight didn't go as originally planned. First and foremost, the rocket carried an empty body tube as a result of payload changes for safety measures. Our original proposed payload was a UAV that tested the Magnus Effect and was controlled via RC. However, it wasn't deemed safe
enough to fly and we proposed a change to the CO 2 payload. The payload had been tested before and was intended to fly on last year's rocket, but due to a failure in the motor that caused our rocket to fly outward instead of upward, our payload didn't properly gather data. Since there wasn't enough time between the flight and our design issue to change the outer rocket, we had to fly with the empty body tube, where the UAV was planned to go. This increased the length and weight of the rocket in total. Secondly, our CTI K661 motor was selected with the intent of overshooting 1 mile high so we could use operating air brakes on board the flight. However, due to the weight of the rocket, the air brake module was vestigial and the electronics were taken out in an attempt to lighten the rocket. Third, during the actual launch, the drogue and main chute releases were somehow mixed up, so our main deployed at apogee while our drogue deployed at 700 feet. It is possible that the wiring was switched around during preparation, which was done in the very dim lobby of the Embassy Suites hotel in Huntsville, AL.


This chart plots the data collected by the payload upon the rocket's descent. It was unplanned to have the rocket descend at such a slow velocity, but the data is still steady.

- $X=415.083 \mathrm{ppm}$
- $\mathrm{S}_{\mathrm{x}}=12.88 \mathrm{ppm}$


### 2.1.3 Scientific Value

We had hypothesized that the payload would show that $\mathrm{CO}_{2}$ decreases with altitude, but this is not the case. The chart displays exaggerated differences with $\mathrm{CO}_{2}$, but on the whole, there is very little variation among the readings.

The data leads us to reject our original hypothesis.

### 2.2 Visual Data Observed

### 2.2.1 Overall Flight

As compared to our last year's flight, this year's was relatively straightforward. Visually during the launch, it was visible we didn't reach our 1 mile goal. In addition, the main chute and drogue chute releases were switched, as stated previously. Due to the early deployment of the main chute, our rocket was able to drift for longer, resulting in it landing about a mile (give or take a few) away from the launch pads, shown in the screenshot of the GPS app below.

### 2.2.2 Drift



This image displays the displacement of the rocket. The distance from the dog icon (the lauhch pad) to the blue dot (the rocket's location upon landing) is about 0.8 miles.

## 3 Hindsight

### 3.1 Lessons Learned

- Don't procrastinate
- Account for weather and get a launch ready ASAP
- Set multiple deadlines/check-ins ahead of the actual deadline to account for time to fix/change errors.
- Make sure everything is labelled on the rocket


### 3.2 Summary of Overall Experience

Three of the four members on this team were seniors. We very quickly learned that college applications would interfere with our work in Student Launch.

The payload we had set out to build, a UAV that utilized the Magnus effect to generate lift, was going to be extremely difficult. Not only did the diameter of the rocket limit our ability to create a suitable cylinder size for the UAV, but there was also the issue of development. There weren't set deadlines for the production of the UAV, and there were manys setbacks due to our inexperience. We learned how to build RC vehicles really late in the process, which prevented us from developing a UAV that could safely descend at our launch in Huntsville.

## 4 Educational Engagement Summary

The activity that was set up was launching paper rockets using pressurized air and a penny as weight at the tip of the rocket. There was one person guiding the launches and another watching over the range and the participants waiting to launch to ensure their safety and keep order. The participants would cut out and fold their own rockets. They had the ability to decorate to their will. For the younger participants, we had already cut out rockets that they could fold and customize. Once they were ready, they waited in an orderly fashion to be allowed onto the launch pad to load their rockets. Once the range was clear and the participants were back at the control pad, they were able to countdown and launch their own rocket using pressurized air.

## 5 Budget Summary

| Description | Unit Cost |  | Qty |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Scale Vehicles and |  |  |  |  |  |
| Engines |  |  |  |  |  |
| 3" Fiberglass Frenzy |  |  |  |  |  |
| XL |  | \$200.00 |  | 1 | \$0.00* |
| 3" G12 Thin-Wall |  |  |  |  |  |
| Airframe (12" length) |  | \$20.00 |  | 1 | \$0.00* |
| 3" G12 Coupler (6" |  |  |  |  |  |
| length) |  | \$14.00 |  | 2 | \$0.00* |
| 3" G12 Coupler (9" |  |  |  |  |  |
| length) |  | \$21.00 |  | 1 | \$0.00* |
| HS-7980TH |  | \$190.00 |  | 1 | \$0.00* |
| 2-56 wire |  | \$10.00 |  | 1 | \$0.00* |
| 1/4" Machine Closed |  |  |  |  |  |
| Eye Bolt |  | \$18.00 |  | 4 | \$0.00* |
| Heavy unit easy |  |  |  |  |  |
| Iris Ultra 72" Compact |  |  |  |  |  |
| 12" Elliptical |  |  |  |  |  |
| Parachute |  | \$47.00 |  | 1 | \$0.00* |
| Body Tubes and |  |  |  |  |  |
| Bulkheads |  | \$134.69 |  | 1 | \$134.69 |
| Cesaroni J210 |  | \$68.00 |  | 2 | \$136.00 |
| Total Scale Vehicle Cost |  |  |  |  |  |

## Vehicle

```
4" G12 Coupler (12"
```

length)

| 4" G12 Coupler (8' |  |  |  |
| :---: | :---: | :---: | :---: |
| length) | \$21.00 | 2 | \$0.00* |
| 4" Fiberglass Frenzy |  |  |  |
| XL | \$300.00 | 1 | \$0.00* |
| 4" G12 Airframe (12" |  |  |  |
| length) | \$23.00 | 1 | \$0.00* |
| 2-56 wire | \$10.00 | 1 | \$0.00* |
| Heavy unit easy connector | \$5.00 | 1 | \$0.00* |
| Aero Pack 75mm |  |  |  |
| Retainer (Fiberglass |  |  |  |
| Motor Tubes) | \$44.00 | 1 | \$0.00* |
| Shock Cord Protector |  |  |  |
| Sleeves of Kevlar | \$10.00 | 3 | \$0.00* |
| 1 Inch Black Climbing |  |  |  |
| Spec Tubular Nylon |  |  |  |
| Webbing | \$12.00 | 2 | \$0.00* |
| 3/8" Machine Closed |  |  |  |
| Eye Bolt | \$30.00 | 4 | \$0.00* |
| 4" G10 Airframe Plate | \$6.00 | 8 | \$0.00* |
| 3" G10 Airframe |  |  |  |
| Bulkplate | \$5.00 | 8 | \$0.00* |
| 3" Aluminum |  |  |  |
| Bulkplate | \$15.00 | 4 | \$0.00* |
| 4" Aluminum |  |  |  |
| Bulkplate | \$20.00 | 4 | \$0.00* |
| 4" Coupler Bulkplate | \$4.00 | 4 | \$0.00* |
| 3" Coupler Bulkplate | \$3.50 | 4 | \$0.00* |
| Electric Matches | \$1.50 | 60 | \$90.00 |
| Aero Pack 54mm |  |  |  |
| Retainer (Fiberglass |  |  |  |
| Motor Tubes) | \$29.00 | 1 | \$0.00* |
| Body Tube and |  |  |  |
| Bulkhed | \$144.39 | 1 | \$144.39 |


| Eyebolts | $\$ 80.78$ | 1 | $\$ 80.78$ |
| :--- | :---: | :---: | :---: |
| 4" Coupler Bulkhead | $\$ 29.63$ | 4 | $\$ 21.81$ |
| Launch Rail | $\$ 28.47$ | 1 | $\$ 29.63$ |
| Tape <br> Measure/Tweezers | $\$ 133.00$ | 2 | $\$ 28.47$ |
| Cesaroni K2661 |  |  | $\$ 301.00 \$ 35$ shipping |

Total Vehicle Cost
\$696

## Recovery

| Iris Ultra 120" |  |  |  |
| :---: | :---: | :---: | :---: |
| Compact Parachute | \$504.00 | 1 | \$0.00* |
| 24" Elliptical |  |  |  |
| Parachute | \$60.00 | 1 | \$0.00* |
| 4F Black Powder | Kept by mentor |  |  |
| Batteries (9v, 2 pack) | \$7.00 | 3 | \$0.00* |
| Battery Holder | \$1.00 | 5 | \$0.00* |
| Stratologger CF Flight |  |  |  |
| Computer | \$55.00 | 1 | \$0.00* |
| RRC3 Flight Computer | \$70.00 | 1 | \$0.00* |
| PerfectFlite Pnut (2 units) | \$55.00 | 2 | \$0.00* |
| Locing Connectors, Housing Kit, Shunts, Heat Shrink Tubing | \$42.47 | 1 | \$42.47 |
| 100 3mm Led Lights | \$3.99 | 1 | \$3.99 |
| Voltage Regulator | \$5.03 | 1 | \$5.03 |

Capacitors, Cables, Breadboard Diode
$\$ 11.67$
1
$\$ 11.67$

Total Recovery Cost

## Payload

Arduino Uno kit (includes LED, resistors, regulators,

| etc) | \$35.00 | 1 | \$0.00* |
| :---: | :---: | :---: | :---: |
| SD card + Adapter + |  |  |  |
| Teensies + Headers | \$102.09 | 1 | \$102.09 |
| PerfectFlite Pnut |  |  |  |
| Altimeter | \$50.00 | 2 | \$0.00* |
| Lithium Ion Battery (rechargeable) | \$100.00 | 1 | \$0.00* |
| DC 12v 10000RPM |  |  |  |
| Mini Magnetic Motor | \$5.53 | 2 | \$10.06 |
| 16" Paper parachute | \$4.00 | 2 | \$8.00 |
| Gimbal | \$11.68 | 2 | \$23.36 |
| Adafruit Battery | \$6.40 for 10 | 10 | \$6.40 |
| Arduino Mega | \$44.95 | 1 | \$44.95 |
| Carbon Fiber Round |  |  |  |
| Tubes ( $6 \mathrm{~mm} \times 5 \mathrm{~mm}$ |  |  |  |
| 1000 mm ) | \$27.44 | 1 | \$27.44 |
| two-chanel Transceiver |  |  |  |
| and Receiver | \$120.00 | 1 | \$120.00 |
| 40 PCS Dupont 10 cm |  |  |  |
| Male to Female |  |  |  |
| Jumper Wire | \$1.24 | 1 | \$1.24 |
| HP-PRO Short-167 |  |  |  |
| Low-Profie HV Digital |  |  |  |
| Servo | \$67.99 | 1 | \$67.99 |


| Gears/Rod/Bearing/Fas teners/Fishing Lines | \$129.36 | 1 | \$129.36 |  |
| :---: | :---: | :---: | :---: | :---: |
| Stretching Band | \$7.53 | 1 | \$7.53 |  |
| Resistance Rubber Loop Bands | \$14.00 | 1 | \$14.00 |  |
| Linear Actuator 30 mm 50-6 | \$228.61 | 1 | \$228.61 | Express Shipping |
| Motors - 10000 RPM | \$11.92 | 1 | \$11.92 |  |
| 3.7" Body Tube | \$11.00 | 2 | \$36.88 | 14.88 Shipping |
| KST x 12-508 Micro Corelss HV Servo | \$68.48 | 1 | \$68.48 |  |
| Transmitters and Receivers - Argent | \$181.07 | 1 | \$181.07 |  |
| 100 pack 4.7 K ohm 1/4W Metal Film Resistor | \$2.29 | 1 | \$2.29 |  |
| Standoff Spacer for PCB | \$24.17 | 1 | \$24.17 |  |
| Swivel Pulleys | \$18.30 | 1 | \$18.30 |  |
| Double Indulator <br> Single Row Header <br> Strip | \$9.98 | 1 | \$9.98 |  |
| 5 mm Drill Bit | \$9.97 | 1 | \$9.97 |  |
| Solder Wire | \$14.99 | 1 | \$14.99 |  |
| 18 AWG Cables | \$10.98 | 1 | \$10.98 |  |
| Heat Gun/Super Lube/Laminator | \$52.03 | 1 | \$52.03 |  |
| Weather Balloon | \$28.45 | 1 | \$28.45 |  |

## GPS System

| Whistle GPS Dog <br> Tracker Kit | $\$ 75.00$ | 1 | $\$ 0.00^{*}$ |
| :--- | :--- | :--- | :--- |
| Whistle Monthly <br> Charge-Jan | $\$ 9.95$ | 1 | $\$ 9.95$ |
| Whistle Monthly <br> Charge- Feb | $\$ 9.95$ | 1 | $\$ 9.95$ |
| Cellular Service Fee $(3$ <br> months free, 5 months <br> to pay) | $\$ 40.00$ | 1 | $\$ 40.00$ |

## Educational Outreach

Color fliers (250
copies)

$$
\$ 170.00
$$

Total Educational Outreach Cost

## Travel (4 Members)

Trips to Lucerne
(\$2.80/gal, 112 mi ;
$\$ 21.00$ per trip per car)
Huntsville, Alabama (roundtrip plane ticket)
$\$ 332.00$
Food (2 meals a day, 6 days)
$\$ 10.00$
Hotel (2 people per room, 6 days)

El Centro Hotel
$\$ 99.18$
7
\$694.26

## Total Travel Cost

(Estimated) $\quad \$ 5,566.26$

Total Estimated
$\begin{array}{ll}\text { Project Expenses } & \$ 8,086.63\end{array}$
*Materials from previous year

