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Abstract:

 

Policies to reduce global warming by offering credits for carbon sequestration have neglected the
effects of forest management on biodiversity. I review properties of forest ecosystems and management op-
tions for enhancing the resistance and resilience of forests to climate change. Although forests, as a class, have
proved resilient to past changes in climate, today’s fragmented and degraded forests are more vulnerable. Ad-
aptation of species to climate change can occur through phenotypic plasticity, evolution, or migration to suit-
able sites, with the latter probably the most common response in the past. Among the land-use and manage-
ment practices likely to maintain forest biodiversity and ecological functions during climate change are (1)
representing forest types across environmental gradients in reserves; (2) protecting climatic refugia at multi-
ple scales; (3) protecting primary forests; (4) avoiding fragmentation and providing connectivity, especially
parallel to climatic gradients; (5) providing buffer zones for adjustment of reserve boundaries; (6) practicing
low-intensity forestry and preventing conversion of natural forests to plantations; (7) maintaining natural
fire regimes; (8) maintaining diverse gene pools; and (9) identifying and protecting functional groups and
keystone species. Good forest management in a time of rapidly changing climate differs little from good forest
management under more static conditions, but there is increased emphasis on protecting climatic refugia
and providing connectivity.

 

Después de Kyoto: Manejo Forestal en Tiempos de Cambio Climático Acelerado

 

Resumen:

 

Las políticas para reducir el calentamiento global mediante créditos para el secuestro de carbono
han pasado por alto los efectos del manejo forestal sobre la biodiversidad. Reviso las propiedades de los eco-
sistemas forestales y las opciones de manejo para reforzar la resistencia y la elasticidad de los bosques ante el
cambio climático. Aunque los bosques han demostrado elasticidad a cambios climáticos en el pasado, los
fragmentados y degradados bosques actuales son más vulnerables. La adaptación de especies al cambio
climático puede ocurrir por medio de la plasticidad fenotípica, evolución o migración a sitios adecuados,
siendo probablemente ésta la respuesta más común en el pasado. Entre las prácticas de uso y manejo de
suelo que pueden mantener la biodiversidad y funciones ecológicas de los bosques durante el cambio
climático se cuentan 1) representar tipos de bosques en reservas en gradientes ambientales; 2) protección de
refugios climáticos en escalas múltiples; 3) protección de bosques primarios; 4) evitar la fragmentación y pro-
porcionar conectividad, especialmente paralela a gradientes climáticos; 5) proporcionar zonas de amor-
tiguamiento para ajustar límites de reservas; 6) prácticas forestales de baja intensidad y evitar la conversión
de bosques naturales a plantaciones; 7) mantenimiento de regímenes de fuego natural; 8) mantenimiento de
pozas génicas diversificadas; 9) identificación y protección de grupos funcionales y especies clave. El manejo
adecuado de bosques en tiempos de cambios climáticos rápidos difiere poco del manejo adecuado de bosques
bajo condiciones más estáticas, pero tiene mayor énfasis en la protección de refugios climáticos y en propor-

 

cionar conectividad.
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Introduction

 

Climate change is a major threat to biodiversity over
the coming century (Peters & Lovejoy 1992). Therefore,
efforts to lessen global warming by reducing emissions
of CO

 

2

 

 and other greenhouse gases or by increasing up-
take of carbon by vegetation are of great interest to con-
servationists. The Kyoto Protocol, an international treaty
under prolonged negotiation, offers countries the op-
portunity to receive credits for reducing emissions or in-
creasing sequestration of carbon (Schulze et al. 2000).
Countries can reduce their commitments to emission re-
ductions by afforestation or reforestation. The U.S. gov-
ernment favors such comprehensive carbon accounting
and expects to meet about half of its annual commit-
ment under the protocol through land-based carbon sinks
(Smaglik 2000). Although the Kyoto Protocol has poten-
tial conservation benefits, such as the creation of mar-
kets for forest preservation (Bonnie et al. 2000; Kremen
et al. 2000), carbon accounting also poses biological
risks. Countries could receive credits, for example, by
planting trees in natural grasslands. And, because ac-
counting will not begin until the year 2008, a country
potentially could accrue credits by logging primary for-
ests now and replacing them with rapidly growing plan-
tations.

Missing from the Kyoto discussions is any consider-
ation of biodiversity. The protocol is silent on forest
management issues not directly related to carbon ac-
counting. I explore the basis for a more rational policy
for managing forests in the face of climate change. In
particular, I ask what inherent properties of forest eco-
systems and what kinds of management are likely to en-
hance the resistance and resilience of forests.

Forests have occupied the earth for nearly 400 million
years (Tidwell 1998), experiencing massive upheavals in
climate related to shifts in the earth’s rotation on its axis,
variation in solar radiation, plate tectonics, orogeny, vol-
canism, glaciation, and occasional collision with aster-
oids. Forests have persisted through all these events, but
not unchanged. Their species composition has varied al-
most continuously, with the distributions of tree species
and forest types shifting, contracting, and expanding over
time (Graham 1999). Despite these changes, forests as
a class have proved remarkably resilient. Although the
present rate of warming is higher than previous rates over
the last 10,000 years, forests apparently have weathered
even faster changes in the past, albeit the most rapid
changes were associated with mass extinctions (Graham
1999).

If climate change were the only factor menacing for-
ests today, and if the landscape were still pristine, there
arguably would be little cause for worry. The fossil
record shows numerous examples of species migrating
and persisting through past changes. By and large, cli-
matic change may have been as great a force for specia-

tion as for extinction (Sepkoski 1998; Hewitt 2000). Even
with the rapidity of change predicted for the next few
decades, in the absence of other threats most species
could be expected to adjust to these changes as they
have in the past. This knowledge might lead some to
suppose that the current warming of the atmosphere
caused by emissions of greenhouse gases is of little con-
cern. Today, however, climate change is being played
out on a very different court—one in which direct de-
struction, fragmentation, and degradation of ecosystems
by humans, accompanied by vast invasions of alien spe-
cies, are proceeding at a breakneck pace worldwide. It
is in combination with these threats that global warming
becomes so insidious (Peters & Darling 1985; Dudley
1998; Sala et al. 2000). More optimistically, by learning
how forests adjust to climate change and other stresses
under natural conditions, we might be able to maintain,
restore, or mimic these processes of adjustment.

 

Resistance, Resilience, and Change in
Forest Ecosystems

 

Many reviews of the potential effects of climate change
on forests are available (e.g., Ciesla 1995; Beniston &
Innes 1998; Brown 1998; Dudley 1998; Jarvis & Aitken
1998; Sedjo & Sohngen 1998; Winnett 1998). The Inter-
governmental Panel on Climate Change (IPCC 1996

 

a

 

,
1996

 

b

 

) concluded that forests are highly sensitive to
modern climate change. Although the details of ex-
pected change in forests on a regional scale are unclear,
the scenarios of general circulation models (GCMs) pre-
dict major shifts in the area occupied by forest biomes
(Neilson et al. 1994; Hadley Center for Climate Predic-
tion and Research 1998). For example, globally, the area
occupied by tropical and temperate forests is projected
to expand by up to 20%, whereas boreal forests may de-
cline by 50% (Krankina & Dixon 1993), if other causes
of change are ignored. Moreover, the rate of climate
change over the next century may be faster than most
historic changes, suggesting that adjustments forests
have made to changes in the past may be more difficult
today.

Beyond the crude biome-scale projections of GCMs,
prediction of how forests will respond to climate change
or other perturbations requires some understanding of
their composition, structure, and function (Franklin et al.
1981). These three classes of ecosystem components are
interdependent, so change in function—for example, a
climate-induced increase in fire frequency or wind-
storms—produces corresponding changes in the species
composition and physiognomy (structure) of the forest.
Over an intermediate length of time, say thousands of
years, the species in a given forest represent those that
have evolved under a definable range of conditions, of-
ten called a “natural” or “historic” range of variability
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(Landres et al. 1999; Swetnam et al. 1999). Many ecolo-
gists consider this range the appropriate set of “refer-
ence conditions” for comparison with human-altered
conditions and as a guide to management (Stephenson
1999).

The time period selected to represent reference con-
ditions is subjective, but the logic behind the use of
historic variability to guide management is compelling.
Changes that occur at a faster rate, greater intensity, dif-
ferent pattern, or broader spatial scale than historically
are likely to fall outside the limits of adaptability for some
species. If this departure affects critical life-history func-
tions, extinction (at least locally) is likely. As changes be-
come progressively faster, more intense, or broader in
extent, a global mass extinction becomes probable. The
challenge for conservationists is not to prevent change.
It is to keep rates, scales, and intensities of change in eco-
systems within the historic range of variability for those
systems—or, at least, to come close. Conservationists
must also develop strategies to mitigate the effects of in-
evitable changes that fall outside the historic range of
variability.

 

Resistance and Resilience

 

Stability has been defined in many ways, representing
three general concepts: (1) the ability to maintain a rela-
tively constant state in the face of disturbance and
stress; (2) the ability to recover quickly after a distur-
bance; and (3) a combination of these two abilities. The
first concept is often referred to as resistance. The sec-
ond concept is usually referred to as resilience (Pimm
1984, 1991), although other meanings of resilience can
be found in the literature (Table 1).

Some theory and empirical evidence suggest that resis-

tance is inversely related to resilience (Fisher et al. 1998).
Specifically, resistance may decrease and resilience in-
crease as the supply of limiting nutrients increases (De-
Angelis et al. 1989). Herbert et al. (1999) tested this hy-
pothesis in an Hawaiian forest previously studied with
respect to nutrient limitation to productivity and then
damaged by a hurricane. As predicted, with phosphorus
treatments the severity of damage to trees increased, in-
dicating lower resistance, but rates of recovery of prehur-
ricane stem growth and net primary productivity also in-
creased, indicating higher resilience.

Nevertheless, resisting and recovering from distur-
bance may be positively associated at other spatiotem-
poral scales or under other ecological conditions. A for-
est that, on the scale of a biome, resists change to a
fundamentally different condition is one that continually
recovers from disturbances at finer spatial scales. Whit-
ford et al. (1999) found that both the resistance and
resilience of vegetation to drought are reduced in in-
tensely stressed ecosystems (in this case, desert grasslands
grazed by domestic livestock) compared with lightly
stressed ecosystems.

What properties of a forest ecosystem contribute to
resistance and resilience? Some studies have demon-
strated increased tolerance to environmental extremes
and greater temporal stability and recovery potential as
species richness increases (McNaughton 1993; Tilman &
Downing 1994; Tilman 1996, 1999). The most compel-
ling explanation for how species richness enhances sta-
bility is the redundancy provided by multispecies mem-
bership in critical functional groups (Walker 1992, 1995;
Peterson et al. 1998). A species that is the only member
of its functional group in a community is a keystone spe-
cies: if it disappears, many other species will also disap-
pear or at least decline. In western Australia, for exam-

 

Table 1. Some definitions of ecological stability, in terms of resistance and resilience.

 

Resistance Resilience

 

Measurement of the consequences on other variables of magnitude of disturbance that can be absorbed or
permanently changing a given variable; if the accommodated by an ecosystem before its structure is
consequent changes are small, the system is relatively fundamentally changed to a different state (Holling 

1973, 1986)resistant (Pimm 1984, 1991)

System undergoes less change in a state or variable that has been displaced from equilibrium
flux variable as a result of disturbance (DeAngelis et al. returns quickly to it (Pimm 1984, 1991)
1989; Grimm et al. 1992; Herbert et al. 1999)

System stays essentially unchanged (constancy) rate of return to the reference state following
(Grimm & Wissel 1997) disturbance (DeAngelis et al. 1989; Grimm et al. 1992;

Herbert et al. 1999)

Ability of a community to maintain its composition and capacity to recover from a disturbance in species
biomass in response to environmental stress (Grime et al. 
2000)

composition (Walker 1995)

system returns to the reference state (or dynamic) after
a temporary disturbance (Grimm & Wissel 1997)
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ple, a single plant species, 

 

Banksia prionotes

 

, is the
only source of nectar for a guild of honeyeaters during a
critical time of the year (Lambeck 1992). Figs (

 

Ficus

 

) of
various species assume a similar role in many tropical
forests (Terborgh 1986). A functional group with more
diverse membership can maintain its role in the ecosys-
tem despite fluctuations in the member species (Walker
1995).

Diversity of functional groups, in addition to diversity
of species within groups, appears to encourage ecologi-
cal resistance. Experiments with microcosms subjected
to warming show that changes in the distribution of or-
ganisms among trophically defined functional groups
lead to differences in ecological processes beyond those
expected from temperature-dependent physiological rates,
but diverse communities retain more species than dep-
auperate communities (Petchey et al. 1999). A test of
the effects of functional group richness on the invasibil-
ity of grasslands showed that invasion success was nega-
tively related to functional group richness (Symstad
2000). Three lessons emerge from these findings: (1) a
diversity of functional groups should be maintained; (2)
species richness and redundancy should be maintained
within functional groups; and (3) keystone species must
be identified and kept in ecologically optimal, not just
minimally viable, populations. The current body of re-
search is insufficient to identify thresholds in richness
within or among functional groups at which resistance
or resilience break down.

 

Adaptation

 

Minimizing extinction during climate change requires
that species be given opportunities to adapt. Adaptation
of species to climate change can take place through phe-
notypic plasticity (acclimatization), adaptive evolution,
or migration to suitable sites (Markham 1996; Bawa &
Dayanandan 1998). The only other alternative is decline
and ultimately extinction.

Migration appears to have been the primary way spe-
cies responded to past climate changes. Few beetles, for
example, showed morphological change over the Qua-
ternary (Pleistocene and Holocene), whereas species
shifted markedly in distribution over this period (Coope
1979). Similarly, only 3 out of 177 mammals examined
by Prothero and Heaton (1996) showed continual mor-
phological change during the Eocene and lower Oli-
gocene (37–30 million years ago), but again there were
major changes in distributions. Although evolution can
take place in the absence of morphological change,
through physiological responses for example (Nowak et al.
1994; Hoffman & Hercus 2000), it seems clear that most
species respond to changing climate by tracking suitable
habitats geographically.

The speed at which species can migrate to track
changing climate is of considerable interest, especially if

 

the current climate change is, as predicted, faster than
most previous changes during the Quaternary. Migration
rates of trees recolonizing regions after glaciation have
been estimated from paleoecological data as ranging from
50 m/year for American beech (

 

Fagus grandifolia

 

) (Davis
1983) to 2000 m/year for spruce (

 

Picea

 

 sp.) (Dennis
1993). The slower rates are thought insufficient for re-
sponse to the current pace of climate change, especially
given dispersal barriers such as intensive agriculture and
cities (Peters & Darling 1985). Recently, however, pale-
ontological evidence of rapid, long-distance migration of
many tree species has arisen (Clark 1998; Clark et al.
1998), providing hope that at least some trees may be
able to track a rapidly changing climate. In northern
Europe, rapid migration of trees following ice recession
8500–8000 

 

BP

 

 was relatively unconstrained by physical
barriers such as mountain ranges, seas, and large lakes
(Kullman 1998). Haphazard, long-distance establishment
events may explain the evidence of rapid migration
(Clark et al. 1998). Incorporating such rare dispersal
events into models is difficult, which is why empirical
rates of plant migration are often substantially higher
than modeled rates (Higgins & Richardson 1999).

Rapid range shifts in response to warming trends over
the last few decades have been documented for a num-
ber of species of vertebrates and invertebrates (Wuethrich
2000). For example, in a sample of 35 nonmigratory Eu-
ropean butterflies, 63% have shifted their ranges to the
north by 35–240 km during this century, whereas only
3% have shifted south (Parmesan et al. 1999). Neverthe-
less, migration to track a rapidly changing climate may
be difficult for species with poor dispersal abilities, such
as small forest vertebrates and flightless invertebrates,
especially in relatively homogeneous landscapes with
few opportunities for short-distance moves into suitable
microhabitats. Barriers to movement may be formidable
in fragmented landscapes (Noss & Csuti 1997).

Some species may adapt to climate change by in situ
evolution. The modern Great Basin (U.S.) flora, for ex-
ample, appears to consist of a mix of species that mi-
grated northward from Pleistocene refugia in the south-
ern portions of the region, and species that changed
little in distribution during the Pleistocene and coped
with climate change by genetic adaptation (Nowak et al.
1994). Tree species show genetic and phenological gra-
dients associated with the environmental gradients over
which they occur (Campbell 1986). Adaptive evolution
ultimately depends on adequate levels of genetic varia-
tion within and among populations, although this varia-
tion can be expected to decline in response to the direc-
tional selection imposed by changing climate.

Many of the documented phenological responses of
plants and animals to global warming may represent rapid
microevolution (Hughes 2000). In Spain, populations of

 

Drosophila subobscura

 

 have evolved in response to
the warming of temperatures since the mid-1970s (Rod-
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riguez-Trelles & Rodriguez 1998). On a broader tempo-
ral scale, pulses of speciation recorded in the fossil
record are sometimes associated with climate change
(Sepkoski 1998). Mitochondrial DNA analyses of birds
suggest that divergence of populations during the glacial
cycles of the Pleistocene led to formation of new species
or completed speciation events that were initiated ear-
lier (Avise & Walker 1998; Klicka & Zink 1999).

 

Land Use and Management Guidelines

 

Forest management has the potential either to exacer-
bate or reduce the effects of climate change (Franklin et al.
1991; Dudley 1998). Climate change is not currently the
greatest threat to forests but adds another layer of stress
to species and ecosystems already suffering from poor
land-use practices. To protect forests from the harmful
effects of climate change, we must first mitigate the
proximate threats of habitat destruction, fragmentation,
and degradation. Markham (1996) pointed out that “the
potential impacts of climate change will be an academic
question in relation to ecosystems that we are unable to
save from current and immediate threats.” Furthermore,
human management appears to affect forest productiv-
ity and carbon storage much more than the effects of cli-
mate change or CO

 

2

 

 enrichment (Caspersen et al. 2000;
Schimel et al. 2000).

Following are some recommendations for land use
and management that have a reasonable chance of en-
hancing the resistance and resilience of forests to cli-
mate change.

 

Represent Forest Types across Environmental Gradients in 
Nature Reserves

 

One of the oldest conservation strategies is to represent
all ecosystem types in reserves (Pressey et al. 1993; Noss &
Cooperrider 1994). Representative areas have been se-
lected for scientific study, as ecological benchmarks to
compare with disturbed areas, and as a way to conserve
taxa too difficult to inventory and manage individually.
Representation is also a sensible strategy in times of
changing climate. Because we do not know precisely
which forest types will be most sensitive, maintaining a
full spectrum of types in protected areas will help assure
that some resistant and resilient types persist.

Representation often is assessed by remote sensing of
vegetation. For example, the Gap Analysis Program in
the United States produces maps of vegetation in each
state from LANDSAT imagery and determines how well
each type is represented in reserves (Scott et al. 1993).
The resolution of this imagery usually is sufficient only
to map overstory vegetation, however. Beta diversity (the
turnover of species along environmental gradients) gen-
erally increases from trees to shrubs to herbs (Whittaker

1960; Zobel et al. 1976). Hence, mapping only overstory
vegetation is likely to miss significant patterns in plant
species diversity and associated patterns in faunal diver-
sity and ecological processes. A combined approach of
mapping abiotic and biotic features may provide the
best basis for a representation assessment (Hunter et al.
1988; Kirkpatrick & Brown 1994). We are applying this
approach in the western United States (e.g., Noss et al.
1999), testing the hypothesis that representing vegeta-
tion along environmental gradients (capturing as much
soil and microclimatic heterogeneity as possible) will re-
sult in the protection of more species and higher genetic
diversity within species, in turn providing for adjust-
ment to changing climate. Ideally, reserves will span un-
interrupted environmental gradients and allow dispersal
of organisms to favorable microsites.

 

Protect Climatic Refugia at Multiple Scales

 

Biogeographers have long been interested in the refugia
that harbored plants and animals during times of unfa-
vorable climate (Haffer 1969; Prance 1982; Colinvaux et al.
1996). Recent research suggests that full-glacial refugia
had more influence on biodiversity in temperate than in
tropical regions (Willis & Whittaker 2000), whereas in
Amazonia the warm stages of the Quaternary and late
Tertiary, which raised sea levels up to 100 m, may have
isolated habitats as islands and archipelagos, fostering the
speciation that occurred during these times (Nores 1999).
A similar process apparently unfolded in Florida, where
speciation occurred on sandy ridges, which formed an
archipelago during interglacial phases of the Pleistocene
( James 1961; Myers 1990).

It makes abundant sense to identify past climatic refu-
gia wherever possible and protect these areas so that
they can again function as refugia during present and
future climate change (Eeley et al. 1999). Refugia occur
at a variety of spatial scales. In North America, postu-
lated regional refugia include the southern Appalachians,
valleys of major rivers in the southeastern coastal plain
(Delcourt & Delcourt 1984), and the Klamath-Siskiyou
region of California and Oregon. The latter region is
known for its heterogeneity of landforms, geological
strata, soils, and microclimates, which have promoted
diversity and endemism (Whittaker 1960; Noss et al.
1999). Major refugia in Europe include Iberia, Italy, the
Balkans, and the Caucasus (Hewitt 2000). In Central
America, many lowland species appear to have been lim-
ited to riparian habitats during the late Pleistocene (Aide
1998). Across continents, topographically diverse areas
have allowed habitats and lineages to persist through el-
evational shifts and, in many cases, to diverge during pe-
riods of climate change (Hewitt 2000).

Climatic refugia at much smaller scales also can be im-
portant for maintaining species assemblages vastly differ-
ent from those adapted to the dominant regional climate.
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Algific slopes in Iowa (U.S.) occur in a deciduous forest
matrix on steep, usually north-facing carbonate talus
slopes, where cold air flows out of ice-filled caves that de-
veloped late in the Pleistocene. These slopes support
over 60 species of vascular plants disjunct in Iowa from
northern or western boreal forests and at least eight land-
snail taxa thought to have become extinct at the end of
the Wisconsinan glaciation (Nekola 1999). Such slopes,
which also occur in other regions, may well continue to
support species characteristic of colder climates during
the current period of global warming. At a still smaller
scale, sandstone and limestone outcrops in Near Eastern
deserts support hundreds of relict and endemic Mediter-
ranean-climate plants that have survived from periods of
moister climate (Danin 1999). Again, these microrefugia,
if protected, are likely to continue to support many spe-
cies. If climatic refugia at all spatial scales can be identi-
fied and protected, persisting populations may be able to
recolonize the surrounding landscape when conditions
favorable for their survival and reproduction return.

 

Protect Primary Forests

 

A community of long-lived organisms is seldom, if ever,
in equilibrium with the prevailing climate (Perry et al.
1991). Rather, vegetational change lags behind climate
change, such that the vegetation at any point in time is a
legacy of climatic conditions decades or centuries in the
past (Sprugel 1991; Millar & Woolfenden 1999). Old-
growth forests are predicted to possess considerable in-
ertia in the face of climate change (Franklin et al. 1991).
Mature trees can survive long periods of unfavorable cli-
mate, remaining “several centuries after climatic deterio-
ration makes local conditions unsuitable for seedling es-
tablishment” (Brubaker 1986). This inertia could be a
significant mechanism for ecological resistance.

A simulation of tree species distributions in Sweden
under global warming scenarios predicted the long-term
persistence of old-growth 

 

Picea

 

 stands protected from
disturbance (Sykes & Prentice 1996). In forest types where
the dominant trees live for hundreds or thousands of
years, stands protected from catastrophic disturbance
might persist through a few centuries of unfavorable cli-
mate, to reproduce again when favorable conditions re-
turn. Despite this inertia, however, slow shifts in com-
position along environmental gradients are expected
even in mature, established forests (Franklin et al. 1991).
Because the intensity and rate of change will be buffered
in forest interiors, maintaining large patches of old-
growth forest is a sensible strategy for maintaining biodi-
versity during rapid climate change.

 

Avoid Fragmentation and Provide Connectivity

 

The negative effects of fragmentation are abundantly
documented worldwide (Harris 1984; Noss & Csuti 1997).

 

Fragmentation may threaten biodiversity during climate
change through several mechanisms, most notably edge
effects and isolation of habitat patches. Intact forests
maintain a microclimate that is often appreciably differ-
ent from that in large openings. When a forest is frag-
mented by logging or other disturbance, sunlight and
wind penetrate from forest edges and create strong mi-
croclimatic gradients up to several hundred meters wide,
although they may vary in severity and depth among re-
gions and forest types (Ranney et al. 1981; Franklin &
Forman 1987; Chen & Franklin 1990; Laurance 1991,
2000; Chen et al. 1992; Baker & Dillon 2000). With pro-
gressive fragmentation of a landscape, the ratio of edge
to interior habitat increases, until the inertia characteris-
tic of mature forests is broken. Fragmented forests will
likely demonstrate less resistance and resilience to cli-
mate change than intact forests.

Another potentially serious impact of fragmentation is
its likely effect on species migration. By increasing the
isolation of habitats, fragmentation is expected to inter-
fere with the ability of species to track shifting climatic
conditions over space and time. Weedy species, includ-
ing many exotics, with high dispersal capacities may
prosper under such conditions, whereas species with
poor mobility or sensitive to dispersal barriers will fare
poorly. Many models of species migration during cli-
mate change have included the convenient but often un-
realistic assumption of a homogeneous environment.
Collingham and Huntley (2000) used a spatially explicit
model to investigate the effects of different landscape
patterns on the ability of a wind-dispersed tree (

 

Tilia cor-
data

 

) to migrate in response to changing climate. Simu-
lated dispersal rates slowed dramatically when habitat
availability fell below 25% of landscape area. Landscapes
with a “blocky” (coarse-grained) pattern had the stron-
gest negative effect on migration, suggesting that multi-
ple small reserves might be preferable to fewer large re-
serves. Other species, more dependent on large habitat
blocks and requiring intact habitat corridors to migrate,
would probably favor a different landscape pattern (Col-
lingham & Huntley 2000).

Connectivity is the antithesis of fragmentation. Maintain-
ing habitat linkages parallel to climatic gradients and mini-
mizing artificial barriers is a prudent strategy under any cli-
mate-change scenario (Hobbs & Hopkins 1991; Noss
1993). Biogeographic corridors, such as the Mississippi Val-
ley and other major river valleys that trend north-south, al-
lowed dispersal during past climate changes (Delcourt &
Delcourt 1984). Hunter et al. (1988) suggest that a corridor
of natural habitat bordering the Appalachian Trail from
Georgia to Maine might facilitate range shifts. Whether or
not such latitudinal corridors will be functional under the
rapid pace of change now forecast is an open question. Ele-
vational corridors, which span a broader climatic gradient
over a shorter distance, may better promote migration in
mountainous terrain (Noss 1993; Bennett 1999). Connec-
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tivity also may help sustain genetically diverse populations
that span environmental gradients within the present range
of species (Bennett 1999).

In designing linkages, several considerations should
be kept in mind: (1) A full range of geological substrates
and soil types should be included in linkages because
some plant species are exacting in their requirements.
(2) Many species have mutualistic or other dependen-
cies on other species, such that migration of assem-
blages of co-adapted species will be required (Bennett
1999). (3) Because movement routes probably will vary
among species, protecting broad linkages rather than
narrow corridors is advised. (4) As suggested by Colling-
ham and Huntley (2000), a mixed strategy of corridors
and small stepping-stone habitats is desirable to address
the distinct dispersal characteristics of different species.

Roads are major agents of fragmentation (Noss &
Cooperrider 1994; Baker & Knight 2000). In the context
of climate change, roads pose two problems: they re-
strict the dispersal of less mobile species while they en-
courage the dispersal of invasive exotics. Roads function
as barriers to the movements of many species (Noss
1993; Noss & Csuti 1997; deMaynadier & Hunter 2000;
Trombulak & Frissell 2000). Particularly vulnerable are
small, nonvolant forest vertebrates and invertebrates
that do not usually venture into openings as wide as a
road clearing (e.g., rodents, Oxley et al. 1974; Adams &
Geis 1983; beetles, Mader 1984). Even large animals such
as bears may refuse to cross roads with heavy traffic
(Brody & Pelton 1989), and many others are killed on
roads. Hence, roads may impede the movement of many
species in response to climate change. Closing unneces-
sary roads and providing wildlife crossings on roads with
heavy traffic might mitigate some of these effects (Noss
1993; Clevenger & Waltho 2000).

On the other hand, roads are common avenues of in-
vasion by exotic pests (Schowalter 1988; Tyser & Wor-
ley 1992; Lonsdale & Lane 1994; Parendes & Jones 2000),
which many ecologists believe will increase in abun-
dance with climate change. Disturbed roadsides with
high light levels harbor many weeds that disperse along
the route of the road and often invade adjacent habitats.
Vehicles transport seeds and spores long distances (Wil-
son et al. 1992). To reduce this risk we must understand
how alien species invade natural ecosystems and identify
ecosystems that are especially prone to invasion (Hobbs
& Huenneke 1992; Simberloff 1997; Lonsdale 1999). We
also must identify the anthropogenic changes in land-
scapes that promote invasions and develop a strategy for
mitigating those changes.

 

Provide Buffer Zones

 

The fixed boundaries of reserves are poorly suited to a
dynamic environment unless individual areas are ex-
tremely large (Peters & Darling 1985; Noss & Cooper-

rider 1994). With changing climate, buffer zones have
the potential to provide for shifting populations as con-
ditions inside reserves become unsuitable. For this strat-
egy to work, buffer zones must be large, managers of re-
serves and surrounding lands must demonstrate the
flexibility to adjust their land-management activities
across the landscape, and adequate data must be avail-
able from monitoring to determine where populations
are shifting. That none of these conditions is met, even
on public land, suggests that the buffer-zone strategy
will be difficult to implement. Nevertheless, if incentives
can be provided to managers outside reserves to manage
their lands sensitively, species will have a better chance
of shifting distributions in response to climate change
than if land-use adjacent to reserves is intense.

 

Practice Low-Intensity Forestry and Prevent Conversion 
to Plantations

 

Forestry that minimizes soil disturbance (hence reduc-
ing invasion of exotic pests, loss of carbon from soil, and
potential loss of mycorrhizae; Perry 1994), size of can-
opy openings (Whitmore 1998), and removal of biomass
will do more to promote the resistance and resilience of
forests to climate change than intensive logging. (Of
course, the historic range of variability must be taken
into account in such considerations.) Although some
studies have shown rapid recovery of biotic control of
ecosystem processes after intensive logging (Bormann
et al. 1974; Boring et al. 1981), others have shown pro-
found losses of productivity and processes. In many
parts of the world, regeneration of trees has failed after
clearcutting (Perry 1994). Rapid recovery of host plants
after logging appears essential for maintaining obligate
mycorrhizal fungi and other soil microbes. Herbicide
treatments and other intensive “vegetation management”
can destroy this linkage (Perry et al. 1990; Perry 1994;
Amaranthus 1998).

Intensification of forestry activities is often promoted
on the basis that young, actively growing trees will se-
quester carbon more rapidly than old-growth forests in
which respiration may equal or even exceed photosyn-
thesis (Birdsey 1992). Replacement of old forests with
plantations is a “perverse incentive” of the Kyoto Proto-
col (Brown 1998; Dudley 1998). Simplistic carbon ac-
counting, encouraged by the protocol, ignores the tre-
mendous releases of carbon that occur when forests are
disturbed by logging and related activities such as site
preparation and vegetation management (Perry 1994;
Schulze et al. 2000). It ignores the fate of woody debris
and soil organic carbon during forest conversion (Coo-
per 1983; German Advisory Council on Global Change
1998). Typically, respiration from the decomposition of
dead biomass in logged forests exceeds net primary
production of the regrowth (Schulze et al. 2000). Con-
siderable time is required—often hundreds of years—for
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regenerating forests to accumulate the carbon stocks
characteristic of primary forests (Harmon et al. 1990).
Over several rotations of growth and harvest, the mean
carbon pool of intensively managed forests is only about
30% that of primary forests (Cooper 1983).

From the standpoint of maintaining biodiversity during
climate change, conversion of natural forests to planta-
tions cannot be justified. Tree plantations around the
world, especially exotic monocultures, have less biodiver-
sity than natural forests in the same regions (Hunter 1990;
Noss & Cooperrider 1994; Perry 1994). Plantations are of-
ten markedly less resistant to disturbances such as fire
and more subject to pest outbreaks than natural forests
(Schowalter 1989; Perry 1994). Pest outbreaks could in-
crease in severity or change in distribution with changing
climate ( Williams & Liebhold 1995), amplifying the vul-
nerability of plantations. On the other hand, tree planta-
tions on marginal agricultural land and natural succession
on these lands could play a useful role in carbon seques-
tration. North America is currently a carbon sink, largely
because of agricultural abandonment and regrowth of for-
ests harvested before 1980 (Fan et al. 1998; Caspersen et
al. 2000; Schimel et al. 2000).

Plantation management, where it is appropriate, should
emphasize mixed-species forestry and native species,
which would allow migrating species to be incorporated
into the mix (Ravindranath & Sukumar 1998). Although
shortened rotations would enable quicker response to
forest dieback or other symptoms of changing climatic
conditions, the risk of depleting critical soil nutrients
and facilitating species invasions would also be higher.

 

Maintain Natural Fire Regimes

 

How fire should be managed in response to climate
change is a complex issue. Fire regimes are known from
paleoecological evidence to change through time in re-
sponse to changing climate. Hotter, drier conditions tend
to increase fire frequency, which generally shifts vegeta-
tion toward more fire-tolerant species (Clark 1990; Swet-
nam 1993; Veblen et al. 1999). Many forest types and
other plant communities depend on fire for their persis-
tence (Mutch 1970; Platt et al. 1988). Reviews of endan-
gered ecosystems in North America show that many of
the most imperiled plant communities have declined
largely because of fire suppression (Noss & Peters 1995;
Noss et al. 1995). On the other hand, fires set by humans
are a leading threat to other forests, especially in the
tropics (Trapnell 1959; Dudley 1998). Permanent con-
versions from one vegetation type to another in re-
sponse to fire have been documented—for example, bo-
real forest changing to tundra in Canada (Sirois &
Payette 1991) and dry tropical forest changing to shrub-
land in Zambia (Trapnell 1959). In tropical forests, the
extent of fire depends on moisture levels, which decline

with logging disturbance. A 50% reduction in canopy
cover has the potential to increase average temperatures
in the forest by 10

 

o

 

 C and to decrease relative humidity
by 35% (Kauffman & Uhl 1990). Such differences indi-
cate that fire policies should be based on what is known
of the fire ecology of each region and forest type.

Discussions of climate-change policy often include sug-
gestions that fires be suppressed to help reduce emis-
sions. There is little question that, in the short term, fire
suppression enhances carbon storage (Tilman et al.
2000), but the threat to biodiversity from lack of fire in
many forest types outweighs the potential advantages of
fire suppression. Although the increased frequency and
spatial extent of fires predicted by some models—for
example, for forests of the Sierra Nevada in California
(Miller & Urban 1999)—are cause for concern, the ap-
propriate policy response is not straightforward. Should
managers step back and allow fires to occur in the hope
of facilitating vegetation adjustment to the new climate?
Or should they actively suppress fires that appear to ex-
ceed, in intensity or frequency, the historic range of
variability? Perhaps this is a moot point. Experience in
trying to suppress large, intense fires such as the Yellow-
stone burns of 1988 has shown that such attempts are
usually futile. Curiously, a 300-year fire history in the bo-
real forest of Quebec shows a significant decrease in the
number and extent of fires, in the absence of fire sup-
pression, beginning with a warming period 100 years
ago (Bergeron & Flannigan 1995), suggesting that the
predicted increase in fire with climate change is by no
means universal. In any case, efforts to protect forests
from intense fires through regular, prescribed burning
and/or understory thinning have been much more suc-
cessful than efforts to suppress intense fires (Moore et al.
1999; Stephenson 1999). A mixed strategy, in which
managers let many natural fires burn, protect (to the ex-
tent possible) old growth from stand-replacing fires, and
manage other stands by prescribed burning and under-
story thinning to reduce the risk of high-intensity fire,
may be the optimal approach.

 

Maintain Diverse Gene Pools

 

Genetic adaptation to climate change depends on ge-
netic variation. Diverse gene pools should be maintained
within and among populations of commercially impor-
tant trees and other forest species (Dudley 1998). Refor-
estation, rather than relying on local seed sources (which
under relatively stable climatic conditions would be an
appropriate strategy), should incorporate individuals from
a wide range of localities, but should emphasize sources
at lower elevations or latitudes (Bawa & Dayanandan
1998; Ravindranath & Sukumar 1998). Breeding pro-
grams to promote faster growth or other commercially
desired qualities of trees at the expense of genetic varia-
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tion should be discouraged because they are likely to
leave tree species less resilient to climate change.

 

Protect the Most Acutely Threatened Species Ex Situ

 

For some ecosystems, climate change is already the
dominant threat, such that mitigation of other factors
such as land use will do little good. The cloud forests of
tropical mountains, which typically harbor large num-
bers of endemic species, appear to be such an ecosys-
tem. Simulations of changes in temperature and mois-
ture under doubled CO

 

2

 

 show an upward shift in the
cloud layer of hundreds of meters during the winter dry
season, coupled with increased evapotranspiration (Still
et al. 1999). Cloud forests have nowhere to shift and are
expected to be lost, along with their endemic species.
The disappearance of 20 species of anurans (frogs and
toads), including the endemic golden toad (

 

Bufo peri-
glenes

 

), from highland forest in Costa Rica has been
linked to a warming trend since the 1970s and to a se-
vere reduction in dry-season mists; meanwhile, species
from lower elevations have invaded these forests (Pounds
et al. 1999). In situations such as these, ex situ preserva-
tion of species in zoos and botanical gardens until global
warming is reversed may be the only way to avoid ex-
tinction. Ex situ collections should include sufficient ge-
netic diversity to allow adaptation to uncertain condi-
tions in reintroduction sites.

 

Identify and Protect Functional Groups and Keystone Species

 

Keystone species and functional groups are essential to
the resistance and resilience of forests to climate change
and other stresses. The identification of these species
and groups has been haphazard, however. For some for-
ests, such as longleaf pine (

 

Pinus palustris

 

) in the south-
eastern coastal plain of North America, scientists have
identified several ecologically pivotal species and pro-
cesses (Platt et al. 1988; Noss 1991; Simberloff 1998).
For many other forests, one can only guess which spe-
cies (e.g., top predators) might be of unusually high eco-
logical importance. Efforts should be made to identify
such species, functional groups, and processes for all
forest types and other ecosystems; then, management
must be aimed at maintaining these components in natu-
ral patterns of abundance and distribution.

 

Research Needs

 

The management actions I suggest represent a reason-
able guess of what is prudent in the face of abundant un-
certainty about the responses of forests to climate
change. To refine these recommendations, and perhaps
turn some of them on their heads, several lines of re-
search must be pursued:

 

•

 

More precise determination of the biomes, vegetation
types, species, and sites that are most vulnerable to
adverse effects of climate change. This will require
rigorous monitoring, observations, and, where possi-
ble, experiments.

 

•

 

Studies of population responses to climate change
that focus on reproductive processes, demography,
genetics, and species interactions and that involve
species with contrasting life-history traits (Bawa &
Dayanandan 1998).

 

•

 

Higher-resolution models of the direction, magnitude,
rate, and effects of climate change within regions, in-
cluding such critical components as the seasonal dis-
tribution of rainfall (Herbst & Hörmann 1998).

 

•

 

Increased combinations of modeling approaches, such
as the linkage of ecosystem process models with spa-
tial landscape models, as done by He et al. (1999) to
predict forest landscape responses to climate warming.

 

•

 

Empirical research on the details and mechanisms of
biotic change in response to climate change at the
edges of species’ ranges (Coley 1998) and along eco-
tones between vegetation types (Allen & Breshears
1998), where rapid responses to climatic variation are
most likely.

 

•

 

Long-term monitoring with an experimental design
adequate, at least, to determine correlations and, ide-
ally, to determine causality between changes in climate
parameters and responses of biodiversity at several
levels of organization.

 

•

 

Identification of ecological indicators (species and
otherwise) that will provide an early warning of bio-
logical problems related to climate change. Epiphytes,
for example, may play this role in tropical forests be-
cause of their extreme sensitivity to climatic condi-
tions (Benzing 1998).

 

Conclusion

 

Society’s response to climate change is determined
through the political process. If educated to understand
the multiple benefits of sustaining diverse, healthy, resil-
ient forests, people will place value on protecting these
forests. From this point of view, certain policies, such as
conversion of primary forests to rapidly growing planta-
tions in an attempt to sequester as much carbon from
the atmosphere as possible, will do more harm than
good. The literature I have reviewed suggests that a
well-managed native forest has a reasonable chance of
surviving or adapting to climate change. It appears that
good forest management during a time of changing cli-
mate differs little from good forest management under
more static conditions. Increased emphasis must be
placed, however, on actions such as protecting climatic
refugia and providing habitat connectivity parallel to en-
vironmental gradients.
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