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Quotes of Interest in this issue:
•	 “As component engineering has progressively advanced … to encompass a 

robust element of reliability, a paradigm shift has occurred in how complex 
systems fail.”

•	 “…Certain defects, not removed through pre burn-in statistical screening, 
will become enhanced through the accelerated aging…”

•	 Two consumer sectors still at the early stage of digitalization are the avi-
onics and automotive spaces, in part due to stringent safety, reliability and 
certification requirements.

•	 “…these products could be modified to perform below expectations or even fail, 
as well as to facilitate state or corporate espionage…”

This issue of the RMS Journal offers something for everyone, from sys-
tem-related failure prevention techniques and component process reliabil-
ity improvements to digital threads-twins in reliability mandated markets 
and challenges inherent in our global supply chain.

We start with a look at advancements in risk modeling for complex 
systems. A new approach is offered based on a Time Based Failure Flow 
Evaluator (TBFFE), which is needed to account for, “variable probabilities 
in initiating events over the duration of a system’s operation.” Such an 
approach addresses the way that today’s complex systems fail in contrast to 
traditionally well-understood component reliability and failures. 

For those who must focus on component reliability, we have a detailed 
case study for tantalum capacitors in mission critical applications. The 
existing process to develop and qualify these components raises questions 

John BlylerEditor’s Note



Page 4The Journal of RMS in Systems Engineering Summer 2018

whether Weibull still represents the best fit 
for today's near zero-defect applications. An 
improved approach is used to deal with certain 
deficiencies, in particular, early life failures and 
the potentially damaging application of exces-
sive voltage in tantalum capacitors. This paper 
will discuss modifications to the existing burn-
in process, techniques for DC leakage screening, 
and improvements in process monitoring. 

The next article shifts from component reli-
ability testing and manufacturing processes to the 
ongoing system-level digitalization of both the 
manufacturing and design processes. The concepts 
of a digital thread and twin are defined in the con-
text of both the physical and virtual systems. The 
hope is that by understanding these basic concepts 

and examples of digitization that the activity of 
“engineering” will be brought back into system 
modeling and even systems engineering.

Our final offering considers the challenges 
faced by our global supply chain management 
(SCM) system. After a definition of terms, this 
paper discusses the increases in software supply 
chain attacks related to developing technologies 
such as fifth generation (5G) mobile network 
technology and the Internet of Things (IoT).

I hope you find this issue to be both interest-
ing and educational. As always, please don’t hesi-
tate to share your comments and potential future 
articles with me via the email below. Cheers! 
			   	

				    —John
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Summary & Conclusions
As component engineering has progressively advanced over the past 
20 years to encompass a robust element of reliability, a paradigm 
shift has occurred in how complex systems fail. While failures used 
to be dominated by ‘component failures,’ failures are now governed 
by other factors such as environmental factors, integration capa-
bility, design quality, system complexity, built-in testability, etc. Of 
these factors, environmental factors are some of the most difficult to 
predict and assess. While test regimes typically encompass environ-
mental factors, significant design changes to the system to mitigate 
any potential failures is not likely to occur due to the cost. The early 
stages of the systems engineering design process offer significant op-
portunity to evaluate and mitigate risks due to environmental factors. 

Systems that are expected to operate in a dynamic and changing envi-
ronment have significant challenges for assessing environmental factors. For 
example, external failure initiating event probabilities may change with respect 
to time, and new discovered external initiating events may also be expected 
to have varying probabilities of occurrence with respect to time. While some 
industry standard methods such as Probabilistic Risk Assessment (PRA) [3] 
and Failure Modes and Effects Analysis (FMEA) [4] can partially address 
a time-dependent external initiating event probability, current methods of 
analyzing system failure risk during conceptual system design cannot. 

We have developed the Time Based Failure Flow Evaluator (TBFFE) 
to address the need for a risk analysis tool that can account for variable 
probabilities in initiating events over the duration of a system’s operation. 

Risk Modeling of 
Variable Probability 
External Initiating 
Events in a Functional 
Modeling Paradigm
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This method builds upon the Function Based 
Engineering Design (FBED) [19] method of 
functional modeling and the Function Failure 
Identification and Propagation (FFIP) [9] failure 
analysis method that is compatible with FBED. 
Through the development of TBFFE, we have 
found that the method can provide significant 
insights into a design that is to be used in an 
environment with variable probability external 
initiating events. We present a case study of the 
conceptual design of a nuclear power plant’s spent 
fuel pool experiencing a variety of external initiat-
ing events that vary in probability based upon the 
time of year. The case study illustrates the capabil-
ity of TBFFE by identifying how seasonally vari-
able initiating event occurrences can impact the 
probability of failure on a monthly timescale that 
otherwise would not be seen on a yearly timescale. 
Changing the design helps to reduce the impact 
that time-varying initiating events have on the 
monthly risk of system failure.

1  Background
There are several methods required to under-
stand TBFFE and its background; one com-
monality all of those methods have is that they 
do not easily model failure probability shifts 
caused by time-based initiating event probabil-
ities. This section reviews related methods and 
demonstrates the novelty of the TBFFE method 
presented in this paper.

1.1  Functional Modeling
Functional modeling connects a series of in-
puts, outputs, flows, and functions together that 
transform the inputs into outputs [19]. This 
tool is useful for modeling systems at a variety 
of fidelities. A common functional modeling 
implementation is FBED [19]; we use FBED as 
the basis for our method. Functional modeling’s 
robustness makes it a useful tool for many kinds 
of systems modeling [12, 13, 14]. However, func-
tional modeling is not useful for the stated goal of 
this method because it does not model failure.

1.2   Function Failure Design Method
The Function Failure Design Method (FFDM) 
is the groundwork upon which TBFFE is built 
[7]. Within FFDM, all functions are given a list 
of potential failures, and the probability of that 
failure is then cataloged for every function in 
the functional model. Next, the probability of 
a functional model failing can be calculated in 
much the same way as a failure is calculated in 
PRA—via cutset development and calculation. 
The limitation of FFDM is that there is no way 
to modify a risk's chance of occurring over time 
without creating a new functional model.

1.3  Function Failure Identification and 
Propagation
FFIP is an extension of the functional model-
ing theory underlying FFDM [9]. Instead of 
utilizing a table to quantify the possible failures, 
FFIP analysis iterates through failures of possi-
ble functions and follows the failure flow until 
it exits the system as an output. This method 
allows for a user to see how a failure state trans-
mits across a complex system and whether or 
not it ultimately poses a major risk to the system. 
While the addition of flows adds the concept of 
failure propagation to a system modeled using 
functional modeling, FFIP does not include 
time-based failure probabilities.

1.4  Related Functional Model-Based 
Methods
There are various authors in multiple fields that 
have attempted to address the subject of apply-
ing time-variable risk analysis, but few of them 
have addressed functional modeling. For instance, 
Hutcheson et. al. fit failure modes to functions 
during prototypes through a time-informed lens 
[7]. While Hutcheson’s method creates a certain 
amount of flexibility for modeling various stages 
of a mission when a system may be in different 
configurations, the method does not encapsulate 
different rates of change [6]. Another related 
method is a semi-functional nonparametric 



Page 7The Journal of RMS in Systems Engineering Summer 2018

Risk Modeling of 
Variable Probability 
External Initiating 
Events in a Functional 
Modeling Paradigm

analysis by Aneiros-Perez that attempts to use a 
series of past values as predictors for later behav-
ior [1]. This method does not match the needs of 
functional modeling because its nonparametric 
analysis methods are well beyond the scope of 
a basic functional model or FFDM methods. 
Dynamic risk assessment techniques, such as 
those described by Siu, are applicable to multiple 
engineering systems, but they lack a functional 
framework and focus instead on the use of PRA 
and similar systems [15].

The final related method discussed here was 
developed by Woltjer et. al. and presents a func-
tional analysis meant to react to shifting airplane 
conditions [19]. However, there are issues with 
this method because it does not account for 
multiple potential failure conditions and uses 
velocity components to resolve a time-based issue 
so that planes enter in the right order to a flight 
pattern rather than utilizing time to modify the 
failure velocity. In essence, Woltjer et. al.’s anal-
ysis method is, much like Hutcheson’s, meant to 
change dynamically with time rather than take 
into account time from a risk analysis perspective 
so that probabilistic risk of failure may be deter-
mined.

1.5  Probabilistic Risk Assessment
PRA is a method that exists outside of the func-
tional flow modeling methods that have been 
discussed so far. PRA usually is implemented at 
the component level rather than the functional 
level [6]. The focus of the PRA method is to cre-
ate a series of cutsets based on initiating events 
to create a series of potential failure pathways 
and their associated probabilities. 

PRA's use in nuclear power plants has resulted 
in its modification to deal with time-dependent 
issues unique to that specific use case [11]. In 
particular, the exploration of core damage frequen-
cy as a surrogate measure to reach particular safety 
goals is of interest when discussing time-varying 
risk mitigation methods. This method focuses on 
whether or not changes to a reactor are allowed by 

evaluating the frequency of reactor core damage.

1.6  Related Physics-of-Failure and 
Parametric Analysis Methods
Despite the limitations of the previously discussed 
methods, engineers do have various tools to evaluate 
time-dependent failure probabilities in a variety of 
contexts—however, the usefulness of these meth-
ods to an engineering team analyzing time-varying 
external initiating events is debatable. One such 
discipline is physics-of-failure mathematics. Phys-
ics-of-failure mathematics represents the identi-
fication and analysis of the physical causes for the 
failure of a particular component and then modeling 
the resulting data to develop a probability density 
function along a system's lifetime [8]. While this 
approach is useful for looking at the probabilities of 
failure that happen within any particular component, 
the approach does not contain a methodology for 
design teams to act on the data. It is primarily a 
statistical method, not a design method.

Another methodology used to determine risk 
of failure is parametric analysis which is a statisti-
cal technique used when the unknown parameters 
of a particular component's longevity are populat-
ed with random values and a distribution is made 
of the resultant variables. This approach has many 
implementations, and has been integrated both 
in PRA analysis as well as in time-dependent 
probabilities of failure [5, 2]. However, there are 
certain issues with this approach—parametric 
analyses require the population of a data set to be 
developed through a tool such as Monte Carlo 
analysis, which can lead to a high computational 
expense when the methodology is applied to a 
more complex functional framework.

2  Methodology
TBFFE is a risk quantification method used to ana-
lyze complex, cyber physical systems during systems 
engineering design. This method focuses primarily 
in early systems engineering design where systems 
have the opportunity for significant configuration 
changes with minimal cost (both monetary and 
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development time). The goal of this method is to 
inform the system designer and systems engineer on 
predominate risks that may be realized during the 
system's life cycle, and thus, the method systemat-
ically analyzes all known or foreseeable risks to the 
system.

The results of TBFFE can be used to enhance 
a system design by reducing its risk of failure. The 
type of results produced by TBFFE include the 
systems’ functional risk, which combines failure 
probability with the loss in functional health, tied 
to an initiating event. The results are presented 
across time (e.g., per month in the following case 
study) to represent heightened risk during spe-
cific time periods. An example of solutions to an 
unacceptable risk could include a design configu-
ration change where the failure propagation has a 
behavior that renders the system less susceptible 
to the specific initiating events being analyzed.

A key difference from other risk methods 
surveyed earlier in this paper is that TBFFE 
uses discrete time-based failure probabilities 
with short time scales to more accurately model 
the external initiating events caused by natural 
environmental cycles and related factors. Typical 
failure probabilities are modeled on an annual 
basis; however, we analyze failure probabilities ei-
ther monthly (as in the case study), daily, or even 
hourly. The discretization depends on the fidelity 
of the data used to build the probability values. 
For example, when assessing the risk of failures 
due to storms, failure probabilities would depend 
on the occurrence of storms in the local environ-
ment. If data is recorded in storms per month, the 
discretized failure probabilities will be monthly.

TBFFE is a process-oriented methodology 
that has several well-defined steps. These steps 
are meant to guide a design team from a basic 
functional model to a complete time-dependent 
representation of all potential points of failure 
that can affect a system.

2.1  Step 1: Functional Model Creation
 The first step is to create a functional model based 

on the initial system architecture. The initial system 
architecture is usually a body of work developed 
by the system design team or a system architect 
and ranges across design requirements, sketches, 
blueprints, flowcharts, reliability block diagrams, as 
well as piping and instrumentation diagrams. In 
the absence of such existing work, an experienced 
system design team might instead opt to generate 
a native FBED [8] from scratch based on the de-
sired system inputs and outputs given to the team.

2.2  Step 2: Initiating Event Identification
After creating a functional model, the team must 
note potential initiating events that may cause 
a failure. Finding initiating events in TBFFE is 
similar to the method used in PRA. For TBFFE 
the, designers are encouraged to consider external 
and internal initiating events. External events are 
those which originate outside the system, such as 
weather or debris. After compiling a list of exter-
nal events, designers then go through the system 
and identify potential internal initiating events, 
such as mechanical wear, fire, internal flooding, or 
an electrical bus failure.

2.3  Step 3: Time-Dependent Initiating 
Event Identification
After developing a list of initiating events, 
the design team then classifies each event as 
time-dependent or independent. Those events 
which are based on seasonal phenomena, weath-
er events, or events of variable strength such as 
storms are considered time-dependent.

For each time-dependent initiating event, there 
must be a particular profile to how the probabil-
ity of the initiating event occurring increases or 
decreases over the course of a year (or other time 
increment that is normally analyzed across for the 
specific system in question). Each initiating event 
should be analyzed for how the probability of the 
initiating event occurring increases or decreases. A 
practitioner can choose to model certain initiating 
events either through a continuous function or 
through a discretized, step-wise function. Contin-
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uous functions best serve events like storms where 
there is an identifiable period of peak intensity 
followed by a gradual drop-off. Typically, a sys-
tems design team is limited by the discretization 
of available data. For instance, engineers may have 
access to thorough meteorological data for their 
region that covers several days, or they may only 
know that storms occur more frequently over a 
particular range of months out of the year. An-
other important aspect to cover is how a system's 
probability of failure is affected by long-term or 
short-term forecasts. As an example, the engi-
neering team may know that a seasonally-affected 
failure is only possible during certain hours of 
the day (such as the position of the sun affecting 
certain sensors only certain months of the year). As 
a rule of thumb, systems design teams are encour-
aged to account for short-term forecasts if they 
represent a change in probability greater than a 
standard deviation from their given probability of 
risk. Changes of less than one standard deviation 
will likely be inconsequential as compared to other 
factors within the risk analysis during the concep-
tual design process such as design, model, and data 
uncertainty. The result of the data acquired by the 
engineers will be similar to a Bayesian statistical 
model, but dependent on time.

In the TBFFE method, the design team is 
presumed to have existing probability of failure 
(per year or unit of time used for the particular 
system) as well as more discrete and detailed data 
for initiating events. The existing probability of 
failure divided by the unit of time for the overlay 
data is the baseline probability. If a design team 
has a yearly probability of failure by storm, and 
monthly values for frequency of storms in their 
region, then the design team will divide the yearly 
probability by twelve. The probability data that 
the design team has will then resolve itself into a 
function that shows frequency over time. In the 
case of the storm example, the systems design 
team will be able to chart the per-month frequen-
cy of storms over the year. As a verification step, 
the overlay data can be scaled such that, when 

combined, its value equals the existing yearly 
frequency of occurrence of the initiating event.

Step 4: Analyze Failure Propagation in 
the System
Once the various initiating events have been given 
a time-dependent profile, a probability of failure 
for each function within the model can be con-
structed. Both time-dependent and time-indepen-
dent initiating events represent causes of failure 
that can map to particular functions. The systems 
design team can assign various causes of failure to 
individual functions. A function's probability of 
failure is the OR probability of any particular event 
occurring. By calculating the function's probability 
of failure at each time step, the design team devel-
ops a time-dependent failure profile for each func-
tion. Doing this for all functions allows the design 
team to have a FFIP model that the team can look 
at through a temporal lens, which allows the team 
to identify peak risks for particular functions.

Step 5: Design Iteration or Retrofit the 
System
By analyzing the various probabilities of failure 
present at particular time steps, the design team 
can begin to optimize the system design from a 
risk-of-failure perspective. Starting with functions 
crucial to the system's operation, the designers can 
look at local maxima of failure probabilities for a 
given function. Functions that exhibit the highest 
risk across any period of time can then be marked 
as at-risk. By identifying the initiating event or 
events responsible for this heightened state of 
risk, systems designers can focus on mitigating 
the probability of those initiating events happen-
ing, potentially by including specific functions 
or components that are used specifically in times 
of heightened risk. Starting with the highest risk 
functions, designers can continue to mitigate risks 
within the constraints of time, complexity, cost, etc. 
Once optimizations are complete, they can then 
iterate through the previous step to compare how 
their design has improved.
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3 Case Study
In this section, we present a case study that 
demonstrates TBFFE and its capabilities. A 
representative example was created of the potential 
applications in a nuclear power context specifi cally 
for this paper. Note that we have intentionally 
fi ctionalized probability data and plant design, and 
explicitly do not recommend using the results of 
this case study in a real-world application. Th e case 
study is demonstrative of the method and is inten-
tionally not directly applicable to a specifi c nuclear 
power plant. In this example, a new nuclear power 
plant somewhere on the East coast of the United 
States is being designed. Th e engineers are working 
on designing a spent fuel pool where spent fuel 
rods will be housed until the rods are cool enough 
for dry cask storage and disposal. Consequently, 
the fuel pool's main purpose is to cycle hot water 
to a system of heat exchangers to continuously 
maintain the temperature of the water in the pool 
at acceptable levels. Th e region the plant is being 
constructed in is prone to stormy weather, as well 

as seasonal algae blooms. Th e plant is planned to 
have one internal loop of water exchanging heat 
to the ocean. Th e design team decides to utilize 
TBFFE to anticipate and mitigate time-variant 
risks due to these unique conditions.

3.1 Step 1: Functional Model Creation
Th e systems engineering team fi rst creates a 
functional model (see Figure 1) using the FBED 
functional modeling method. Th is functional 
model represents the baseline design prior to any 
iteration or redesign. At this stage, the team has al-
ready decided that they wanted to include multiple 
redundant systems; three sets of motors that power 
three sets of pumps that move the water in the pri-
mary pool, and three diff erent heat exchangers are 
available to remove heat from the pool and route 
the heat to the ocean. Th e pumps are designed to 
begin operation one after the other, in the event 
of failure, while the heat exchangers are designed 
such that any one of the heat exchangers can 
transfer heat effi  ciently enough to keep the system 

Figure 1. Functional model of a spent fuel pool.
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operating nominally. 

Initiating Event Prob/Year

IE_MechanicalFailureCondenser 0.003

IE_Algae 0.004

IE_MechanicalFailureValve 0.001

IE_MechanicalFailurePump 0.005

IE_MechanicalFailureMotor 0.002

IE_Storm1 0.003

IE_MechanicalFailureValve 0.001

IE_MechanicalFailurePipe 0.003

IE_Storm2 0.002

IE_MechanicalFailureTank 0.0005

Table 1. List of initiating events for spent fuel pool used in the 
case study. Note that items that are italicized are time variant 
in their probabilities. The initiating events are presented here 
as an averaged yearly probability statistic. See Tables 2 and 3 
for further details on these events.

3.2  Step 2: Initiating Event Identification
Once the functional model is complete, the systems 
engineers next consider potential initiating events 
and research the probabilities of occurrence until the 
systems engineers have a list of initiating events they 
feel is complete (see Table 1). The systems engineers 
first identify external failures like electrical storms 
shorting out motors or algae blooms clogging up 
the intake ocean water to the heat exchangers. Next 
identified are the internal failures such as mechani-
cal wear within the machines.

3.3  Step 3: Time-Dependent Initiating 
Event Identification
Once the systems design team has a list of po-
tential initiating events, the team can go through 
each initiating event and classify them as either 
time-variant or time-invariant. The team quickly 
recognized that algae blooms, electrical failures 
due to storms affecting the pumps, and heat 
exchanger failures due to storms affecting the 
intake of secondary water as significant initiat-
ing events that have a time-varying probability 
of occurrence. The reason for this is simple: both 
algae blooms and storms are events that occur 

seasonally, with significant change in event fre-
quency occurring depending on the month.

Having identified which initiating events are 
time-dependent, the team next determines what 
data is available to better characterize the iden-
tified initiating events from a time basis. At this 
point, the team has finished researching initiating 
events and are able to use yearly probabilities of 
occurrence for all of the initiating events, as well 
as on-demand failure probabilities for all com-
ponents. To acquire more detailed information 
on the behavior of the spent fuel cooling pool 
system, the team realizes that a monthly time 
step is appropriate for the external initiating event 
analysis. For storms, the systems engineering 
team determines the monthly number of storms 
that have historically occurred in the area where 
the nuclear reactor and its spent fuel cooling pool 
will be built. On the other hand, when research-
ing the propagation of the algae the design team 
knows to be problematic, the team is restricted 
to data from marine biologists that forecast algae 
blooms to be most prevalent in the months of 
July to October and otherwise not present in the 
area. Knowing this, the design team creates a set 
of Boolean values corresponding to each month. 
Knowing the yearly probability of failure for the 
heat exchangers being installed for the spent fuel 
cooling pool due to storms and algae (as well as 
pumps failing due to storms), the team is able to 
develop the information found in Tables 2 and 
3 to calculate the monthly probability of each 
initiating event occurring. Specifically, the annual 
failure rate for algae is evenly distributed across 
the months of May to October. Similarly, the 
annual failure rate for storms is proportionately 
distributed across the year based on the number 
of storms in each month (Storm for January: 0.03 
x 10/526 = 5.7E–05 fails/month).

3.4  Step 4: Analyze Failure Propagation 
in the System
The team then generates cutsets based on the 
functional model of what possible failures could 
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occur based on the propagation of certain components failing when called 
upon to function. Table 4 shows the yearly probabilities of failure for ten 
generated example cutsets. Of the ten cutsets, four involve time-variant ini-
tiating events. Table 5 is then generated to track the monthly probabilities of 
failure. Tables 4 and 5 are generated based on the probability of the compo-
nent failures required to cause the system to fail.

3.5  Step 5: Design Iteration or Retrofit the System
Based on analyzing the available data, the design team notices some statis-
tically significant spikes in the probability of failure. For example, the team 
discovers from the cutsets that the probability of heat exchanger failure due 
to storms is highest in August, as is the probability of an electrical failure. 
Consequently, the team realizes that the system could be redesigned to 
mitigate the risk of failure during those months. For example, the team may 
decide that from July to October, the system could use a cooling pond rather 
than directly using the ocean to prevent both algae blooms and flotsam cre-
ated by storms from clogging up the heat exchangers. Similarly, the design 
team realizes that backup generators could be kept on hot standby during 
the high risk months to lessen the risk of an outage caused by electrical 
storms. Beyond these specific seasonal improvements, the team also notices 
that an emergency cooling water pipe could be implemented that goes from 
the water tanks to the secondary loop to ensure that heat removal can con-
tinue in the case of an inlet water pipe clog. From there, the team is able to 

Monthly Probabilities 
(probability of failure per month)

Month Storm Algae

1 5.7E-05 0

2 2.85E-05 0

3 3.99E-05 0

4 6.84E-05 0

5 0.000125 0.000667

6 0.0002 0.000667

7 0.000439 0.000667

8 0.000627 0.000667

9 0.000548 0.000667

10 0.000456 0.000667

11 0.000285 0

12 0.000125 0

Total 0.003 0.004

Table 3. Monthly Initiating Event Probabilities of Occurrence.

Available Monthly Frequencies
Month Storm Algae

1 10 0

2 5 0

3 7 0

4 12 0

5 22 1

6 35 1

7 77 1

8 110 1

9 96 1

10 80 1

11 50 0

12 22 0

Table 2. Monthly frequency values for storms as well as yes/no 
values for algae presence in the oceans. This data is utilized by 
the engineering team to produced scaled monthly probabilities, 
shown in Table 3.
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create new, lowered monthly probability profiles 
and iterate further through the system design to 
achieve a desired risk profile for the system.

4  Results & Discussion
To better demonstrate the full capabilities of 
the TBFFE method when applied to iterative 
design, the authors of this paper developed a 
tool based on a Universal Modeling Language 
(UML) [10] backend that does the work of 
generating cutsets automatically based on the 
functional model and using the TBFFE meth-
od. By implementing functional modeling in 
UML, defining critical functions that cannot be 
interrupted, and providing a per-month list of 
the probability of initiating events, the tool runs 
through all cutsets that result in the failure of 
the system and then calculates the overall risk of 

Available Monthly Frequencies

Cutset No.
Prob 
(freq)/
year

Cutset

1 4.00E-03 IE_Algae, Import Liquid, Transfer Thermal Energy, Transfer Thermal Energy, Transfer 
Thermal Energy, Export Liquid/Thermal Energy

2 3.00E-09 IE_Storm1, Transfer Thermal Energy Transfer Thermal Energy, Transfer Thermal 
Energy, Export Liquid/Thermal Energy

3 1.80E-08
IE_Storm2, Convert Mechanical Energy to Electrical Energy, Transport Liquid, 
Regulate Liquid, Transport Liquid, Regulate Liquid, Transport Liquid, Regulate Liquid, 
Store Liquid, Transfer Thermal Energy

4 3.20E-08
IE_MechanicalFailureMotor, Convert Mechanical Energy to Electricity, Convert 
Mechanical Energy to Electricity, Convert Mechanical Energy to Electricity, Transport 
Liquid, Transport Liquid, Transport Liquid, Store Liquid, Transfer Thermal Energy

5 6.00E-08
IE_MechanicalFailurePump, Transport Liquid, Regulate Liquid, Convert Mechanical 
Energy to Electricity, Transport Liquid, Regulate Liquid, Transport Liquid, Regulate 
Liquid, Store Liquid, Transfer Thermal Energy

6 1.60E-08
IE_MechanicalFailureValve, Regulate Liquid, Convert Mechanical Energy to Electricity, 
Transport Liquid, Regulate Liquid, Convert Mechanical Energy to Electricity, Transport 
Liquid, Regulate Liquid, Store Liquid, Transfer Thermal Energy

7 1.00E-09 IE_MechanicalFailureValve, Regulate Liquid, Deliver Liquid, Transfer Thermal Energy, 
Deliver Liquid, Transfer Thermal Energy, Transfer Thermal Energy

8 3.00E-09 IE_MechanicalFailurePipe, Deliver Liquid, Transfer Thermal Energy, Deliver Liquid, 
Transfer Thermal Energy, Deliver Liquid, Transfer Thermal Energy

9 6.00E-09 IE_MechanicalFailureExchangers, Transfer Thermal Energy, Regulate Liquid, Deliver 
Liquid, Transfer Thermal Energy, Deliver Liquid, Transfer Thermal Energy

10 6.00E-09 IE_Storm1, Transfer Thermal Energy, Deliver Liquid, Transfer Thermal Energy, 
Regulate Liquid, Deliver Liquid, Transfer Thermal Energy

Table 4. Cutsets for yearly failure probabilities.

Cutset 1
Month Monthly Probability

1 0

2 0

3 0

4 0

5 6.67E-04

6 6.67E-04

7 6.67E-04

8 6.67E-04

9 6.67E-04

10 6.67E-04

11 0

12 0

Yearly Probability 4.00E-03

Table 5. Monthly probability of algae bloom creating a failure 
event as described in Cutset 1.
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failure applied on the given timescale. This tool 
enables designers to use TBFFE even in scenar-
ios that involve rapid iteration. In the spent fuel 
pool case study, the critical function was defined 
as the transfer of heat out of the water in the 
spent fuel pool. Figure 2 shows the resultant 
UML functional model, and Figure 3 shows the 
results of the overall risk analysis.

Figure 2. TBFFE Tool Implementation.

From these results, it is possible to see how 
the resolution in the risk of failure afforded 
by creating monthly probabilities is useful to 
systems design teams. Risk profiles can spike 
depending on the month; however, sometimes 
yearly probabilities are all that is available to an 
engineering team in databases for nuclear power 
plant failure events, and seasonal occurrences 
like storms or algae blooms are often unique to 
a region. The systems design team is best served 
by fitting local data to yearly probabilities that 
might be otherwise useful to their facility.

By utilizing the UML-based tool, iterative 
designs can be performed as described in the pre-
vious section. Cutsets have been generated (simi-
lar to those found in Table 4 – the baseline design 
cutsets) on a modified functional model from the 
months of July to October that uses a cooling 
pond as a cooling water intake source. Based on 
this model, the peak of risk of system failure is 
reduced significantly—the probability of a failure 
is reduced by 10% in August, and consistent de-
creases along similar months are observed. Figure 
4 displays the new set of probabilities—the new 
risk profile is significantly flatter, and showcases 
potential avenues that the design team can take 
to improve the risk profile of their fuel pool.

From these results, the design team can note 
new avenues of development—increased risk 
of system failure occurs in May consistent with 
the heightened risk of the storm initiating event. 
The design team can then focus on mitigating 
that form of system failure by creating redun-
dancies in the power supply such as water-
proofing the motor system as well as potentially 
investigating redundant backup generators. The 

Figure 3. Probability of System Failure per Month.

Figure 4. Probability of System Failure per Month After Iterative 
Design Using Insights Gained from TBFFE.
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team may also run more TBFFE iterations and 
generate a new risk assessment based on the 
previously mentioned system design improve-
ments with the aim of creating a very flat risk 
profile throughout the year. The iterative design 
potential is the main draw of TBFFE, permit-
ting systems engineering teams, systems design-
ers, and systems architects to rapidly identify 
and mitigate areas of concern for their systems 
that would go unnoticed without access to time-
based failure evaluation methods.

The main benefit of time-dependent analysis 
of risk of system failure is that increased granu-
larity of failure probabilities with respect to time 
over which the probabilities are analyzed allows 
engineers to mitigate risk in a more optimal way, 
thereby focusing on spending resources in times 
of heightened system failure risk. TBFFE allows 
practitioners to bring together risk data that 
operates on non-uniform timescales to create 
overall profiles of risk that provide insight which 
otherwise would be obscured by the commonly 
used yearly timescales of PRA and other risk 
analysis techniques.

One limitation of the TBFFE method is the 
need for more granular initiating event data as 
an input to the method. TBFFE is useful when 
the design team already knows that the system is 
going to be impacted by time-variant initiating 
events – in the example of the spent fuel cooling 
pool, the designers already knew that algae and 
storms had been problems in previous nuclear 
reactors and were able to account for this within 
their design by using the TBFFE method. 
TBFFE is a method best suited to character-
izing known information with greater granu-
larity—unknowns are harder for the system to 
deal with and frequently can be as opaque to the 
design team as they would be had they only used 
a method such as FFIP or PRA. An extension 
of this limitation is that TBFFE requires the 
design team to bring in data beyond what they 
might get from existing engineering databases 
to create distinct probability of occurrence data 

for initiating events. Depending on the initiat-
ing event, this may require assumptions on the 
part of the design team that possibly will not be 
borne out by reality.

By understanding these weaknesses, it becomes 
clear that TBFFE is best suited to those scenar-
ios where designers wish to integrate data that is 
specific to their use case into a larger framework 
of existing probabilities in their system analysis. 
Examples include specific scenarios such as nuclear 
reactors or spacecraft, where there is a plurality of 
information available to an engineering team but 
where the details born of location or purpose are 
unique to a particular project.
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Weibull reliability assessment has been used for characterization of tantalum 
capacitors for many decades driven by MIL standards. Over time major 
improvements have been made in process, material, testing, equipment and 
other process control.

Is Weibull still the best fit for today's technology and Hi-Rel applications?
A new approach is needed since the current Weibull grading to assure 

reliability has deficiencies, in particular, the need for early life failures and 
the potentially damaging application of excessive voltage during the burn-
in in an effort to maximize the Weibull acceleration factor.

This paper will discuss modifications to the existing burn-in pro-
cess, techniques for DC leakage screening, and improvements in process 
monitoring. These modifications improve the consistency of the resultant 
product DC leakage as well as eliminating the potential for field-induced 
dielectric damage. The result: tantalum capacitors that deliver the best 
performance in zero failure tolerance applications.

Background: Tantalum Capacitor Reliability
It has been well established that the presence of impurities in the 
tantalum anode create disruptions in the Ta2O5 dielectric. These dis-
ruptions, in addition to those created by other manufacturing-induced 
defects, can result in elevated leakage current, parametric leakage in-
stability, or catastrophic dielectric breakdown. The occurrence of these 
non-homogenous defects can be reduced through material and process 
controls, and practically eliminated with the implementation of appro-
priate testing regimens.

Reaching the Highest 
Reliability for Tantalum 
Capacitors

James Bates
Marc Beaulieu
Michael Miller
Joseph Paulus
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After the elimination of the non-homog-
enous defect portion of the population, there 
still remain a number of homogenous defects, 
parametrically represented by leakage current 
and phenomenologically represented by elec-
tron traps [1]. The robustness of the dielectric 
can be characterized as either a resistance to 
catastrophic dielectric failure or as parametric 
leakage stability. Both characterizations can be 
modeled, at least initially, using the thermo-
chemical model championed by McPherson and 
corroborated by Teverovsky [2,3]. A key con-
clusion from the thermochemical model is the 
potential susceptibility of the Ta2O5 dielectric 
to time-dependent dielectric breakdown, poten-
tially accelerated by an inappropriate application 
of burn-in voltage.

The need to control both manufacturing-in-
duced defects and those defects intrinsic to 
the capacitor population is addressed with the 
Q-Process, incorporating the following elements:
•	 Process Monitoring: 3D Control Charts
•	 125°C, Voltage-Optimized Burn-In
•	 Statistical Screening at Various Tempera-

tures, Pre/Post Burn-In
•	 Enhanced Inline Reflow Conditioning
•	 Maverick Lot Identification
•	 Product Level Designator

Process Monitoring: 3D Control 
Charts
The reduction of non-homogenous defects 
through material and process control requires 
accurate monitoring of relevant processing, in 
particular the identification of special cause 
events. Traditional SPC charts fail to accurately 
characterize normal process variability since they 
are incorrectly based on within-batch variability 
instead of batch-to-batch variability.

Traditional SPC charts incorrectly use the 
within-batch sigma (based off the centerline on the 
sigma chart) in the control limit calculations in the 
batch-to-batch chart (the X-bar chart). This typi-
cally results in the pattern illustrated in Chart 1:

The calculated control limits on the X-bar 
chart are not representative of the plot points. 
In this example, the control limits are very tight. 
This clearly indicates that the within-batch vari-
ability is much smaller than the batch-to-batch 
variability. If these charts are used to control the 
process, the operators and engineers are simply 
chasing normal process variation and can’t focus 
on special cause events because the majority of 
batches are “out of control.”

Implementing 3D Control Charts
Using two charts to track the variability pro-
vides a more accurate representation of the true 
process variation:
•	 moving-range chart for batch-to-batch 

variability
•	 sigma chart for the within-batch variability

AVX now uses the centerline of the batch-
to-batch moving-range chart in the calculations 
for the batch-to-batch X-bar chart. (Chart 2) 
shows the same data with the additional mov-
ing-range chart and the correct control limits on 
the X-bar chart. The top chart is now treated as 
an individuals chart—IX.
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The Moving R chart displays the batch-to-
batch variability and the S (within) chart displays 
the within-batch variability. Control limits on the 
top chart are based off the Moving R centerline.

The vertical lines on the IX chart’s plot points 
represent the within-batch variability. Note that 
the within-batch variability of batch #7 is much 
higher than the others. This variability is limited to 
within the batch and does not show up as a special 
cause on the IX chart or the Moving R chart.

In the manufacture of tantalum capacitors 
there are many cases where both within subgroup 
and between subgroup sources of variability need 
to be monitored. Once the appropriate control 
charts are implemented on the manufacturing 
floor, both production and engineering can focus 
on special cause events. These special cause events 
are the key drivers for continuous improvement. 
Once a special cause event is identified, then root 
cause investigations can begin. Each root cause 
investigation identifies areas where either the 
process can be optimized or product or process 
enhancements can take place. Examples of some 
of these product/process enhancements while 
developing the Q-Process:
1.	 Tighter Anode Pressing Control
2.	 SPC Monitored and Controlled Sintering
3.	 MES-Controlled and SPC-Monitored For-

mation Equipment
4.	 MES-Controlled MnO2 Deposition Systems
5.	 Saw Optimization
6.	 Individual Part Stability Testing

The result of these improvements include but 
are not limited to tighter and lower DCL perfor-
mance with less special cause variation (chart 3).

Optimized Burn-in
The burn-in process accomplishes two primary 
functions through the accelerated aging process 
induced by applied temperature and voltage:
•	 Component healing and defect isolation
•	 Destabilization of “maverick” defects

Certain defects, not removed through pre 
burn-in statistical screening, will become en-
hanced through the accelerated aging, that 
response characterized by a significant parametric 
increase in DC leakage. These previously un-
detected defects will now exhibit DC leakage 
uncharacteristic of the rest of the component 
population and can then be removed by post 
burn-in statistical screening.

Intrinsic, homogenous defects, such as ox-
ygen vacancies, minor dielectric disruptions, or 
nanoscale mechanical damage, can be repaired 
during the burn-in process through solid-state 
anodic oxidation [4] or electrically isolated 
through the irreversible reduction of conductive 
MnO2 to insulating Mn2O3 [5]. These healing 
processes require the application of voltage and 
are accelerated by both increased voltage and 
temperature. One of the key elements of the 
Q-Process is the successful optimization of ap-
plied voltage, temperature, and burn-in duration 
such that the burn-in process activates these heal-
ing processes without inducing localized dielec-
tric breakdown as described by the McPherson 
thermochemical model. Chart 4 demonstrates 
the parametric shift in DC leakage resulting from 
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a burn-in process. The DC leakage of the opti-
mized burn-in process exhibits significantly lower 
overall DC leakage, but the DC leakage of the 
maverick parts has been enhanced, improving the 
effectiveness of the statistical screening.

Statistical Screening, Pre/Post 
125°C Burn-In Enhanced Inline 
Reflow Conditioning
Another key component of the Q-Process is the 
elimination of inhomogeneous defects prior to 
the burn-in process. Due to the healing process 
induced during burn-in, it is possible for units 
within the population that may have defects un-
characteristic of the remainder of the population 
to “move” into the DCL distribution repre-
senting “good” units. AVX has determined that 
a portion of these units that “move” could be 
potentially unstable on long-term life test. Uti-
lization of a statistical screening prior to 125°C 
burn-in eliminates the possibility of including 
this small quantity of potentially parametrically 
unstable capacitors (units in red).

In addition to the 125°C burn-in, AVX 
applies an optimized reflow that stresses the 
component at the appropriate level to induce 
mechanically weak components to undergo a 
parametric shift that can be subsequently de-
tected at post burn-in statistical screening. The 
ability to detect the induced parametric shift can 
also be enhanced through elevated temperature 
screening. Chart 6 demonstrates individual part 

variations detected during 125°C testing that 
would normally be undetected during room 
temperature testing.

The combination of appropriate burn-in, 
reflow, and pre/post burn-in statistical screening 
yields the Q-Process flow, shown in Chart 7:

The Q-Process has repeatedly demonstrated 
an improvement in overall DCL relative to the 
conventional 85°C, voltage accelerated burn-in 
affiliated with Weibull. An interval plot (Chart 
8) of pre burn-in DCL, post 125°C burn-In 
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DCL, and post 85°C burn-in DCL demon-
strates this improvement.

This improvement in post burn-in DCL was 
also shown to be repeatable across multiple lots 
(Chart 9 – red: Weibull, blue: Q-Process):

The effectiveness of the Q-process is best 
illustrated through life testing. AVX utilizes 
both 85°C (rated voltage) and 125°C (⅔ rated 
voltage) for life testing.

Chart 10 represents ~100 components, 
sampled from 10 production lots and tested at 
125°C. The black line represents the post life test 
results of approximately 1000 Q-Process com-
ponents compared to approximately 170 tradi-

tionally burned-in components. It is easy to see 
that the 85°C accelerated voltage parts contain 
2 units that fail through life testing. The Q-Pro-
cess parts have 5 times amount of parts on test 
with zero failures to the specified DC leakage 
limit (0.225μA).

Chart 11 represents the 85°C (rated voltage) 
life testing of 10 components, sampled from the 
same 10 Q-Process production lots. As is evi-
denced by the chart, the post 2000hr life testing 
DC leakage exhibits a negligible shift.

Evaluation of AVX Statistical 
Algorithm
In order to evaluate the effectiveness of the 
AVX statistical algorithm segregation, individ-
ual unit life testing was performed. Individual 
pieces with marginal or anomalous performance 
through 125°C burn-in were captured, catego-
rized, and submitted to 85°C life testing. Specif-
ic characterization is identified in each life test 
group. The grouping is specified in the 25°C DC 
leakage histogram below.
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The 85°C life testing response, based upon 
grouping, is shown in charts 13a and 13b. The 
grouping is as follows:
1.	 0 highest units for 125HDCL (post burn-in), 

but still within 3σ limit All units are stable, 
indicating relative effectiveness of 3σ limit 
and the Q-Process: Good (zone 1 at limit)

2.	 Units from entire 10-lot population that exceed-
ed the 3σ limit but were within the hard cut lim-
it, although the majority of the units are stable 
through 85°C life test, this population is likely to 
contain unstable units, as demonstrated by the 3 
failed units. This supports that traditional hard 
cut limits do not effectively remove parts that 
have reliability issues: Marginal units (zone 2)

3.	 Good units (zone 1)
The pre-life test DCL is shown in black in 

Chart 13a.

Chart 13b shows the same DCL distributions, 
but scaled to an appropriate component DCL limit.

Maverick Lot Program
AVX’s maverick lot program is designed to iden-
tify any lot that is statistically different than pre-
viously supplied lots. This program insures that 
the lots produced are statistically the same as 
the originally qualified design. The maverick lot 
program is a key driver of continuous improve-
ment projects at AVX. This program utilizes the 
3D chart format discussed earlier in this paper. 
A visual representation of this program is shown 
in chart 14.

Product Level Designator/AVX 
Lot Acceptance Testing
Due to the removal of the early time failures 
prior to burn in, it is not possible to calculate a 
failure rate with the traditional Weibull mod-
el. It is now necessary to replace the Weibull 
grading system with one that can accurately 
predict the lots reliability performance. Weibull 
never took into consideration the effects of 
multi side reflowing of surface mount parts onto 
substrates into its calculation. This is a flaw in 
the current system and is a source of customer 
frustration when building product. The Product 
Level Designator is a demonstrated failure rate. 
What is unique about this system is before any 
calculation is performed, a simulated produc-
tion routine is completed on a sample from the 
population, which includes double-sided reflow. 
Once that is completed a calculation is done 
based on the performance of the sample through 
simulated production. See Example 1

In order to calculate a product level desig-
nator for lot several assumptions and factors are 
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made in the creation of the formula
1.	 The Equivalent Component Hours is based 

upon the MIL-HBK-217 model for solid 
tantalum capacitors

2.	 Test Temperature Acceleration Factor is 
based upon the Arrhenius model. The tem-
peratures are in degree Kelvin.

3.	 Activation Energy (1.08eV to 1.15eV) [6]
4.	 Boltzman Constant = 8.63E-5 eV/°K
5.	 Test Voltage Acceleration Factor is Test 

Voltage divided by the Rated Voltage, cubed
6.	 The total component hours at test tempera-

ture is multiplied by the Test Temperature 
Acceleration Factor and the Test Voltage 
Acceleration Factor to get the Equivalent 
Component Hours used in calculating the 
failure rate.

7.	 Failure Rate predictions are based on 
Chi-Squared distribution, the Degrees of 
Freedom in the use of the Chi-Squared 
Distribution is the number of failures plus 1 
multiplied by 2

8.	 Application Voltage Acceleration Factor is 
Application Voltage divided by the Rated 
Voltage, cubed

9.	 The calculated failure rate is multiplied by 
the Application Voltage Acceleration Factor 
to get the final Failure Rate

Inputs 10-volt Part

Rated Voltage 10

Qty Tested 30

Hours Tested 6

TestTemp C 125

Test Voltage 6.6

Number Failures 0

Confidence Level 90

Application Temp C 25

Application Voltage 5

Activation Energy of 
Tantalum Cap (eV)

1.08

Example 1
Outputs

Component Hours 
(Equivalent at Application Temp) 1,978,593

Component Years 
(Equivalent at Application Temp) 225.71

Test Acceleration Factor 
(Temperature) 38,234.21

Test Acceleration Factor 
(Voltage) 0.287496

Application Acceleration Factor 
(Voltage) 0.1250

Failure Rate 
(% failures per 1000 hours) 0.007273

MTBF (Mean Time Between 
Failures) (Hours) 1,374,867

Application Temp C 25

Application Voltage 5

Activation Energy of 
Tantalum Cap (eV)

1.08

This model allows for a standard calculation 
to be made based on actual application tem-
perature and voltage. What is unique about this 
model is that it is very flexible. The model can be 
used to calculate application specific failure rate 
as well as mean time between failures at vari-
ous confidence intervals. This is simply done by 
changing the input variables and since these are 
“live” inputs the model recalculates these num-
bers based on the new information.

Conclusion
The Q-Process actively motivates and exercises 
the known failure mechanisms for DC leakage, 
and then identifies non-normal parts and removes 
them from the population. The portions of the 
Q-Process implemented to date have demonstrat-
ed an order of magnitude reduction in customer 
line fallout. AVX is pursuing implementation of 
the full Q-Process for all of our high reliability 
surface-mount solid tantalum capacitors.
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The emergence and usefulness of digital continuity, twins and threads, is a 
direct result of the ongoing process of digitizing the physical world.

Digitization of the Manufacturing World
Digitization is the conversion of the physical world to a digital equiva-
lent. It represents the convergence of the real and the virtual worlds. This 
conversion has been accelerated with the emergence of the sensor and data 
rich markets known as the Industrial Internet-of-Things (IIOT). When 
focusing exclusively on manufacturing and production processes, the IIOT 
becomes part of the Industry 4.0 evolution (see Figure 1).

John BlylerThreading Together the 
Twins in a Contextually 
Relevant Digital World

Figure 1. Timeline of Industrie 1.0 to Industrie 4.0. Graphic source: Courtesy of DFKI (2011)
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Threading Together 
the Twins in a 
Contextually 
Relevant Digital 
World

The traditionally mechanical, pre-digital in-
dustry supply chains were very siloed (Reference 
1). The evolution to today’s Industry 4.0 required 
movement beyond siloes to deal with rising com-
plexities and shrinking time-to-markets (TTM). 
The key to this evolution has been the digitaliza-
tion of the physical to achieve smart connectivity 
between things and people throughout both the 
design and manufacturing process.

Two consumer sectors still at the early stage of 
digitalization are the avionics and automotive spaces, 
in part due to stringent safety, reliability and certifi-
cation requirements. The avionic—really Aerospace 
and Defense (A&D)—market is used to long-cycles 
in both funding and product development. Recent 
surveys [Reference 2] have shown that only a scant 
26% of aerospace companies do business with cli-
ents and suppliers in a digital, electronic manner. 

Recently, market researcher Accenture has 
highlighted the drivers behind the digitalization 
of the A&D sector (Reference 3), which are 
indicative of other market segments grappling 
with digitization:
•	 Flat budgets
•	 Longer, more complex programs
•	 A shrinking talent pool of human capital 
•	 Rising demand for products and services

•	 The explosion of big data, often used for 
predictive maintenance

•	 Operational cost optimization due to flat or 
shrinking budgets
Many of these same factors are drivers in the 

evolution of the Industrial Internet of Things 
(IIOT), but none more so than the application of 
data analytics. This is a natural result of the nature 
of the IIOT, namely, a system of connected and 
integrated electronic, electrical and mechanical 
physical assets that provide raw data for analysis 
and manufacturing process optimization. 

The availability and ever growing amount 
of this data, in turn, has helped enable the early 
digital continuity in IIOT market vendors such 
as GE, Siemens, PTC, CSC, etc. But what does 
this mean in practical terms?

The Digital Trifecta: Threads, 
Twins and Continuity
Digitization is the process of converting al-
most anything into a digital format, e.g., books 
become e-books, analog music becomes MP3 
bits and bytes, etc. Interestingly, the reverse of 
digitalization is also occurring as demonstrat-
ed by the 3D-printing of a completely digital 
electronic model.

Figure 2: The Digital Twin is a real-time replica of specific aspects of the physical twin. (Image credit: General Electric)
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Digitization is needed to turn a physical 
system into a digital replica or twin—at least to 
some degree (see Figure 2). This digital represen-
tation originated as a by-product of digital man-
ufacturing trends whose purpose was to maintain 
and re-use digitized production information, e.g., 
machine settings, specifications, assembly-line 
configurations, etc. For the manufacturing pro-
cess, the Digital Twin also incorporates Comput-
er Integrated Manufacturing (CIM), production 
line equipment/robotics, and warehouse and 
material management. Computer-integrated 
manufacturing (CIM) refers to the use of com-
puter-controlled machineries and automation 
systems in manufacturing products that combine 
both computer-aided design (CAD) and comput-
er-aided manufacturing (CAM) technologies.

Over time and with improved simulation 
technology, the Digital Twin has expanded to in-
clude design activities. Today, Digital Twins com-
prise a near real-time digital image or software 
copy of a physical asset or process (see Figure 2). 
From a design perspective, a Digital Twin is a 
digital representation of a physical product such 
as an aircraft engine. Including CAD and related 
engineering information, it incorporates product 
specifications, geometry models, material proper-

ties and associated simulation information.

Digital Twin
Perhaps nowhere is the value of the Digital Twin 
more evident than in NASA operations. Once 
deployed, spacecraft are generally inaccessible 
for repairs. The only way to determine what is 
wrong with a spacecraft is from information 
gleaned from sensor systems and transmitted via 
telemetry technology. When manned missions 
encounter problems, simulators and Digital 
Twin databases can help pinpoint the problem, 
devise possible fixes, and test out repair actions 
on the ground.

To achieve maximum efficiency, a Digital Twin 
for the product development, manufacturing and 
even the entire supply chain will need to be created. 
This comprehensive goal is still a ways off except in 
product manufacturing, in which the Digital Twin 
idea comprises not only the product but also the 
factory, the equipment and the logistics systems. 

Creating a Digital Twin that bridges man-
ufacturing, design and every life cycle phase 
in-between requires lots of Digital Threads.

Digital Thread
The Digital Thread helps extends the Digital 

Figure 3. The Digital Twin consists of Digital Threads that connect data and information between the virtual and physical spaces. 
(Courtesy of Dr. Michael Grieves whitepaper, Delmia – Apriso)
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Twin into a product’s entire lifecycle, encom-
passing all data flows across initial architecture, 
design, engineering, performance, manufactur-
ability and serviceability. It’s a vital thread that 
runs through all the disciplines, domains and 
contexts with which a product/service interacts.

The Digital Thread is a framework that 
enables connected data flows and an integrated 
view of assets and systems across traditionally 
siloed elements in manufacturing (and design). 
The Digital Thread ensures connections between 
all of a product’s digital assets–and their revi-
sions over the lifecycle –including versions of 
BOMs, CAM databases, parts, software, elec-
tronics, CAD models, documents, requirements, 
process plans, and service manuals, etc.

It would be a mistake to imagine that the 
Digital Thread and twin are similar concepts. 
The former is data centric path that establishes 
a connected data flow for all pertinent product 
data throughout its lifecycle. Conversely, the 
Digital Twin enables the creation, building and 
testing of the product in a virtual environment 
(see Figure 3). By developing Digital Threads, 
design and product engineers can collaborate 
with manufacturing engineers to create a virtual, 
3D model between the design and manufactur-
ing environments.

If an unbroken, contextually consistent and 
streamlined flow of data, information and views 
can be established between the design environ-
ment and the manufacturing execution systems, 
then digital continuity can be achieved. Such 
digital continuity will allow the information to 
be updated and constantly available throughout 
the product’s development lifecycle.

What Twins and Threads are Not!
It is only in recent years that the creation of a 
truly Digital Twin has been possible. As might 
be imagined, the digitization of a physical sys-
tem requires massive amounts of data, comput-
ing power, storage, bandwidth and cost. These 
requirements have been met over the last several 

years thanks to ever more powerful yet cheaper 
electronics afforded by Moore’s Law. (3)

A Digital Twin enables companies to un-
derstand not only the product as designed but 
also the system that built the product (manu-
facturing) and how the product is used in the 
field (operations and service). Understanding 
these aspects of the product help companies 
shrink time-to-market, improve operation, meet 
stringent safety requirements, reduce defects and 
more.

Some wonder if these benefits are worth the 
cost of creating a complete Digital Twin of a 
new product all at once. How is it even possible 
to capture every conceivable piece of informa-
tion about the physical twin that must surely be 
necessary?

The latter point is an idealization, much like 
assuming all system-of-system (SOS) projects 
must start from scratch. Despite the impres-
sive state of today’s computing electronics, no 
computer system would be able to crunch all the 
numbers for an exact and complete digitalization 
of a physical product. Even if all the data could 
be processed, there would be no way to filter and 
analyze all the data in a timely manner.

The key to creating a Digital Twin is to 
start in one area first, presumably the area that 
is causing problems. As with the engineering 
of any problem source, the Digital Twin will 
involve simplifications and assumptions in order 
to be of value. It will not include every physical 
aspect of the system, only those aspects that are 
of interest and value to solve the problem. 

To refine our earlier definition, the Digital 
Twin is really a virtualized representation of all 
the information needed to supplement existing 
engineering models and tools to solve a given 
problem. The creation of the Digital Twin must 
occur within the scope and context of a given 
challenge.

Similarly, context is critical for the Digital 
Thread, too.
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Context is Critical
The defining characteristic of the Digital Thread 
is the continuity of its connection throughout the 
product lifecycle. Looking at a representation of 
the Digital Thread (see Figure 4) is very much 
like looking at a diagram about requirements 
traceability (see Figure 5). But the Digital Thread 
is about more than just traceability, it’s about 
the context and relationship of the connections 
between all of a product’s digital assets and their 
revisions—BOMs, parts, software, electronics, 
CAD and CAM models, documents, require-

ments, process plans, and service manuals, etc.
The relationship aspect of the Digital Thread 

information addresses both the context and the 
dependency of the data. For the context, it might 
answer the question of how a given part is relat-
ed to another and whether they are both part of 
the BOM. In terms of dependency, the Digital 
Thread must reflect how and when data for both 
parts is changing over time.

This is not to say that the Digital Thread is 
merely a collection of web links between dif-
ferent data points and subsystems. The threads 

Figure 4. Flowing the Digital Thread. (Courtesy of the Aras Open PLM Community)

Figure 5. The Digital Thread in action, tracing requirements, functional, logical, and physical (RFLP) entities and relationships 
throughout the product lifecycle. (Courtesy of Mentor Graphics) 
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must be meaningful links between data and sub-
systems. Nor are these links just a parser-based 
interconnection of engineering to manufacturing 
processes or CAD to CAM tools. Instead, Dig-
ital Threads must provide the data connections 
and traceability from concept to end-of-life and 
across all involved disciplines including software, 
electronics, hardware, wiring harnesses (for cars 
and planes), requirements, etc.

In simpler terms, a Digital Thread (there 
may be more than one) provides traceability to 
the configuration of the Digital Twin.

Digitization of Systems 
Engineering
Some have said that the Digital Thread and its 
connection to the Digital Twin have put the en-
gineering back into systems engineering. Another 
way of saying this—at least for the design activi-
ty—is that model-based technologies have enabled 
systems engineering in the digital world. Such 
digital collaboration enables information (digital) 
continuity across lifecycle processes (see Figure 6).

If done properly, weaving the Digital Thread 
will reinforce the basic tenants of system-of-sys-
tems (SOS) engineering especially the contex-

tual flow of information. The starting point for 
the Digital Thread is typically early life-cycle 
model-based systems engineering (MBSE). This 
modeling serves as the foundation for all later 
cross-functional design. As a reminder, mod-
el-based systems engineering (MBSE) is the 
methodology that focuses on creating and inte-
grating domain models as the primary means of 
information exchange between engineers, rather 
than on document-based information exchange.

In practice, using the results and insights 
gained from MBSE and Digital Threads en-
ables early detection of failure modes in product 
simulations, which in turn lead to less design 
mistakes. Manufacturing can then link to the 
resulting Digital Twin to prepare all manner of 
production assets to build the actual product. 

Using MBSE tools, engineers will be able to 
run system-wide and life-cycle long simulations 
of products for the Digital Twin to simulate 
hardware-software plants, products or services at 
the system level. In so doing, the hardware, soft-
ware and content functions of the system can be 
more efficiently managed.

Practical Example

Figure 6. Digital Twins with their accompanying threads ensure digital continuity throughout a product’s life cycle.
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Consider the example of a Digital Twin for a 
transmission generator as part of a Siemens 
SIMOTICS general purpose factory motor (see 
Figure 7). Once available, the motor’s Digital 
Twin provides up-to-date technical electrical 
and mechanical specifications, spare parts and 
operating instructions and more by simply scan-
ning the data matrix code on the physical motor. 
But what was needed to create the Digital Twin 
of the generator portion of this motor?

As with any engineering project, one must first 
determine the requirements before developing an 
architectural and functional design, performing 
simulation and implementing the design in a phys-
ical system. The basis for this work comes from 
a variety of contextual sources and is conducted 
using a multi-tool environment (see Figure 8) that 
is tied together with at least one—Digital Thread. 
In the case of a generator, essential design issues 
would focus on power transmission requirements, 
voltage loss and static-dynamic system loads.

The result of the associated specifications and 
analysis work (see Figure 9) is a complete configu-
ration that serves as the Digital Twin. Traceability 
of the data between the different models and as-
sociated engineering disciplines is provided by the 
Digital Thread. The MBSE ensures a high level of 
integrated interoperability and digital continuity.

Summary
Many cost, performance and production issues 
are driving the digitization of the physical world. 
To ensure digital continuity during this process, 
Digital Threads must be used to create a Digital 
Twin of the pertinent portions of the physical 
entity being designed and manufactured. Fur-
ther, all of these activities must take place within 
the context of the system with both the physical 
and virtual worlds. Understanding the concepts 
and examples of digitization, Digital Threads, 
Digital Twins and continuity are needed to de-
velop new products and bring the “engineering” 
back into systems engineering.
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Supply Chain Management (SCM) is defined as the process of planning, 
implementing, and controlling the efficient, effective flow and storage of 
goods, services, and related information, (such as software) from point of 
origin to point of consumption for the purpose of conforming to cus-
tomer requirements. The core activities are customer service standards, 
transportation, inventory management and supply, plus information flow, 
order processing and transmittal.

Supply chains (SC) are typically used to transport goods from a source 
of supply to points of distribution or storage. There are four stages in a 
supply chain: 
1.	 Supply network
2.	 Internal supply chain (i.e. manufacturing plants)
3.	 Distribution systems
4.	 End users

There are also four flows in a supply chain.
1.	 Material
2.	 Service
3.	 Information
4.	 Funds

e-Procurement links the supply network, the manufacturing plant, e-dis-
tribution links with the manufacturing plant, and the distribution network, 
while e-commerce links the distribution network and the end users.1 At pres-
ent, the U.S. federal government does not have a national strategy for supply 
chain risk management (SCRM) of commercial supply chain vulnerabilities in 
the U.S. federal information and communications technology (ICT). 

1  “Supply Chain Management, 
Concepts, Techniques and 
Practices – Enhancing Value 
Through Collaboration” www.
worldcibooks.com/busi-
ness/6273.html

Supply Chain Risk 
Management (SCRM)
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The standard risk planning strategy involves 
these steps:
1.	 Identify Risk. A team of SC experts should 

meet regularly to identify as many potential 
risks both before and after product produc-
tion actually begins. Individual risk assign-
ments should be made between the partici-
pants, to distribute the workload.

2.	 Quantify Risk. The SC team should agree 
to a method for quantifying the identified 
risks, such as Failure Mode and Effect Anal-
ysis (FMEA). This will enable the team to 
address the most critical risks first.

3.	 Build Contingencies. The team will develop 
strategies and prioritized actionable plans 
to address all delays, such as supplier delays, 
and or shipment delays at customs. Exam-
ples of contingencies can include backup 
third-party participants with pre-negotiated 
and agreed-upon contracts for replacement 
parts, due to unforeseen delays. Best prac-
tices would involve an on-sight plant visit to 
determine the working conditions, as well as 
to determine and quantify the SC risks and 
to help develop contingency plans.

4.	 Address Cyber threats. Virtual threats 
must be addressed as well as the physical 
ones. The National Institute of Standards 
and Technology (NIST) provides a cyber-
security framework consisting of standards, 
guidelines, and best practices to manage 
cybersecurity-related risks.2

The ICT supply chains are multi-tiered, 
webbed relationships rather than singular or 
linear ones. The supply chain threat to U.S. 
national security stems from products produced, 
manufactured, or assembled by entities that are 
owned, directed, or subsidized by national gov-
ernments or entities known to pose a potential 
supply chain or intelligence threat to the U.S., 
including China. Currently, these products could 
be modified to perform below expectations or 
even fail, as well as to facilitate state or corporate 
espionage, or otherwise compromise the con-

fidentiality, integrity, or availability of a federal 
information technology system.3

It is anticipated that software supply chain 
attacks will become more prevalent as the time 
required to breach these systems are decreasing, 
as well as developing technologies, such as fifth 
generation (5G) mobile network technology and 
the Internet of Things (IoT) provide exponen-
tially increased avenues for attacks. 

The IoT refers to a system of interrelat-
ed computing devices, mechanical and digital 
machines, objects, and living beings equipped 
with network connectivity that enables them to 
connect and exchange data. Growth in IoT con-
nectivity, including the federal ICT networks, 
will provide an increased attack surface as new 
product designs continue to expand IoT usage, 
and further challenge ICT SCRM. 

Ideally, we need policy strategies based upon 
forward planning, rather than one that is merely 
reactive. It will need to include software, cloud-
based infrastructures, and hyper-converged 
products, as well as hardware. Strategies and 
policies will need to be crafted that address next 
generation technologies and the creation of new 
standards. Supplier SCRUM lifecycles need to 
be addressed from inception to demise, ensuring 
the SC relationship information is transparent 
for government oversight to mitigate risk expo-
sures. 

However, where are the Reliability, Main-
tainability and Supportability (RMS) metrics? 
How are ongoing effective planning, manage-
ment and program support going to be mea-
sured and the program effectiveness to be evalu-
ated without these types of important metrics? 

The term “reliability” is often used as an 
overarching concept that includes availability 
and maintainability. Reliability in its purest 
form is more concerned with the probability of 
a failure occurring over a specified time interval, 
whereas availability is a measure of something 
being in a state (mission capable) ready to be 
tasked (i.e., available). 

2  NIST Cybersecurity Frame-
work: https://www.nist.gov/
cyberframework

3  “Supply Chain Vulnerabilities 
from China in U.S. Federal 
Information and Communica-
tion Technology” Tara Beeny, 
Senior Business Analyst, 
Interos Solutions, Inc.
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Maintainability is the parameter concerned 
with how the system in use can be restored 
after a failure, while also considering concepts 
like preventive maintenance and Built-In-Test 
(BIT), required maintainer skill level, and sup-
port equipment. 

When dealing with the availability require-
ment, the maintainability requirement must 
also be invoked because some level of repair and 
restoration to a mission-capable state must be 
included. Clearly, logistics and logistic support 
strategies are also closely related and are depen-
dent variables at play in the availability require-
ment. This takes the form of sparing strategies, 
maintainer training, maintenance manuals, and 
identification of required support equipment. 

The linkage of Reliability, Availability, 
Maintainability (RAM) requirements and the 
dependencies associated with logistics support 
illustrates how the RAM requirements have a 
direct impact on sustainment and overall LCC. 
In simple terms, RAM requirements are consid-
ered the upper level, overarching requirements 
that are specified at the overall system level. 

Software must be addressed in the overall 
RAM requirements for the system. The wear 
or accumulated stress mechanisms that charac-
terize hardware failures do not cause software 
failures. Instead, software exhibits behaviors that 
operators “perceive” as a failure. It is critical that 
users, program offices, the test community, and 
contractors agree early as to what constitutes a 
software failure. 

For example, software “malfunctions” often 
are recoverable with a reboot, and the time for 
reboot may be bounded before a software failure 
is declared. Another issue to consider is fre-
quency of occurrence even if the software reboot 
recovers within the defined time window, as 
this will give an indication of software stability. 
User perception of what constitutes a software 
failure will likely be influenced by both the need 
to reboot and the frequency of “glitches” in the 
operating software.4

The relationship that commercial SCM has 
to military SCM can be described as highly 
compatible and supportive. This is not to say that 
they are equal in most respects. The goals, objec-
tives and environment in which these two SCM 
systems operate are different and, in many cases, 
very unique. The military frequently provides 
the commercial SCM industry with advanced 
technologies such as the Internet and RFID, as 
well as, innovative total asset visibility and sense 
and respond concepts. Industry often then im-
proves these technologies and concepts in a way 
that makes them more accurate, efficient and 
flexible. These commercial modifications often 
subsequently are adopted and re-incorporated 
into the DoD SCM system to better ensure the 
improved timely, accurate delivery of goods and 
services to the DoD’s end user—the warfighter. 

As compatible and supportive both SCM 
commercial and military applications currently 
are to each other, indications are that they have 
to become even more closely aligned. Issues 
such as Internet security, physical infrastructure 
maintenance and cost, lines of communication, 
and growing global economic and military com-
petitiveness appear to be too socially challenging 
and technologically complex for either DoD or 
industry to address them separately as opposed 
to collectively. The cost to both the commercial 
and military SCM system is overwhelming. The 
decaying transportation infrastructure alone is 
costing the U.S. “$78 billion annually in lost 
time and fuel” and “by 2020, every major U.S. 
container port is projected to double the volume 
of cargo.” The Urban Land Institute reports that 
the U.S. needs to invest $2 trillion to rebuild its 
mass, multi-facet transportation infrastructure.5 

The time is now for the strategic planning 
and implementation of a single SCM system for 
hardware as well as software, that is designed 
and built to accommodate both commercial and 
military SCM requirements.6

4  https://www.mitre.org/
publications/systems-en-
gineering-guide/acquisi-
tion-systems-engineering/
integrated-logistics-support/
reliability-availability-and-main-
tainability

5  “4 Reasons to be Excited 
about Sustainability” by Thom-
as Singer, 12-21-16

6  “Electricity Generation”, 
by IER Institute for Energy 
Research
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