
IJRECE VOL. 7 ISSUE 2 (APRIL- JUNE 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 2598 | P a g e

Character Recognition Using Neural Networks and

Convert into Text File
Anjuben Lunagariya

M.Tech. Student, Dept. Of Computer Science Engineering,

Rai University, Ahmedabad, Gujarat – 382260

(lunagaria.anju92@gmail.com)

Abstract-- Now a days there is a lot of development in smart
devices which are combination of human intelligence and

machines. Character recognition is one of the example of smart

device and Mathematical expression recognition is belongs to

such device which is developed to recognize printed

mathematical symbols. This system conventional programming

methods of mapping symbol images into matrices, analyzing

pixel and/or vector data and trying to decide which symbol

corresponds to which character would yield little or no realistic

results. Clearly the needed methodology will be one that can

detect ‘proximity’ of graphic representations to known symbols

and make decisions based on this proximity.

In this paper discuses about then usefulness of neural networks,

more specifically the motivations behind the development of

neural networks, the outline network architectures and learning

processes. We conclude with Mathematical Symbol

recognition, a successful layered neural network application

and try to convent into the text file. Here all character, number

and mathematical formula are recognition and try to convent

character into text file.

 Keywords— Optical Character Recognition; neural network;

Mathematical symbol; proximity;

I. INTRODUCTION

 Recognizing Character in image file and convent into

text file is a new and important field in document analysis. It is

quite different from extracting mathematical expressions in

image-based documents. In this paper, we propose a neural

network method to detect both isolated and embedded

mathematical expressions in image documents. Moreover,

various features of formulas, including geometric layout,

character and context content, are used to adapt to a wide range

of formula types. Experimental results show satisfactory

performance of the proposed method.

One of the most classical applications of the Artificial Neural

Network is the Character Recognition System. This system is

the base for many different types of applications in various

fields, many of which we use in our daily lives. Cost effective

and less time consuming, businesses, post offices, banks,

security systems, and even the field of robotics employ this

system as the base of their Operations. Handwritten character

recognition is a difficult problem due to the great variations of

writing styles, different size (length and height) and orientation

angle of the characters. Handwritten Character recognition is an

area of pattern recognition that has become the subject of
research during the last some decades. Neural network is playing

an important role in handwritten character recognition. Many

reports of character recognition in English have been published

but still high recognition accuracy and minimum training time
of handwritten English characters using neural network is an

open problem. Therefore, it is a great important to develop an

automatic character recognition system for a mathematical

symbol.

Fig 1. OCR Process

In this paper, efforts have been made to develop

automatic mathematical symbol recognition system for

mathematics with high recognition accuracy and minimum

training and classification time. Hence the conventional

programming methods of mapping symbol images into matrices,

analyzing pixel and/or vector data and trying to decide which

symbol corresponds to which character would yield little or no
realistic results. Clearly the needed methodology will be one that

can detect ‘proximity’ of graphic representations to known

symbols and make decisions based on this proximity. To

implement such proximity algorithms in the conventional

programming one needs to write endless code, one for each type

of possible irregularity or deviation from the assumed output

either in terms of pixel or vector parameters, clearly not a

realistic fare.

In this paper, one effective optical character

recognition from text image using texture and topological

features is proposed. For better performance, the texture and
topological features of all characters of text image like corner

points, features of different regions, and ratio of character area

and convex area are calculated. Based on the texture and

topological information, character verification is done using

feature matching between the extracted character and the

template of all character serves as a measure of similarity

between the two. Also discuss about then usefulness of neural

networks, more specifically the motivations behind the

IJRECE VOL. 7 ISSUE 2 (APRIL- JUNE 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 2599 | P a g e

development of neural networks, the outline network

architectures and learning processes. We conclude with

Mathematical Symbol recognition, a successful layered neural

network application and try to convent into the text file. Here all

character, number and mathematical formula are recognition.

II. Related work

The existing OCR systems show high accuracy in interpreting

text portions but failed to properly process other components

like graphics, half-tones, mathematical formulas and equations.

Segmenting documents to text, graphics, half-tones, tables etc.

have been reported in the literature by many researchers.

However, segmenting math-zone is still a challenging problem.

It has been observed from the existing literatures that most of

the works are directed toward math-symbol or equation

recognition assuming that the math-zones are already marked.

Though, symbol recognition is a part of OCR activity but when

it is applied to the non-segmented mixed material (text with
math-zone and others) computation will be expensive and

success far from satisfactory. We on the other hand contend that

a better approach is to segment the math-zone from the mixed

material thereby helping the future OCR activity to focus its

processing only on math-symbols and equations. In this paper

we propose fully automated segmentation technique extracting

math-zone exploiting spatial distribution of black pixels on

white background. Unlike many reported works we did not use

any type of symbol recognition techniques for mathzone

segmentation.

III. Problem Statement

Existing Character, mathematical symbol and mathematical

formula are recognition but here to try convent into a text file

to easy use and helpful. A mathematical symbol recognition

identify two significant areas of weakness, that of correctly

segmenting text and math lines, and precisely identifying the

locations of mathematical formulae. For each of these issues we

have proposed and implemented more advanced techniques,

then rerun previously reported experiments and for each case

reported significant improvements. Here all type of recognition

but try only character to convent into the text file.

IV. IMPLEMENTATION ENVIRONMENT

1. Network Formation

The MLP Network implemented for the purpose of this

project is composed of 3 layers, one input, one hidden and one

output.The input layer constitutes of 150 neurons which receive

pixel binary data from a 10x15 symbol pixel matrix. The size

of this matrix was decided taking into consideration the average

height and width of character image that can be mapped without

introducing any significant pixel noise. The hidden layer
constitutes of 250 neurons whose number is decided on the

basis of optimal results on a trial and error basis. The output

layer is composed of 16 neurons corresponding to the 16-bits of

Unicode encoding. To initialize the weights a random function

was used to assign an initial random number which lies between

two preset integers named ±weight_bias. The weight bias is

selected from trial and error observation to correspond to

average weights for quick convergence.

Fig 2. The Project MLP Network

2. Symbol image detection

The process of image analysis to detect character symbols
by examining pixels is the core part of input set preparation in

both the training and testing phase. Symbolic extents are

recognized out of an input image file based on the color value

of individual pixels, which for the limits of this project is

assumed to be either black RGB(255,0,0,0) or white

RGB(255,255,255,255). The input images are assumed to be in

bitmap form of any resolution which can be mapped to an

internal bitmap object in the Microsoft Visual Studio

environment. The procedure also assumes the input image is

composed of only characters and any other type of bounding

object like a boarder line is not taken into consideration.

The procedure for analyzing images to detect characters is

listed in the following algorithms:

i. Determining character lines

Enumeration of character lines in a character image

(‘page’) is essential in delimiting the bounds within which the

detection can proceed. Thus detecting the next character in an

image does not necessarily involve scanning the whole image

all over again.

Algorithm:

1. start at the first x and first y pixel of the image

pixel(0,0), Set number of lines to 0

2. scan up to the width of the image on the same y-

component of the image

a. if a black pixel is detected register y as top of the

first line

b. if not continue to the next pixel

c. if no black pixel found up to the width increment

y and reset x to scan the next horizontal line
3. start at the top of the line found and first x-component

pixel(0,line_top)

4. scan up to the width of the image on the same y-

component of the image

IJRECE VOL. 7 ISSUE 2 (APRIL- JUNE 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 2600 | P a g e

a. if no black pixel is detected register y-1 as bottom

of the first line. Increment number of lines

b. if a black pixel is detected increment y and reset x

to scan the next horizontal line

5. start below the bottom of the last line found and repeat

steps 1-4 to detect subsequent lines
6. If bottom of image (image height) is reached stop.

ii. Detecting Individual symbols

Detection of individual symbols involves scanning

character lines for orthogonally separable images composed of

black pixels.

Algorithm:

1. start at the first character line top and first x-

component
2. scan up to image width on the same y-component

a. if black pixel is detected register y as top of the

first line

b. if not continue to the next pixel

3. start at the top of the character found and first x-

component, pixel(0,character_top)

4. scan up to the line bottom on the same x-component

a. if black pixel found register x as the left of the

symbol

b. if not continue to the next pixel

c. if no black pixels are found increment x and reset
y to scan the next vertical line

5. start at the left of the symbol found and top of the

current line, pixel(character_left, line_top)

6. scan up to the width of the image on the same x-

component

a. if no black characters are found register x-1 as

right of the symbol

b. if a black pixel is found increment x and reset y to

scan the next vertical line

7. start at the bottom of the current line and left of the

symbol, pixel(character_left,line_bottom)

8. scan up to the right of the character on the same y-
component

a. if a black pixel is found register y as the bottom

of the character

b. if no black pixels are found decrement y and reset

x to scan the next vertical line

Fig 3. Line and Character boundary detection

From the procedure followed and the above figure it is

obvious that the detected character bound might not be the

actual bound for the character in question. This is an issue that
arises with the height and bottom alignment irregularity that

exists with printed alphabetic symbols. Thus a line top does not

necessarily mean top of all characters and a line bottom might

not mean bottom of all characters as well.

Hence a confirmation of top and bottom for the character

is needed.An optional confirmation algorithm implemented in

the project is:

1. start at the top of the current line and left of the
character

2. scan up to the right of the character

a. if a black pixels is detected register y as the

confirmed top

b. if not continue to the next pixel

c. if no black pixels are found increment y and reset

x to scan the next horizontal line

Fig 4. Confirmation of Character boundaries

3. Symbol Image Matrix Mapping

The next step is to map the symbol image into a

corresponding two dimensional binary matrix. An important

issue to consider here will be deciding the size of the matrix. If

all the pixels of the symbol are mapped into the matrix, one

would definitely be able to acquire all the distinguishing pixel

features of the symbol and minimize overlap with other

symbols. However this strategy would imply maintaining and

processing a very large matrix (up to 1500 elements for a

100x150 pixel image). Hence a reasonable tradeoff is needed in

order to minimize processing time which will not significantly
affect the separability of the patterns. The project employed a

sampling strategy which would map the symbol image into a

10x15 binary matrix with only 150 elements. Since the height

and width of individual images vary, an adaptive sampling

algorithm was implemented. The algorithm is listed below:

Algorithm:

a. For the width (initially 20 elements wide)

1. Map the first (0,y) and last (width,y) pixel

components directly to the first (0,y) and last

(20,y) elements of the matrix
2. Map the middle pixel component (width/2,y) to

the 10th matrix element

3. subdivide further divisions and map accordingly

to the matrix

b. For the height (initially 30 elements high)

1. Map the first x,(0) and last (x,height) pixel

components directly to the first (x,0) and last

(x,30) elements of the matrix

2. Map the middle pixel component (x,height/2) to

the 15th matrix element

3. subdivide further divisions and map accordingly
to the matrix

c. Further reduce the matrix to 10x15 by sampling by a

factor of 2 on both the width and the height

.

IJRECE VOL. 7 ISSUE 2 (APRIL- JUNE 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 2601 | P a g e

Fig. 5 Mapping symbol images onto a binary matrix

In order to be able to feed the matrix data to the network

(which is of a single dimension) the matrix must first be

linearized to a single dimension. This is accomplished with a

simple routine with the following algorithm:

1. start with the first matrix element (0,0)
2. increment x keeping y constant up to the matrix width

a. map each element to an element of a linear array

(increment array index)

b. if matrix width is reached reset x, increment y

3. repeat up to the matrix height (x,y)=(width, height)

Hence the linear array is our input vector for the MLP

Network. In a training phase all such symbols from the trainer

set image file are mapped into their own linear array and as a

whole constitute an input space.

V. PROPOSED METHOD

 Here I try to Using above algorithm and create a

system recognize a image and convent into a text which helpful

to using other data without any problem.

Fig.6 load image

Fig.7 Scan the character and convent into a text file

VI. RESULT AND DISCUSSION

Although the results listed in the subsequent tables are

from a training/testing process of symbol images created with a

72pt. font size the use of any other size is also straight forward

by preparing the input/desired output set as explained. The

application can be operated with symbol images as small as

20pt font size.

a. Results for variation in number of Epochs

Number of characters=90, Learning rate=150, Sigmoid

slope=0.014

Font

Type

300 600 800

No of

wrong

characters

%

Error

No of

wrong

characters

%

Error

No of

wrong

characters

%

Error

Latin

Arial
4 4.44 3 3.33 1 1.11

Latin

Tahoma
1 1.11 0 0 0 0

Latin

Times

Roman

0 0 0 0 1 1.11

B. Results for variation in number of Input characters

Number of Epochs=100, Learning rate=150, Sigmoid

slope=0.014

Font

Type

20 50 90

No of

wrong

characters

%

Error

No of

wrong

characters

%

Error

No of

wrong

characters

%

Error

Latin

Arial
0 0 6 12 11 12.22

Latin

Tahoma
0 0 3 6 8 8.89

Latin

Times

Roman

0 0 2 4 9 10

IJRECE VOL. 7 ISSUE 2 (APRIL- JUNE 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 2602 | P a g e

C. Results for variation in Learning rate parameter

Number of characters=90, Number of Epochs=600, moid

slope=0.014

Font

Type

50 100 120

No of

wrong

characters

%

Error

No of

wrong

characters

%

Error

No of

wrong

characters

%

Error

Latin

Arial
82 91.11 18 20 3 3.33

Latin

Tahoma
56 62.22 11 12.22 1 1.11

Latin

Times

Roman

77 85.56 15 16.67 0 0

V. CONCLUSION

In conclusion, the combination of math retrieval and math
recognition technologies provides rich possibilities for math-

aware computer interfaces, and for intelligent search and

retrieval tools for math in documents. The

detection/segmentation technique utilized in this work can

increase OCR accuracy in document images by allowing for

a higher degree of document understanding prior to

recognition. In order for mathematical regions to be properly

recognized during OCR and not mangled with normal

language text it is important that mathematical expression

regions are detected and then properly segmented from their

surroundings. The evaluation technique utilized in this work
counts the true positive, false positive, true negative, and

false negative pixels after detection and segmentation is

carried out in order to get a highly accurate and objective

understanding of performance. In this paper we have only

convent text. In future utilized neural network and try to

convent mathematical symbols and mathematical formula.

Also try to other font style convent into a text.

REFERENCES

1. Aleksander, Igor, and Morton, Helen (1990), An

Introduction to Neural Computing, Chapman and Hall,
London.

2. Anzai, Yuichiro (1992), Pattern Recognition and
Machine Learning, Academic Press, Englewood Cliffs,
NJ.

3. Freeman, James A., and Skapura, David M. (1991),
Neural Networks Algorithms, Applications, and
Programming Techniques, Addison-Wesley, Reading,
MA.

4. Hertz, John, Krogh, Anders, and Palmer, Richard
(1991) , Introduction to the Theory of Neural
Computation, Addison-Wesley, Reading, MA.

5. Rzempoluck, E. J. (1998), Neural Network Data
Analysis Using Simulne, Springer, New-York.

6. Wasserman, Philip D. (1989), Neural Computing, Van
Nostrand Reinhold, New York.

7. Gader, Paul, et al. (1992), “Fuzzy and Crisp
Handwritten Character Recognition Using Neural
Networks,” Conference Proceedings of the 1992
Artificial Neural Networks in Engineering Conference,
V.3, pp. 421–424.

8. Eugen Ganea, Marius Brezovan, Simona Ganea
“CHARACTER RECOGNITION USING NEURAL
NETWORKS” International Journal of Computer
Applications Technology and Research.

9. Wei, WuFeng Li, Jun Kong, Lichang Hou, Bingdui Zhu

“: A Bottom-Up OCR System for Mathematical
Formulas Recognition” International Conference on
Intelligent Computing.

10. Qi Xiangwei, Pan Weimin, Yusup, and Wang Yang.
The study of structure analysis strategy in handwritten
recognition of general mathematical expression. In
IFITA ’09. International Forum on Information
Technology and Applications, 2009., volume 2, pages
101 –107, may 2009.

11. Richard Zanibbi, Dorothea Blostein, and James R.
Cordy. Recognizing mathematical expressions using
tree transformation. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 24:1455–1467,
2002.

12. Erik G. Miller and Paul A. Viola. Ambiguity and
constraint in mathematical expression recognition. In
AAAI ’98/IAAI ’98: Proceedings of the fifteenth
national/tenth conference on Artificial
intelligence/Innovative applications of artificial
intelligence, pages 784–791, Menlo Park, CA, USA,
1998. American Association for Artificial Intelligence.

13. Colby McKibbin “: Optical Character Recognition
Using Artificial Neural Networks” Colorado State
University-Pueblo Honors Thesis Spring 2015.

14. Christian Bartz, Haojin Yang, Christoph Meinel “STN-
OCR: A single Neural Network for Text Detection and
Text Recognition” Colorado State University-Pueblo
Honors Thesis Spring 2015.

15. M. Adeel, H.S. Cheung, and H.S. Khiyal. Math go!
Prototype of a content based mathematical formula
search engine. J. Theoretical and Applied Information
Technology, 4(10):1002–1012, 2008.

16. A.V. Aho, B.W. Kernighan, and P.J.Weinberger. The
AWK Programming Language. Addison-Wesley, New
York, 1988.

17. M. Altamimi and A.S. Youssef. An extensive math
query language. In ISCA Int’l Conf. Software
Engineering and Data Engineering, pages 57–63, Las
Vegas, USA, 2007.

18. W. Aly, S. Uchida, and M. Suzuki. Identifying
subscripts and superscripts in mathematical documents.
Mathematics in Computer Science, 2(2):195–209,
2008.

19. R.H. Anderson. Syntax-Directed Recognition of
HandPrinted Two-Dimensional Equations. PhD thesis,
Harvard University, Cambridge, MA, 1968.

20. J. Gllavata, R. Ewerth , B. Freisleben, “A Robust
Algorithm for Text Detection in Images”, 3rd
International Symposium on Image and Signal
Processing and Analysis, 2003. ISPA 2003.

21. R.H. Anderson. Two-dimensional mathematical
notation. In K.S. Fu, editor, Syntactic Pattern
Recognition, Applications, pages 174–177. Springer,
New York, 1977.

Anju Lunagariya is s PG Scholar at
Rai University, Ahmedabad. She is

especially interested in Artificial
intelligence and Optical Character
Recognition.

