## How Big Should Your Sample Be?

The number of program participants will determine whether to include everyone in the evaluation or select a sample, i.e., a smaller group who can represent everyone else and from whom we can generalize.

The sample should be as large as a program can afford in terms of time and money. The larger the sample size (compared to the population size), the less error there is in generalizing responses to the whole population -- i.e., to all cases or clients in a program.
$1^{\text {st }}$ RULE OF THUMB: if the population is less than 100, include them all (and strive to get an $80 \%$ response rate); if the population is bigger than 100 select a probability sample. (See your guidebook for sampling strategies.)

Probability samples allow you to calculate the likely extent of the deviation of sample characteristics from population characteristics. Sampling Error is the term used to refer to the difference between the results obtained from the sample and the results obtained if data had been collected from the entire population.

The objective when drawing samples is to decrease sampling error and to assure confidence that the results are reliable. $2^{\text {nd }}$ RULE OF THUMB: a common standard for program evaluation is $95 \%$ confidence with a sampling error of $\pm 5 \%$. In English that means that you believe that 95 percent of the time the results from your sample, would be off by no more than $5 \%$ as compared to the results you would have gotten if you had collected data from everyone.

It is the absolute size of the sample rather than the ratio of sample size to population size that affects the sampling error (Comer and Welch, 1988, p. 192). Sample sizes for varying population sizes and differing sampling error rates have been calculated (see following page). If you wish for more precision use the following calculation (for $95 \%$ confidence, $5 \%$ error).

$$
n=385 \div((1+(385 / N))
$$

Example: If your population is known to have 472 members, then a sample of 212 would be necessary to ensure $95 \%$ confidence with no more than $5 \%$ error. $385 \div((1+(385 / 472))=212$

Sample Sizes (n) @ 95\% Confidence, with 3, 5 and 10\% Sampling Error Sampling Error
Population Size (N)

|  | $\pm 3 \%$ | $\pm 5 \%$ | $\pm 10 \%$ |
| ---: | ---: | ---: | ---: |
| 100 | 92 | $80(80 \%)$ | 49 |
| 250 | 203 | $152(61 \%)$ | 70 |
| 500 | 341 | $217(43 \%)$ | 81 |
| 750 | 441 | $254(34 \%)$ | 85 |
| 1,000 | 516 | $278(28 \%)$ | 88 |
| 2,500 | 748 | $333(13 \%)$ | 93 |
| 5,000 | 880 | $357(7 \%)$ | 94 |
| 10,000 | 964 | $370(4 \%)$ | 95 |
| 25,000 | 1,023 | $378(2 \%)$ | 96 |
| 50,000 | 1,045 | $381(<1 \%)$ | 96 |
| 100,000 | 1,056 | $383(<1 \%)$ | 96 |
| $1,000,000$ | 1,066 | $384(<1 \%)$ | 96 |
| $100,000,000$ | 1,067 | $384(<1 \%)$ | 96 |

* Adapted from Reisman, 2000, A Field-Guide to Outcomes-Based Program Evaluation
- As shown above, when a sample is comparatively large, adding cases provides little additional precision.
- As population sizes increase, the total size of the sample becomes proportionately smaller without affecting error.
- When the population size is small, relatively large proportions are required to produce reasonable error rates.
- A standard proportion (e.g., 33\%) will not work as a sampling strategy for varying population sizes.
- $\quad 3^{\text {rd }}$ RULE OF THUMB you must always draw a larger sample than what is planned for because of refusal. To do this, you need to estimate the refusal rate and then factor that into your calculation. Desired sample size $\div$ (1-refusal rate) $=$ TOTAL SAMPLE.

Anita Baker, Ed.D.

