Math 2371 Calc III Sample Test 3 - Solns

1.(i) Is the following vector field conservative?

$$
\vec{F}=<y z+3, x z+4 y, x y+3 z^{2}>
$$

If so, find the potential ϕ. Use this to evaluate

$$
\int_{c}(y z+3) d x+(x z+4 y) d y+\left(x y+3 z^{2}\right) d z
$$

where c is any path from $(0,0,0)$ to $(1,2,3)$.
Soln. Since $\nabla \times \vec{F}=0$ then yes, the vector field is conservative. Thus f exists such that $\vec{F}=\vec{\nabla} f$ so

$$
\begin{aligned}
& f_{x}=y z+3 \Rightarrow f=x^{2} y+A(y, z) \\
& f_{y}=x z+4 y \Rightarrow f=x^{2} y+y z^{2}+B(x, z) \\
& f_{z}=x y+3 z^{2} \Rightarrow f=y z^{2}+C(x, y)
\end{aligned}
$$

Therefore we see that

$$
f=x y z+3 x+2 y^{2}+z^{3}+c .
$$

(b) Evaluate the following where c is any path from $(0,0,0)$ to $(1,2,3)$.

$$
\int_{c}(y z+3) d x+(x z+4 y) d y+\left(x y+3 z^{2}\right) d z
$$

Soln.

$$
\int_{C}(y z+3) d x+(x z+4 y) d y+\left(x y+3 z^{2}\right) d z=x y z+3 x+2 y^{2}+\left.z^{3}\right|_{(0,0,0)} ^{(1,2,3)}=44
$$

1. (ii) Is the following vector field conservative? If so, find the potential ϕ

$$
\vec{F}=<2 x y, x^{2}+z^{2}, 2 y z>
$$

If so, find the potential ϕ. Use this to evaluate

$$
\int_{c} 2 x y d x+\left(x^{2}+z^{2}\right) d y+2 y z d z
$$

where c is any path from $(0,0,0)$ to $(1,2,3)$.
Soln. Since $\nabla \times \vec{F}=0$ then yes, the vector field is conservative. Thus f exists such that $\vec{F}=\vec{\nabla} f$ so

$$
\begin{array}{ll}
f_{x}=2 x y & \Rightarrow f=x^{2} y+A(y, z) \\
f_{y}=x^{2}+z^{2} & \Rightarrow f=x^{2} y+y z^{2}+B(x, z) \\
f_{z}=2 y z & \Rightarrow f=y z^{2}+C(x, y)
\end{array}
$$

Therefore we see that

$$
f=x^{2} y+y z^{2}+c
$$

(b) Evaluate the following where c is any path from $(0,0,0)$ to $(1,2,3)$.

$$
\int_{c} 2 x y d x+\left(x^{2}+z^{2}\right) d y+2 y z d z
$$

Soln.

$$
\int_{c} 2 x y d x+\left(x^{2}+z^{2}\right) d y+2 y z d z=x^{2} y+\left.y z^{2}\right|_{(0,0,0)} ^{(1,2,3)}=20
$$

2. Evaluate the following line integral $\int_{c} x y d s$ where c is counterclockwise direction around a circle of radius 1 from $(1,0)$ to $(0,1)$.
Soln. Here parameterize the circle of radius $r=1$ with $x=\cos t, y=\sin t$. Now

$$
\begin{equation*}
\frac{d x}{d t}=-\sin t, \quad \frac{d y}{d t}=\cos t \tag{1.1}
\end{equation*}
$$

so

$$
\begin{equation*}
d s=\sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t=\sqrt{\sin ^{2} t+\cos ^{2} t} d t=d t \tag{1.2}
\end{equation*}
$$

To evaluate the integral is to evaluate

$$
\begin{equation*}
\int_{0}^{\pi / 2} \cos t \sin t d t=\left.\frac{1}{2} \sin ^{2} t\right|_{0} ^{\pi / 2}=\frac{1}{2} \tag{1.3}
\end{equation*}
$$

3. Green's Theorem is

$$
\int_{C} P d x+Q d y=\iint_{R}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A .
$$

Verify Green's Theorem where $\vec{F}=<y^{2}, x^{2}+2 x y>$ where R is the region bound by the curves $y=x^{2}, y=1$ and $x=0$ in $Q 1$.

Soln. Again, we have three separate curves which we denote by C_{1}, C_{2} and C_{3}.
$C_{1}: \quad$ Here $y=x^{2}, d y=2 x d x$ so $\int_{0}^{1} x^{4} d x+\left(x^{2}+2 x^{3}\right) 2 x d x=3 / 2$
$C_{2}: \quad$ Here $y=1, d y=0$ so $\int_{1}^{0} d x=-1$
$C_{3}:$ Here $x=0, d x=0$ so $\int_{C_{3}} 0=0$
Thus $\int_{c} y^{2} d x+\left(x^{2}+2 x y\right) d y=3 / 2-1+0=1 / 2$.
Since $P=y^{2}$ and $Q=x^{2}+2 x y$ then $Q_{x}-P_{y}=2 x+2 y-2 y=2 x$ so

$$
\iint_{R}\left(Q_{x}-P_{y}\right) d A=\int_{0}^{1} \int_{x^{2}}^{1} 2 x d y d x=1 / 2
$$

4. Evaluate $\iint_{S} z d S$ where S is the surface of the paraboloid $z=1-x^{2}-y^{2}, z \geq 0$.

Soln. Since $z=1-x^{2}-y^{2}$ then $d S=\sqrt{1+z_{x}^{2}+z_{y}^{2}} d A=\sqrt{1+4 x^{2}+4 y^{2}} d A$ and so far we have $\iint_{R}\left(1-x^{2}-y^{2}\right) \sqrt{1+4 x^{2}+4 y^{2}} d A$ where the region of integration is the circle $x^{2}+y^{2}=1$. Switching to polar gives

$$
\int_{0}^{2 \pi} \int_{0}^{1}\left(1-r^{2}\right) \sqrt{1+4 r^{2}} r d r d \theta=\left(\frac{5 \sqrt{5}}{24}-\frac{11}{120}\right) 2 \pi
$$

5. Find the flux $\iint_{S} \vec{F} \cdot \vec{N} d S$ of the vector field $\vec{F}=<2 x, y, z>$ through the surface of the plane $x+y+z=1$ in the first quadrant.
Soln. The unit normal to the surface is given by $\vec{n}=\frac{<1,1,1>}{\sqrt{3}}$. For this surface $d S=$ $\sqrt{1+1+1} d A$ so

$$
\begin{aligned}
\vec{F} \cdot \vec{N} d S & =\iint_{S}\left\langle 2 x, y, z>\cdot \frac{<1,1,1\rangle}{\sqrt{3}} \sqrt{1+1+1} d A\right. \\
& =\iint_{S}(2 x+y+z) d A
\end{aligned}
$$

Bringing in the surface we obtain

$$
\int_{0}^{1} \int_{0}^{1-x}(x+1) d y d x=\left.\int_{0}^{1}(x+1) y\right|_{0} ^{1-x} d x=\int_{0}^{1}(x+1)(1-x) d x=x-\left.\frac{x^{3}}{x}\right|_{0} ^{1}=\frac{2}{3}
$$

