Word Problem Problems?

$$
\begin{gathered}
\text { K-5 Schema-Based } \\
\text { Instruction }
\end{gathered}
$$

Sarah R. Powell, Ph.D.

Associate Professor
The University of Texas at Austin

$x A+H$

Say hello.

What makes word problems so difficult for students?

GRADE 4 MATHEMATICS

Average scale scores, percentage , percentage , percentage , percentage and percentage for grade 4 mathematics, by All students jurisdiction: 1990, 1992, 1996, 2000, 2003, 2005, 2007, 2009, 2011, 2013, 2015, 2017, 2019, and 2022

SET BASELINE AT: \bigcirc at or above Basic at or above Proficient

Key words tied to operations is an ineffective wordproblem strategy.
(Karp et al., 2019; Powell et al., 2022)

Using a meta-cognitive strategy improves word-problem performance.
(Freeman-Green et al., 2015; Krawec et al., 2012; Montague et al., 2011; Swanson et al., 2014)

A focus on schemas improves word-problem performance. (Alghamdi et al., 2020; Cook et al., 2020; Flores et al., 2016; Fuchs et al., 2021; Griffin et al., 2019; Jitendra et al., 2013; Lein et al., 2020; Peltier et al., 2020; Powell et al., 2022; Xin \& Xhang, 2009; Zheng et
al., 2013)

1. Keywords tied to operations

Carmelita had 8 pencils fewer than Jenny. If Jenny had 18 pencils, how many pencils did Carmelita have?

Carmelita had 8 pencils fewer than Jenny. If Carmelita had 18 pencils, how many pencils did Jenny have?

Description of Single-Step Word Problems $(n=132)$

	Occurre		$\begin{array}{r} \mathrm{Al}^{2} \\ \text { keyv } \end{array}$		Sch spe keyw	afic $\mathrm{rds}^{\mathrm{a}}$			Keywor to co solu) led ct ${ }^{3}$
Schema	n	\%								
Total	27	20.5	26	96.3	23	88.5	5	19.2	21	80.8
Difference	17	12.9	17	100.0	14	82.4	2	11.8	12	70.6
Change	11	8.3	7	63.6	5	71.4	5	71.4	2	28.6
Equal groups	29	22.0	26	89.7	22	84.6	18	69.2	8	30.8
Comparison	10	7.6	9	90.0	9	100.0	4	44.4	5	55.6
Ratios or proportions	29	22.0	23	79.3	9	39.1	9	39.1	6	26.1
Product of measures	9	6.8	9	100.0	8	88.9	1	11.1	5	55.6
${ }^{3}$ When a problem featured a keyword.										

Description of Multi-Step Word Problems ($n=84$)

Schema	Occurrence of schema ${ }^{\text {a }}$		Any keyword		Keyword(s) led to correct solution ${ }^{\text {b }}$	
	n	\%	n	\%	n	\%
Total	40	47.6	39	97.5	3	7.7
Difference	11	13.1	11	100.0	1	9.1
Change	21	23.8	19	95.0	1	5.3
Equal groups	49	58.3	48	98.0	1	2.1
Comparison	7	8.3	7	100.0	0	0.0
Ratios or proportions	22	25.0	16	76.2	1	6.3
Product of measures	7	8.3	7	100.0	2	28.6

${ }^{3}$ Sum across schemas does not equal 100 because each word problem featured more than one schema.
${ }^{\text {b }}$ When a problem featured a keyword.

Keywords are important to identify and understand

Keywords are the mathematical vocabulary that help an students understand what the story is about and what they need to do

Talk about keywords ("What does more than tell you about?")

But, do not tie a keyword to a specific operation!

2. Presenting problems by operation

1. Noah had 12 books. He got 5 more bo did Nooh have in all?
2. Edward had 5 toy cars cars did Edward have
3. Mariela collected 11 fe How many feathers dic
4. Bonnie found 8 rocks on he backyard. How many rocly

5. Zookeeper Als
qual number ot 567 bananas. How mc How many are left ove

VISION BLEMS
onkey at the zoo an nonkeys in the 200 and ach monkey get? And ach monkey get? And
elfz elf? k them up equally ox and how much

Teach an attack strategy

Teach about schemas
x

WORD PROBLEMS

Attack Strategies

SO LVE
Study the problem
Organize the information
Line up a plan
Verify the plan
Examine the answer

$$
\begin{aligned}
& \text { UPS Check } \\
& \text { Understand }
\end{aligned}
$$

R-CUBES

Read the problem
Circle key numbers
Underline the question
Box action words
Evaluate steps
Solve and check

RIDE

Read the problem.
Identify the relevant information.
Determine the operation and unit for the answer.
Enter the correct numbers and calculate, then check the answer.

RICE

RIDGES

Read and record the problem. Illustrate your thinking. Compute.
Explain your thinking.
Read the problem.
I know statement.
Draw a picture.
Goal statement.
Equation development.
Solve the equation.

SUPER

Slowly read the story problem twice.
Underline the question and circle the numbers you need.
picture it. Draw the scenario to show what is happening. Explain the problem with a number sentence.
Rewrite the answer in a sentence.

STAR

SHINES

Slowly and carefully read the problem. Highlight or underline key information. Identify the question by drawing a circle around it.
Now solve the problem. Show your work.
Examine your work for precision, accuracy, and clarity.
Share your answer by writing a sentence.

Stop and read the problem carefully.
Think about your plan and
the strategy you will use.
Act. Follow your plan and solve
the problem.
Review your answer.

SOLVE

Study the problem.
Organize the facts.
Line up the plan.
Verify the plan with computation.
Examine the answer.

UPS
 Understand

Read and explain.

How will you solve the problem?

R-CUBES

Read the problem.

Circle key numbers.
Underline the question.
Box action words.
Evaluate steps.
Solve and check.

Solve
Set up and do the math!

\checkmark CHECK

Does your answer make sense?

Share your favorite attack strategy.

Teach an attack strategy

Teach about schemas
x

Total

Difference

Change

Equal Groups

Comparison

Ratios/Proportions

Schema and Definition	Equations and Graphic Organizers				Examples			Variations
Total (Combine; Part-partwhole) Parts combined for a sum	$P 1+P 2=T$ (part + part $=$ total)				Sum unknown: Lyle has 11 red apples and 18 green apples. How many apples does Lyle have altogether?	Part unknown: Lyle has 29 red and green apples. If 11 of the apples are red, how many green apples does Lyle have?		More than two parts: Lyle has 34 apples. Of the apples, 11 are red, 18 are green, and the rest are yellow. How many yellow apples does Lyle have?
Difference (Compare) Sets compared for a difference	$B-s=D$ (bigger - smaller = difference)		$G-L=D$ (greater - less $=$ difference) (greater)		Difference unknown: Sasha wrote 85 words in her essay, and Tabitha wrote 110 words. How many fewer words did Sasha write than Tabitha?	Bigger/greater unknown: Tabitha wrote 25 more words than sasha. If Sasha wrote 85 words, how many words did Tabitha write?	smaller/lesser unknown: Tabitha wrote 110 words in her essay. Sasha wrote 25 words fewer than Tabitha. How many words did sasha write?	(None)
Change (Join; Separate) An amount that increases or decreases	$S T+/-C=E$ (start $+/-$ change $=$ end)				End (decrease) unknown: Jorge had \$52. Then, he spent $\$ 29$ at the ballpark. How much money does Jorge have now?	Change (decrease) unknown: Jorge had $\$ 52$ but spent some money when he went to the ballpark. Now, Jorge has $\$ 23$. How much did Jorge spend at the ballpark?	Start (increase) unknown: Jorge has some money, and then he earned $\$ 16$ for babysitting. Now, Jorge has $\$ 68$. How much money did he have to start with? start (decrease) unknown: Jorge had some money. Then, he spent $\$ 29$ at the ballpark and has $\$ 23$ left. How much money did Jorge have before going to the ballpark?	Multiple changes: Jorge had \$78. He stopped and bought a pair of shoes for $\$ 42$ and then he spent $\$ 12$ at the grocery. How much money does Jorge have now?

Material collected from: Griffin \& Jitendra, 2009; Fuchs et al., 2014; Fuchs, Seethaler, et al., 2008; Fuchs et al., 2010; Jitendra, 2002; Kintsch \& Greeno, 1985; Van de Walle, Karp, \& Bay-Williams, 2013.

Total
Part-part-whole Combine

Parts put together into a total

Mandy saw 3 canoes and 8 kayaks. How many boats did Mandy see?

Mandy saw 11 boats. If 3 of the boats were canoes, how many were kayaks?

Mandy saw 11 boats. 8 of the boats were kayaks, how many were canoes?

Total

"Are parts put together for a total?"

Total

P1 + P2 $=$ T

Total

Share a Total problem.

Difference

Difference

Greater and lesser amounts compared for a difference

L'Tanya has 10 pencils. Vickie has 4 pencils. How many more pencils does L'Tanya have?

L'Tanya has 6 more pencils than Vickie. If Vickie has 4 pencils, how many does L'Tanya have?

Vickie has 6 fewer pencils than L'Tanya. L'Tanya has 10 pencils. How many pencils does Vickie have?

Difference

Greater amount

Lesser
amount

Total
"Are parts put together for a total?"

Difference
"Are amounts compared for a difference?"

Difference

$5 \rightarrow$

Difference

Difference

Share a Difference problem.

Change

Additive Word Problems

G.	
A plant was 3	$3 / 4$ inches tall at the beginning of

A plant was 3 Martina has some money in her bank account June. By the end of July, the plant was $91 / 8$ inch- Then, she spent $\$ 135.69$ and has a balance of es tall. How many inches did the plant grow in $2-\$ 24.80$. How much money did Martina have to

1. Hui saved $\$ 70$ in January. In February, she spent
$\$ 64$ of the money she saved. She saved $\$ 92$ more
in March. How much has Hui saved by the end of
March?

Change

An amount that increases or decreases

Annette had 6 notebooks. Then, she bought 3 notebooks. How many notebooks does Annette have now?

Annette had 6 notebooks. Then, she bought a few more notebooks. Now, Annette has 9 notebooks. How many notebooks did she buy?

Annette had some notebooks. Then, she bought 3

Change
amount

Start amount

Change

An amount that increases or decreases

Jenny baked 20 cookies. Then, she ate 3 of the cookies. How many cookies does Jenny have now?

Jenny baked 20 cookies. Then, she ate some of the cookies. Now, she has 17 cookies. How many cookies did Jenny eat?

Jenny baked some cookies. She ate 3 of the cookies and

Change amount

Start amount has 17 cookies left. How many cookies did Jenny bake?

Total
"Are parts put together for a total?"

Difference
"Are amounts compared for a difference?"

Change
"Does an amount increase or decrease?"
$1 x A+H$

Change
St $+1-C=$

Change

Additive Word Problems

G.	
A plant was 3	$3 / 4$ inches tall at the beginning of

A plant was 3 Martina has some money in her bank account June. By the end of July, the plant was $91 / 8$ inch- Then, she spent $\$ 135.69$ and has a balance of es tall. How many inches did the plant grow in $2-\$ 24.80$. How much money did Martina have to

1. Hui saved $\$ 70$ in January. In February, she spent
$\$ 64$ of the money she saved. She saved $\$ 92$ more
in March. How much has Hui saved by the end of
March?

Change

Share a Change problem.

Total

Difference

Change

Equal Groups

Comparison

Ratios/Proportions

Multiplicative Word Problems

J.	K.
Lola baked 6 pies. For each pie, Lola used 5 apples.	
How many apples did Lola use?	

\& in packs of 4. How many packs of light bulbs did\end{aligned}\) Jane buy?

Zachary has 3 feet of string. He makes braclets
Zachary has 3 feet of string. He makes braclets,
and each bracelet needs $51 / 4$ inches of string. How
many bracelets could Zachary make?

Groups multiplied by number in each group for a product

Mandy has 2 boxes. There are 6 muffins in each box. How many muffins does Mandy have?

Mandy has 12 muffins. They want to place them equally into 2 boxes. How many muffins will Mandy place in each box?

Mandy has 12 muffins. They put them into boxes with 6 muffins each. How many boxes did Mandy use?

Equal Groups
"Are there groups with an equal number in each group?"

Equal Groups

$$
\begin{aligned}
& G R \times N=P \\
& G R \times E=P
\end{aligned}
$$

$\times A+1 \dot{1}$

Multiplicative Word Problems

J.	K.
Lola baked 6 pies. For each pie, Lola used 5 apples.	
How many apples did Lola use?	

\& in packs of 4. How many packs of light bulbs did\end{aligned}\) Jane buy?

Zachary has 3 feet of string. He makes braclets
Zachary has 3 feet of string. He makes braclets,
and each bracelet needs $51 / 4$ inches of string. How
many bracelets could Zachary make?

Equal Groups

Share an Equal Groups problem.
$x A+1 \dot{1}$

Comparison

M.	N.
Enrique has 2 times as many pencils as Ava. Ava	Susan has 7 times as many books as Mo. Mo has 18

Enrique has 2 times as many pencils as Ava. Ava
has 6 pencils. How many pencils does Enrique have?

Comparison

Set multiplied by a number of times for a product

Joan ran 6 minutes. L'Tanya ran 4 times longer than Joan. How many minutes did l'Tanya run?

Equal Groups

"Are there groups with an equal number in each group?"

Comparison
"Is a set compared a number of times?"

Comparison

(set)

Comparison

M.	N.
Enrique has 2 times as many pencils as Ava. Ava	Susan has 7 times as many books as Mo. Mo has 18

Enrique has 2 times as many pencils as Ava. Ava
has 6 pencils. How many pencils does Enrique have?

Comparison

Share a Comparison problem.

Total

Difference

Change

Equal Groups

Comparison

Ratios/Proportions

Mr. Abdul has a Ferrari, but Mr. Stark has 75 times more Ferraris than him. Who is cooler than Mr. Abdul?
Total Difference
Change

> For a three day walk a thon, Mekhi walked 1.5 miles on Monday, 4 miles on Tuesday, and 2.5 on Wed. What was the total that Mekhi walked during the 3 days?

There are 72 students in fifth grade. Each student has three notebooks. How many notebooks do all fifth grade students have all together?

Mrs. Smith's class had 4 more students than Mr. Bell's class. Mr. Bell's class has 19 students. How many students are in Mrs. Smith's class?

Martha had $\$ 62$ in her checking account. She then made a withdrawal of $\$ 15$. How much money is in her account now?

WORD PROBLEMS
What are your strengths?

What are your plans for next Monday?
Next month?
Next year?

https://intensiveintervention.org

National Center on
INTENSIVE INTERVENTION
at American Institutes for Research

Intensive	Tools	Implementation	Intervention	Information
Intervention ₹	Charts v	Support -	Materials ~	For... •

Intensive Intervention in
 Mathematics Course Content

NCII, through a collaboration with the University of Connecticut, developed a set of course content focused on developing educators' skills in designing and delivering intensive mathematics instruction This content is designed to support faculty and professional development providers with instructing p

MODULE 5: INTENSIVE MATHEMATICS INTERVENTION: INSTRUCTIONAL STRATEGIES service and in-service educators who are developing and/or refining their implementation of intensive mathematics intervention.

> Intensive instruction was recently identified as a high-leverage practice in special educations , and DBI is a research based approach to delivering intensive instruction across content areas (NCII, 2013). This course provides learners with an opportunity to extend their understanding of intensive instruction through in-depth exposure to DBI in mathematics, complete with exemplars from actual classroom teachers.

> NCII, through a collaboration with the University of Connecticut and the National Center on Leadership in Intensive Intervention and with support from the CEEDAR Center『, developed course content focused on enhancing educators' skills in intensive mathematics intervention. The course includes eight modules that can support faculty and professional development providers with instructing pre-service and in-service educators who are learning to implement intensive mathematics intervention through data-based individualization (DBI). The content in this course complements concepts covered in the Features of Explicit Instruction Course and so we suggest that users complete both courses.

Instructional Routines for
 Mathematics Intervention

The purpose of these mathematics instructional routines is to provide educators with materials to use when providing intervention to students who experience difficulty with mathematics. The routines address content included in the grades 2-8 Texas Essential Knowledge and Skills (TEKS). There are 23 modules that include routines and examples - each focused on different mathematical content. Each of the 23 modules include vocabulary cards and problem sets to use during instruction. These materials are intended to be implemented explicitly with the aim of improving mathematics outcomes for students.

TH

https://spedsupportstage.tea.texas.gov/resource-library/instructional-routines-mathematics-intervention
https://ies.ed.gov/ncee/wwc/PracticeGuide/26

Sarah R. Powell, Ph.D.

Associate Professor
The University of Texas at Austin

$x A+H$

