
IJRECE VOL. 6 ISSUE 3 (JULY - SEPTEMBER 2018) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 2110 | P a g e

AN ANALYSIS OF DIFFERENT CODE SMELL

APPROACHES WITH EGAPSO APPROACH
 1Mr.S.James Benedict Felix, M.Sc., M.Phil., (Ph.D), 2Dr.Viji Vinod

1Research Scholar, Bharathiar University, Coimbatore – 641046, India.
2Professor & Head, Department of Computer Applications, Dr.MGR Educational and Research Institute

University, Chennai – 600095, India.

Abstract— Software maintenance is an important

component of any software that discovers its use in the day-to-

day activities of any organization. Software maintenance is a

difficult process if code smells exist in the software. The

impact of the poor design of code is called code smells.

Majority of the code smell detection approaches are rule-

based, where rule-based approaches represent the combination

of metrics and threshold. In this approach, rules are defined

and detect the code smells are time to consume because

identifying the accurate threshold value is a tedious job. For

this issue, Euclidean distance based Genetic Algorithm and

Particle Swarm Optimization (EGAPSO) approach is used.

The approach is tested on the open source projects, likely

Gantt Project and Log4j for identifying the five code smells

namely Functional Decomposition, Blob, Spaghetti Code,

Data Class and Feature Envy. Finally, this approach is

compared with code smell detection using Genetic Algorithm

(GA), DEtection and CORrection (DECOR), Parallel

Evolutionary Algorithm (PEA) and Multi-Objective Genetic

Programming (MOGP).

Keywords— Code smell, Software metrics, EGAPSO

I. INTRODUCTION

Software evolution and maintenance makes high costs of

the development process, particularly as systems become more

complex and larger. Software maintenance and evolution

process is difficult in the structural design. These software

design problem is known as code smells. The most of the code

smells detection approaches are in the code level [1–5]. Code

smell detection in the model level is very difficult as all the

metrics are not supported in model level [6]. In rule-based

approach, code smells cannot be detected because finding the

right threshold value of the metrics is a tedious task. To be

precise, a class may be considered as a large class in a program

can be an average class in some other program. The EGAPSO

is compared with the code smell detection approaches namely

genetic algorithm (GA), DEtection and CORrection (DECOR),

Parallel Evolutionary Algorithm (PEA) and Multi-Objective

Genetic Programming (MOGP).

II. BACKGROUND AND PROBLEM STATEMENT

This segment provides the essential background material

used for the detection of code smells. The basic definition of

code smells, what are the metrics used for code smell detection

and EGAPSO are discussed below:

A. Code smell

Code smells are first defined by Fowler and Beck. They

defined code smells as the symptoms of code and design

problems [9]. In this paper, the below five code smells were

considered and evaluated.

Blob: The code smell Blob is found in designs where one

large class monopolizes the behaviour of a system. It is a large

class that has several fields and methods with low cohesion and

most of the class does not have parent class and children. It is a

class which implements various responsibilities and has the

large size.

Functional Decomposition (FD): It occurs when a class is

designed with the intent of performing a single function. The

code smell FD will find in a class, when inheritance and

polymorphism are poorly used. This kind of code smell may

find in class diagram which is developed by non-experienced

object-oriented developers.

Data Class (DC): DC is a class that has only data. It does

not have any processing on the data. Data class is having state

and does not perform any operation. The getter and setter

methods are defined by this class.

Feature Envy: This code smell occurs when a method get

fields of another method in some other class than the one it is

actually implemented in. It is described by a large number of

dependencies. It increases the coupling and reduces the

cohesion of the class.

Spaghetti Code: This kind of code smell occurs when the

code does not use suitable structuring mechanism. It prevents

the use of object-oriented mechanisms, namely inheritance, and

polymorphism. Typically causes by Inexperience design with

object-oriented technologies.

B. Software Metrics

Software metrics gives useful information that facilitates

assesses the quality of the software [10]. It can also be used to

identifying the similarities between the software systems. Here,

ten metrics are considered and these metrics are interrelated to

the class entity in the class diagram. The metrics give

information about the number of attributes and methods in the

class diagram except NAss and Ngen. The metrics NAss and

Ngen gives the relationship between classes. The description of

metrics is listed in Table I.

IJRECE VOL. 6 ISSUE 3 (JULY - SEPTEMBER 2018) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 2111 | P a g e

TABLE I. METRICS DESCRIPTION

S.NO Metrics Description

1 NA The total number of attributes per class

2 NPvA The total number of private attributes per class

3 NpbA The total number of public attributes per class

4 NprotA The total number of protected attributes per class

5 NM The total number of methods per class

6 NPvM The total number of Private methods per class

7 NPbM The total number of Public methods per class

8 NprotM The total number of Protected methods per class

9 NAss The total number of Associations

10 Ngen The total number of Generalization relationships

III. EUCLIDEAN DISTANCE BASED GENETIC ALGORITHM AND

PARTICLE SWARM OPTIMIZATION (EGAPSO)

The EGAPSO is a population-based heuristic search

optimization algorithm and it was developed by Kim and Park.

The EGAPSO is a hybrid approach of Genetic Algorithm (GA)

and Particle Swarm Optimization (PSO) [8] which is based on

Euclidean distance. This algorithm is used to tune the

proportional integral derivative (PID) controller in a steam

temperature control system of the thermal power plant,

biomedical process and industrial system of the chemical

process [7]. Each particle in EGAPSO is called as individuals

and a group of particles are called as a swarm. In the swarm,

each particle has its own position and its velocity. In the

beginning, the particles are placed at random positions in the

search space. The velocity of the particle is represented as zero.

The position of the particle and its velocity can be updated

using the following formula.

ʋi (t +1) ω ʋi (t) + c1r1(pbest(t) – xi (t)) +

c2r2(gbest(t) ----------- (1)

xi (t+1) xi (t) + ʋi ----------- (2)

In the Equations (1) and (2),

xi (t) and xi (t+1) represent the position of the particle

at the time (t) and time (t + 1), respectively. ʋi (t) is the velocity

of the particle at time (t).

 pbesti(t) is the best position of the particle found.

 gbesti(t) is the global best position of the particles, c1

and c2 are the acceleration coefficients that influence the best

position of the particles.

r1 and r2 are the random variables and x represents

the inertia weight of the particles.

The position of a particle is lead by local best (pbest)

and global best (gbest) factors in the search process. The best

visited position for the particle by itself is the factor local best

(pbest) and it arrives at the best position obtained so far by any

particle in the neighborhood is global best (gbest).

IV. A SEARCH BASED APPROACH FOR DETECTING CODE

SMELLS

In this paper, the EGAPSO approach examines detect the

code smells, namely blob, data class, spaghetti code,

functional decomposition and feature envy. The quality focus

is the detection accuracy on code smells when compared to the

GA approach, while the perspective is of other researchers,

who want to evaluate the effectiveness of the approach in

identifying code smells to build better recommenders for

developers. The context of the study consists of three open

source projects, like Gantt-Project, Log4j, and Xerces-J. Gantt-

Project is a cross-platform tool for project scheduling. Log4j is

a software package of Java-based. Finally, Xerces-J is a

software package for parsing XML. Gantt-Project and Log4j

are usually called the initial model and Xerces-J is used as the

base example.

A. Precision

Precision signifies the fraction of correctly detected code

smells over the detected code smells. From the value of the

precision, someone can infer the probability that the detected

code is accurate.

Precision ={ (Relevant Code Smells) ∩ (Detected Code

Smells) } / (Detected Code Smells)

B. Recall

Recall represents the fraction of correctly detected code

smells in the set of manually detected code smells to find out

how many code smells have not been missed. From the value

of recall, one can infer the probability that an expected code

smell is detected.

Recall = {(Relevant Code Smells) ∩ (Detected Code

Smells) / (Relevant Code Smells)

C. Average number of defects detected

 Average Number of Defects Detected (ANDD) is

equivalent with the fraction of the defects detected by the

approach over by the number of defects that are actually

present.

Average Number of Defects Detected=Number of defects

detected / Number of defects actually present

D. Fmeasure

Fmeasure is defined as the harmonic mean of precision and

recall.

Fmeasure = 2* |Precision * recall / Precision + recall| %

IJRECE VOL. 6 ISSUE 3 (JULY - SEPTEMBER 2018) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 2112 | P a g e

Experimental setup - For the code smell detection approach,

three open source software are reused namely GanttProject,

Log4j, and Xerces-J. In this approach, the initial models are

GanttProject, Log4j. Xerces-J is the base example. First

metrics are computed from the initial model using UML

generator plugin in Netbeans. After that code smells are

detected from the base example. Lastly, the code smells in the

initial model are detected using EGAPSO. Open source

software including a number of classes and the number of

detected code smells are listed in Table II. Table III described

the parameter of EGAPSO and GA.

TABLE II. CODE SMELL PRESENT IN GANTTPROJECT.
S.No Code Smells Gantt project Log4j.

1 Number of classes 245 227

2 Number of blobs 10 3

3 Number of data class 10 5

4 Number of functional decomposition 17 11

5 Number of feature envy 11 2

6 Number of spaghetti code 16 8

TABLE III. PARAMETER SETTING OF EGAPSO AND GA.

S.No Algorithms Parameters Values

1

EGAPSO

Population size

Number of generations

100

500

2

GA

Population size

Number of generations

100

500

TABLE IV. PRECISION AND RECALL VALUES FOR GA.

S.No Open Source

Software

Defects Precision

(%)

Recall

(%)

ANDD

(%)

F measure

(%)

Specificity

(%)

AUC

(%)

1

Gantt Project

Blob
Functional

Decomposition

Feature Envy
Data Class

Spaghetti code

100
100

100
90

90

90
47

81
88

62

90
47

82
100

68

94
64

90
90

74

100
100

100
99

99

95
73

90
93

81

2

Log4j

Blob
Functional

Decomposition

Feature Envy
Data Class

Spaghetti code

100
100

50
75

80

97
63

47
60

50

100
64

100
80

62

100
77

50
66

61

100
100

99
99

99

99
82

73
80

75

TABLE V. PRECISION AND RECALL VALUES FOR EGAPSO.

S.No Open Source

Software

Defects Precision

(%)

Recall

(%)

ANDD

(%)

F measure

(%)

Specificity

(%)

AUC

(%)

1

Gantt Project

Blob

Functional

Decomposition

Feature Envy

Data Class

Spaghetti code

100

100

100

100

100

95

76

82

98

81

100

76

82

100

81

100

86

100

90

94

100

100

100

100

100

98

98

91

99

91

2

Log4j

Blob

Functional

Decomposition
Feature Envy

Data Class

Spaghetti code

100

100

100

80

83

97

81

97

77

62

100

81

100

100

75

100

89

100

80

71

100

100

100

99

99

99

91

99

88

81

IJRECE VOL. 6 ISSUE 3 (JULY - SEPTEMBER 2018) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 2113 | P a g e

V. A SEARCH BASED APPROACH FOR DETECTING CODE

SMELLS

The evaluation of EGAPSO approach was performed on the

open-source system, namely GanttProject, Log4j, and Xerces-J.

The initial models are Gantt Project and Log4j. The Xerces is a

base example. First, the metrics are calculated from the initial

model and base example, then the code smells are detected

from the base example using code smell detection tool

(infusion). Then with the help of EGAPSO approach, the code

smells are identified from the open source project. The

EGAPSO approach can recognize the code smells namely blob,

Functional decomposition, Feature envy, Data class and

Spaghetti code. These code smells are more accurately when

compared with the approach of Genetic Algorithm (GA).

 The measures precision, recall, average number of

defects detected (ANDD), Fmeasure and area under the ROC

curve (AUC) have been calculated for the accuracy of

EGAPSO approach. The computed values of all the

measurement for genetic algorithm and EGAPSO are listed in

Table-IV and V.

TABLE VI. COMPARISON OF PRECISION VALUES FOR THE CODE SMELL DETECTION APPROACHES WITH EGAPSO APPROACH.

Open Source

Software

Defects Precision of

EGAPSO(%

Precision of

GA(%)

Precision of

DECOR(%)

Precision of

PEA(%)

Precision of

MOGP(%)

Gantt

Project

Log4j

Blob

Functional -
Decomposition

Blob
Functional -

Decomposition

100

100

100

100

100

88

100

100

90

26.7

100

54.5

93

88

82

93

83

77

--

--

To further analyze the effectiveness of the proposed approach,

the precision of the EGAPSO approach is compared to the

other state of the art approaches such as GA (Ghannem et al.,

2016), DECOR [11], PEA [12] and MOGP [13] using

precision values mentioned in TableVI. The precision values

for the state of the art approaches in TableVI are obtained

directly without implementation from these works. The

comparison of the approach EGAPSO over the existing GA in

terms of precision, recall, average number of defects detected

and Fmeasure values reveals the efficiency and accuracy of the

EGAPSO over the GA.

VI. CONCLUSION AND FUTURE WORK

Using the EGAPSO approach, five code smells namely blob,

functional decomposition, feature envy, data class and

spaghetti code has been detected from the open source software

namely Gantt Project and Log4j. The advantage of the

approach is to identify the code smells present in the model

level of the open sources. At the same time, most of the

existing approaches cannot be used for identifying code smells

present in the model level of the software. The approaches

EGAPSO and GA are evaluated code smells and the results

revealed the completeness and correctness of EGAPSO over

the existing Genetic Algorithm. The EGAPSO approach is also

increased the average precision, recall, average number of

defects detected and Fmeasure over the existing approach. In

future, EGAPSO approach will be applied to other open source

projects.

VII. REFERENCES

[1] H. AliKacem, H. Sahraoui, De´tection D’anomalies

Utilisant UnLangage De Description De Re`gle De Qualite´ ,

in: Actes Du 12e Colloque LMO, 2006, pp. 185–200.

[2] K. Erni, C. Lewerentz, Applying Design-Metrics to

Object- Oriented Frameworks, in: Proceedings of the 3rd

International Software Metrics Symposium, IEEE, 1996, pp.

64–74.

[3] G. El Boussaidi, H. Mili, Understanding design

patterns—what is the problem?., Software: Practice Experience

42 (12) (2012) 1495–1529.

[4] R. Marinescu, Detection strategies: metrics-based rules

for detecting design flaws, in: Proceedings of the 20th IEEE

International Conference on Software Maintenance (ICSM),

2004, pp. 350–359.

[5] M. Kessentini, H. Sahraoui, M. Boukadoum, M.

Wimmer, Search-based design defects detection by example,

in: Proceedings of the 14th International Conference on

Fundamental Approaches to Software Engineering: Part of the

Joint European Conferences on Theory and Practice of

Software, Springer, (Saarbru¨Cken, Germany), 2011, pp. 401–

415.

[6] H. Kim, J. Park, Improvement of genetic algorithm

using PSO and Euclidean data distance, Int. J. Inf. Technol. 12

(3) (2006) 142–1487

 [7] M. Harman, L. Tratt, Pareto optimal search based

refactoring at the design level, in: Proceedings of the 9th

IJRECE VOL. 6 ISSUE 3 (JULY - SEPTEMBER 2018) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 2114 | P a g e

Annual Conference on Genetic and Evolutionary Computation,

ACM, London, England, 2007, pp. 1106–1113.

 [8] D.E. Goldberg, Genetic Algorithms in Search,

Addison-Wesley, Optimization and Machine Learning, 1989.

[9] M. Fowler, K. Beck, J. Brant, Refactoring: improving

the design of existing code, in: Proceeding of the Second XP

Universe and First Agile Universe Conference on Extreme

Programming and Agile Methods, Springer, 1999, p. 256.

[10] N.E. Fenton, S.L.Pfleeger, Software Metrics: A

Rigorous and Practical Approach, PWS Publishing Co.,

Boston, MA, 1998.

 [11] N. Moha, Y.G. Gueheneuc, L. Duchien, A.F. Le

Meur, DECOR: a method for the specification and detection of

code and design smells, Software Eng., IEEE Trans. 36 (1)

(2010) 20–36

[12] W. Kessentini, M. Kessentini, H. Sahraoui, S.

Bechikh, A. Ouni, A cooperative parallel search-based

software engineering approach for code-smells detection, IEEE

Trans. Software Eng. 40 (9) (2014) 841–861.

[13] U. Mansoor, M. Kessentini, B.R. Maxim, K. Deb,

Multi objective code-smells detection using good and bad

design examples’, Software Quality J. (2016) 1–24.

