Setting the Standard for Automation™

Vibration Monitoring System

Forbes Marshall Pvt. Ltd.

ISA-D: "Fertiliser, Food and Pharma Symposium-2023" Copyright 2022. ISA. All rights reserved. www.isadelhi.org

Agenda

- Brief Introduction
- Basic and benefits for growth
- Offering range meeting the industrial need
- Q&A

Brief Introduction

- 1926 : Company Started
- 5 Manufacturing Facilities in India.
- 300+ Engineering Products & Solutions.
- 1515 Trained Professionals with 300 Sales & Services Engineers.
- 90 R&D Professionals.
- 3 Joint Venture Companies.
- 15000+ Customers in India & Globally.

Process automation & control instrumentation

Flow & Level

Flow Meters : Magnetic , Ultrasonic, Mass Flow, Variable Area & Vortex. Level : Radar, Magnetic, Ultrasonic & Vibration. Valves

Control & Process Valves, Safety Valves, DeSuperheater, Stop and Check Valves, High Pressure Valves, Turbine Bypass Valves

Emission Monitoring

Insitu CO,SO2, Nox Gas Monitors & Dust Monitors for Online stack Emission Monitoring

Vibration Monitoring

Vibration Sensors Monitoring System Analysis & Diagnosis Software Vibration Audit Services.

M/s Shinkawa Electric Co. Japan

- 75 Year Old Company
- API Task Force Member (API-670)
- Exclusively Represented in India by Forbes Marshall Pvt Ltd.

Basic, Benefits for Growth

Approvals

- PDIL
- EIL
- IFFCO Kalol
- CCOE

	PUR/Vendor Reg/2012/	03 SEP 2013	SUIIIORACE (जाना) इंडिया लिम्टिड (शहर सरकार का उपक्रम) पंथीवन क्षेत्रीवर्ष इंडिया भर, 1, क्षेत्र Red Office : Englacers Inda Sinova, 1, क्षेत्र Procurement Developme	NUNEERS DIA LIMITED ारंग of India Undertaking) एप्री कामा परेल, नई दिल्ली 110056 (Jama Piloca, New Dehi-110055 nt Department
PNMMREGN P3452 Date: 07-04-2016 Mrs SHINKAWA ELECTRIC COMPANY LTD. 3700 FLOOR, SHINKAJIMACHI BLDO,3-3 KAJON TOKYO 1020083 JAPAN Subject: VENDO Dear Sirs, We are pleased to inform you that you have be item(s) described below : TEM CODE ITEM DESCRIPTION 310001 MACHINE MONITORING SYSTEM This enlistment is valid for your facility at : SHINKAWA SENSOR TECHNOLOGY INC., HIGASHI-HIROSHIMA, HIROSHIMA 739015 Please refer the above reference number in a above mentioned items when ordered for our Further, it may be noted that any change in Management/Organisation structure etc. shal documents for our necessary action. In case, not inimated timely, the enlistment with us, This registration is valid til 07-04-2021. Yoi revalidation of your engistration with us, failing Thanking You. Yours faithfully, (P.N. SAH) Addl.General Manager(MM)	A - 3435 H - BLOCK, MI D C INDUSTRIAL ESTATE, PIMPRI, PUNE MAHARASHTRA 411018 Dear Vendor Please refer to your application for Registration with Mis. Indian Farmers We are pleased to inform you that on the basis of documents internal, vendor evaluation IFFCO-Kalol has registeredner supplier/service provider with effect from the date of issue of this below: Supplier Code 223831 Supplier Site Name PUNE List of Categories: H31-KALOL PH/CONDUCTIVITY SIMULTOR H31-KALOL VIBRATION MONITORING SYSTEM Tr46-KALOL SAFETY RELIEF VALVES - NON CRITICAL M593-KALOL SAFETY RELIEF VALVES - NON CRITICAL M593-KALOL SAFETY RELIEF VALVES - NON CRITICAL M593-KALOL STEAM TRAP- CRITICAL APPLICATION (IMI T104-KALOL DESUPERHEATER SYSTEM : DESIGN AND This Supplier Code should be quoted on all future corresponderce The RFQs/Enquiries are floated _ON-LINE, only. You have to visit against our e-proc lender, whenever the RFQ is placed on you. through e-mails & SMS which are registered with us. The E-proc Kalol and 011-42592728 for New Delhi. anous projects: the product range, location of Works / Sales office, be intimated to us immediately along with relevant nformation to any of the above referred changes is is liable to be cancelled. Your performance shall be with PDIL. Enlistment with PDIL shall not guarrantee any a shall contact us at least 180 days in advance for which ,your name may be deleted from our vendors list.		Ref. 4994/PDDF/RE/SB14 Mits Sinkawa Elactic Company Lid. Sinkojmach Elag. 3° 4-33 (kg-maj) Chyoda-Ku: Wits Sinkawa Elactic Company Lid. Sinkojmach Elag. 3° 5000000000000000000000000000000000000	Interview 14th March, 2016 Int with ELL It inform that your enlistment with ELL It is inform that your enlistment with ELL It is inform that your enlistment with ELL Remarks Ingineering & Supply to be done by and Electric - Japan ensor Technology Inc. 4-22 Yoshkawa- It is inform the electric - Japan is of orders in delivery and quality of It is some referred changes is not in of orders in delivery and quality of It is some referred changes is not wrise. It is some referred changes is not wrise. It is be supplied strictly as per esponsibility matrix, if applicable, failing before expiry of the enlistment. Detailed It is the supplied strictly as per esponsibility matrix. before expiry of the enlistment. Detailed It is the supplied strictly as per esponsibility matrix. before expiry of the enlistment. Detailed It is the supplied strictly as per esponsibility matrix. changement data com It is the supplied strictly as per esponsibility matrix. changement data com It is the supplied strictly as per esponsibility matrix. changement data com It is the supplied strictly as per esponsibility. changement data com It is the supplied strictly as per esponsibility. stringement data com It is the supplied strict

API-670 Parameters

Te	emperature		Accuracy Requirements as a Funct	ion of Temperature				
Components Testing Operating Range Range			Within Testing Range	Outside Testing Range but Within Operating Range				
Proximity probes	0°C to 45°C (32°F to 110°F)	–35°C to 120°C (–30°F to 250°F)	Incremental Scale Factor: ± 5% of 7.87 mV/µm (200 mV/mil)	Incremental Scale Factor: An additional ±5% of the testing range accuracy				
Extension cables	0°C to 45°C (32°F to 110°F)	–35°C to 65°C (–30°F to 150°F)	Deviation from Straight Line: within ±25.4 μm (±1 mil) of the best fit straight line at a slope of 7.87 mV/ μm (200 mV/mil)	Deviation from Straight Line: within ±76 μm (±3 mils) of the best fit straight line at a slope of 7.87 mV/μm (200 mV/mil)				
Oscillator-demodulators	0°C to 45°C (32°F to 110°F)	–35°C to 65°C (–30°F to 150°F)	Minimum linear range: 2 mm (80 mils)	Minimum linear range: same as for testing range				
Accelerometers and accelerometer extension cables	20°C to 30°C (68°F to 86°F)	–55°C to 120°C (–65°F to 250°F)	 Principal Axis Sensitivity: 100 mV/g ±5% Amplitude Linearity: 1% from 0.1 g pk to 50 g's pk Frequency Response: ±3 dB from 10 Hz to 10 kHz, referenced to the actual measured principal axis sensitivity. 	Principal Axis Sensitivity: 100 mV/g ±20%				
Temperature sensors and leads	0°C to 45°C (32°F to 110°F)	–35°C to 175°C (–30°F to 350°F)	±2°C (±4°F) over a measurement range from –20°C to 150°C (0°F to 300°F)	±3.7°C (±7°F) over a measurement range from –20°C to 150°C (0°F to 300°F)				
Monitor system componen	ts for measuring			1				
Radial Vibration, Axial Position, Piston Rod Drop, and Casing Vibration	0°C to 45°C (32°F to 110°F)	-20°C to 65°C (0°F to 150°F)	±1% of full scale range for the channel	Same as for testing range				
Temperature	1		±1°C (±2°F)	Same as for testing rang				
Speed and Over speed]			Same as for testing range				

For Low Duty Machines

For Heavy Duty Machines

Zuary Agro Goa

Name of Machines: Syngas & Ammonia Compressor, TG Sets, Carbamite Pump (Old Monitor Replacements) Products: SEC FK series, CA & CV series Sensors, VM-7B Monitor

Key Factors :

Step 1 : Kept Old Sensors intact and installed Monitoring System

Step 2 : Replaced Old Sensors with New API670 Sensors including Ammonia Applications.

Zero Failures at Ammonia Probe since last 7 Years

Kribhco Surat

Name of Machines : Ammonia Compressors – 2 Sets

(Old Monitors Replacements)

Products : SEC FK series, CA & CV series Sensors , VM-7B Monite Key Factors :

Replaced Old Sensors with New API670 Sensors & Monitoring L

Running Successfully since 2011.]

हमवक भारती को आपरेटिव लिमिटेड (10 58) (खा. कृष्णको नगर, माल-204 डाइ. (गुवाल) भारत (RISHAK BHARATI COOPERATIVE LIMITED (RISHAK BHARATI COOPERATIVE LIMITED (RISHAK BHARATI COOPERATIVE LIMITED) (RISHAK BHARATI SIS. (खाअवत्रा) INDIA	51) 2862763, 2862766 to 68 2361-2861500 0261-2860283 สตโ-สูชิส / KRIBHCO-SURA1 ah_db@kribhcosurat.com
10. KRIBHCO NAGAR, SUMAINSTUTIET AILED OR DER FOLLOWS Purchase Depth.) C.S. DEJAILED OR DER FOLLOWS	
PURCHASE ORDER	
$ \begin{array}{c} \text{M/s. SHINKAWA ELECTRIC CO. LTD.,} \\ \text{SHINKOMACHI BUILDING,} \\ \text{SF, 4-3-3 KOII-MACHI, CHIYODA-} \\ \text{KU, TOKYO} \\ \text{JAPAN} \begin{array}{c} \mathcal{F}_{4x} + \mathcal{S}_{1} - 3 - 3262 - 2171 \\ \mathcal{F}_{4x} + \mathcal{S}_{1} - 3 - 3263 - 4417 \end{array} \end{array} $	0. SHOULD APPEAR IN DICE, PACKING LIST,
	IS ON EACH
MOM between M/K K-ikho Anna a tha a	
Prine at Kribheo – Surar on 23rd Nov 2011.	
Members present:	1
KRIBIICO FORBS MARSHAL	1.8
Mr. C.J.SHAH Mr. Manoj Wagh	
Mr. S D Puranik	360.00
Reference: Commissioning of Vibration monitoring system using Shinkawa	AIRPORT
make Model VM-7B supplied against W.O. no.: HP/22/0824/CE-0140/ WO 21809 dtd. 2.2.2011.	OW DATE OF P.O. OULD BE ITHOUT IMP.LIC.
 make Model VM-7B supplied against W.O. no.: HP/22/0824/CE-0140/ WO 21809 dtd. 2.2.2011. 1. Forbes Marshall representative Manoj Wagh reached site on 22rd Nov-2011. 	OM DATE OF P.O. OULD BE /ITHOUT IMP.LIC. ure-II
 make Model VM-7B supplied against W.O. no.: HP/22/0824/CE-0140/ WO 21809 dtd. 2.2.2011. I. Forbes Marshall representative Manoj Wagh reached site on 22nd Nov-2011. During shut-down, Kribhce has installed & terminated Vibration Monitoring rack VM7B & Display in Ammonia-1 plant on anomous compressor 105 1 	OM DATE OF P.O. OULD BE ITTHOUT IMP.LIC. are-II
 make Model VM-7B supplied against W.O. no.: HP/22/0824/CE-0140/ WO 21809 dtd. 2.2.2011. 1. Forbes Marshall representative Manoj Wagh reached site on 22nd Nov-2013. 2. During shut-down, Kribhee has installed & terminated Vibration Monitoring rack VM7B & Display in Ammonia-1 plant on anomoula compressor 105 J. 3. Configuration of VM-7H was checked, modified & verified as per documentation & customer's need. 	OM DATE OF P.O. OULD BE ITHOUT IMP.LIC. wre-II recifications and be part of this P.O.
 make Model VM-7B supplied against W.O. no.: HP/22/0824/CE-0140/ WO 21809 dtd. 2.2.2011. I. Forbes Marshall representative Manoj Wagh reached site on 22nd Nov-2011. During shut-down, Kribhco has installed & terminated Vibration Monitoring rack VM7B & Display in Annuonia-1 plant on anamoula compressor 105 J. Configuration of VM-7H was checked, modified & verified as per documentation & customer's need. Simulation tests were carried out on all vibration, axial & speed measurements channels and also simulated test were made successfully to check alarme & hipping as per requirements. System is commissioned and now working satisfactorily. 	OM DATE OF P.O. OULD BE ITHOUT IMP.LIC. wre-II recifications and be part of this P.O. CO-OPERATIVE LT
 make Model VM-7B supplied against W.O. no.: HP/22/0824/CE-0140/ WO 21809 dtd. 2.2.2011. Forbes Marshall representative Manoj Wagh reached site on 22nd Nov-2011. During shut-down, Kribhce has installed & terminated Vibration Monitoring rack VM7B & Display in Ammonia-1 plant on annoula compressor 105.1, Configuration of VM-7H was checked, modified & verified as per documentation & castonter's need. Simulation tests were carried out on all vibration, axial & speed measurements ohtamels and so simulated test were made successfully to check alarms & tripping as per requirements. System is countissioned and now working satisfactority. M25. EMPL requested to provide tech support as & when required. 	OM DATE OF P.O. OULD BE ITHOUT IMP.LIC. ure-II recifications and be part of this P.O. CO-OPERATIVE LT
 make Model VM-7B supplied against W.O. no.: HP/22/0824/CE-0140/ WO 21809 dtd. 2.2.2011. Forbes Marshall representative Manoj Wagh reached site on 22nd Nov-2011. During shut-down, Kribhce has installed & terminated Vibration Monitoring rack VM7B & Display in Ammonia-1 plant on anomoula compressor 105 J. Configuration of VM-7H was checked, modified & verified as per documentation & customer's need. Simulation tests were carried out on all vibration, axial & speed reasurements channels and also simulated test were made successfully to check alarms & tripping as per requirements. System is counnissioned and now working satisfactority. M/S. FMPL requested to revert in case of any problems during operation & assured to provide tech. support as & when required. 	OM DATE OF 9.0. OULD BE ITHOUT IMP.LIC. ure-11 Recifications and be part of this P.O. CO-OPERATIVE LT
 make Model VM-7B supplied against W.O. no.: HP/22/0824/CE-0140/ WO 21809 dtd. 2.2.2011. Forbes Marshall representative Manoj Wagh reached site on 22rd Nov-2011. During shut-down, Kribhco has installed & terminated Vibration Monitoring rack VM7B & Display in Ammonia-1 plant on anomouja compressor 105 J. Configuration of VM-7H was checked, modified & verified as per documentation & castonter's need. Simulation tests were carried out on all vibration, axial & speed reasurements tolumets and also simulated test were made successfully to check alarms & tripping as per requirements. System is countristioned and now working satisfactority. MMC. EMPL requested to provide tech. support as & when required. 	OM DATE OF P.D. OULD BE ITHOUT IMP.LIC. ure-11 Recifications and be part of this P.O. CO-OPERATIVE LT G. V. J. III AGER (COMM)

GSFC Baroda

Name of Machines : Ammonia Compressor (Melamine 3)(Old Monitors Replacements)

Products : SEC FK series, CA & CV series Sensors , VM-7B Monitor Key Factors :

Replaced Old Sensors with New API670 Sensors & Monitoring Units

Running Successfully : 2018.

GUJARAT STATE FERTILIZERS & CHEMICALS LIMITED P.O. FERTILIZERNAGAR, 391750 DIST: VADODARA Phone: 2242051, 2242451, 2242651, 2242751, 2242541 Fax: 0265-2240966, 0265-2240119, 2242746(PURCHASE) FMAIL : ho@csfeltd.com

Version: 0 of 0

	Page 1 of 8 [F:70:307:0
Purchase Order No.: 4110046844/6163 Date : 13.03.2023	Č)
Vendor Code 112218 GST NO:27AAAC	F2630E1Z5
Ms FORBES MARSHALL PVT LTD.	
CHAKAN INDUSTRIAL AREA	
VILLAGE : SAVARDARI - CHAKAN	
TA : KHED, DIST. PUNE	
PUNE - 410501	
Manarashtra - India kebaladiya@forbasmarshall.com	
Phone:9825000717	

Dear Madam/Sir, We refer to your Offer No. 828 Dated 04.08.2022 against our Enquiry No. 8110015894 and are pleased to inform that we have accepted the rates offered by you.Please amange to supply the goods shown here under strictly, according to the description and terms and conditions of our enquiry and this purchase

Minutes of Meeting between M/S. Forbes Marshall Pvt Ltd (FMPL) & M/s GSFCL at Vadodara Site dated 28/09/2018.

Visit Date: 27-09-2018

Departure Date: 28-09-2018

Visit Type: Commissioning of Vibration Monitoring System (VMS) on ammonia compressor - Melamine 1 plant.

MEMBERS PRESENT: **M/s Forbes Marshall** Mr.Meghashyam

M/s GSFC Ltd. Mr.AV Shah Mr. R E Patel Mr Harsh Brahmbhatt

With reference to above details, M/s FMPL representative visited site and below activities were carried out & observation noted:

1. VMS Panel & rack - 1no charged up with UPS 110V AC.

A What Faller a table - The sharped up with or a flow no.
 All Schneider installed & charged up.
 Rack configuration verified & field erection inspection was carried out. Found ok

4. Radial (4) - utation verified a field effective inspection map cannot be a field of the sensor's verified tested ok from field side to Panel to HMI on TK3 kit. Relays & mA output also tested ok. 5 All the old bently sensors/cable/driver were replaced & installed with shinkawa sensor/cable/driver on the same previous locations.

6. Thus Bently Nevada 7200 VMS was replaced with Shinkawa VMS VM7B system successfully. 7. The system is kept under observation & would be reported to FMPL in case of any issues or support required during operation stage.

8.Certain trending improvement In context to HMI is required by GSFCL.A separate mail is initiated to the concerns and needs to be addressed on immediate basis.

1115 M/S GSFCL 19/2018

Ashuganj Ferti. Bangladesh

Replacement of around 12 old BN 7200/3300 racks

- Latest VM-7 series Racks
- Ammonia compressor,
- Air compressor,
- Synthesis compressor,
- Alternator –I & II,
- Carbamide pumps
- CO2 compressor

Eddy Current Probe System

- FL-202 : 2000 $\,\mu m$: 787 $\,$ mV/100 $\,\mu m$
- + FL-452 : 4500 $\,\mu m$: 3.94 mV/100 $\,\mu m$

FK-202F - 2		1		- 1	1	-		1	
5	System cable length		Mounting plate		Terminal Block	, ,	Intrinsically safe		Geothermal spec.
1	5 Meter	1	DIN Rail(35mm) Mount		1 Screw type terminal block (M4)		1 TIIS (Ex ia IIC T4)		Geo
2	9 Meter	2	Screw mount (50.8×50.8mm)	1	2 Spring lock terminal		4 CSA C/US (Ex ia IIC T4)		
		3	Screw mount				5 ATEX (Ex ia IIC T4 Ga)		
			(92×31mm : For VK replacement)				7 NEPSI (Ex ia IIC T4)		
		4	Screw mount Multi-pitch				8 KTL (Ex ia IIC T4)		
			(50.8×50.8mm and 92×31mm)				B TS (Ex ia IIC T4 Ga)		

Eddy Current Probe System

	S	tandard coo	le		Addition	nal code	Spec.	
Model	FL-202F08A-M2			•••				
Unthre	aded length(L1)	00					0mm [Standard]	
L1≦L2	-20mm	01 to 23		•••			10 to 230mm(10mm step) [Option]	
Case le	ength(L2)		02 to 05				20 to 50mm(10mm step) [Standard]	A I
			06 to 25				60 to 250mm(10mm step) [Option]	
Cable I	_ength			05			0.5m [Standard]	
				10			1.0m [Standard]	
			1	20			2.0m [Option]	
),	50			5.0m [Option]	
Intrinsi	c Safety		5	2 M10× 8mr WRE	(1_ m (0.315) NCH FLATS	3	HEAT-SHRINK TUBE (FOR TAG NO.) MODEL NO. 4 and SERIAL NO. 50 00 00 00 00 00 00 00 00 00	
	5 (0.1 3	0 Ref. 197 Ref.)	1 (0.197) L2) L3 +30		D Ref. 27 Ref.)	

API-670 Vibration Monitoring & Protection

API-670 Vibration Monitoring & Protection

Power Network Local Comm. Supply Comm. & Phase Marker Modules Modules Module

Monitor Modules Relay Modules

API-670 Vibration Monitoring & Protection_

Channel Bypassing for special needs

Vibration Analysis

infiSYS Analysis View																			<u>x</u>
File Graph List View T	ools Window Help																	🥮 SHIN	KAWA
a 🖪																			
List of Current Values								Trend Plot										[_	BX
Area No All Area 👻 Machine I	No All Machine 🔻	_						Long Term Trend Plot										<u>(</u>	
	Tar	DBM	111-104	1X Phas	8 m/ A	2X Phase 。	D/ A 0.5X P	Bar Graph	n 1	X2 Phase		nX3 Phase		nX4 Phase	0/1 4	0.00	c/	0 I . B	
	Time	PVE IM	Value/OA Gap	in mmp. deg.	2A Mmp.	deg. ^{U.}	un amp. deg.	Spectrum Plot	emp. d	leg. "/	no mmp.	deg.	nos emp.	deg.	int emp.	IA2 Mmp.	o(p-p/max inner Nace	Outer hace	Dd
ABS VIB BRG 1-X	2017-06-23 14:00:41	2999.5	0.60 mm/s	0.50 mm/s	0.24 mm/s	0.0	11 mm/s	Waveform Plot	mm/	0.0)0 mm/_		0.00 mm/_		0.00 mm/_	. 0.00 mm/			
ABS VIB BRG 1-Y	2017-06-23 14:00:41	2999.5	0.60 mm/s	0.50 mm/s	0.24 mm/s	0.0	11 mm/s	Orbit & Waveform Plot	mm/	0.0)0 mm/_	082.0	0.00 mm/		0.00 mm/_	. 0.00 mm/			
REL SHFT VIB BRG 1-X	2017-06-23 14:00:41	2999.5	36.65 µmP −8.4 V	35.02 µmP 51.4	0.37 µmPP 1	14.1 1.0	19 μmPP 177.3	Waterfall Plot	µm 0.	0.0	00 μm (0.0	0.00 µm	0.0	0.00 µm	0.00 µm	75.76 μ		
REL SHFT VIB BRG 1-Y	2017-06-23 14:00:41	2999.5	35.71 µmP9.0 V	34.19 µmP 99.9	2.25 µmPP 2	231.2 0.4	17 μmPP 125.3	Polar Plot	μm 0.	0.0)0 μm (0.0	0.00 µm	0.0	0.00 µm	0.00 µm	75.76 μ		
ABS VIB BRG 2-X	2017-06-23 14:00:41	2999.4	0.70 mm/s	0.60 mm/s	0.06 mm/s	0.0	12 mm/s	Shaft Centerline Plot	mm/	0.0	00 mm/		0.00 mm/_		0.00 mm/_	0.00 mm/		-	
ABS VIB BRG 2-Y	2017-06-23 14:00:41	2999.4	0.70 mm/s	0.60 mm/s	0.06 mm/s	0.0	11 mm/s	X-Y Plot	mm/	0.0)0 mm/		0.00 mm/		0.00 mm/_	. 0.00 mm/			E
REL SHFT VIB BRG 2-X	2017-06-23 14:00:41	2999.4	30.17 µmP −5.3 V	29.34 µmP 167.2	0.74 µmPP 3	1.5 0.5	i9 µmPP 114.7	S-V Plot	μm 0.	0.0)0 μm (0.0	0.00 µm	0.0	0.00 µm	0.00 µm	76.37 μ		
REL SHFT VIB BRG 2-Y	2017-06-23 14:00:41	2999.4	89.31 µ4 mP −9.1 V	36.54 µmP. 214.2	0.30 µmPP 5	18.6 0.2	10 µmPP 84.8	Bode Plot	14 m., 0.	0.0 0.0	10 µm ().0	0.00 µm	0.0	0.00 µm	0.00 µm	74.98 😃		
ABS VIB BRG 3-X	2017-06-23 14:00:41	2999.4	0.40 mm/s	0.20 mm/s	0.06 mm/s	0.0	12 mm/s	Cascade Plot	mm/	0.0)0 mm/_		0.00 mm/_		0.00 mm/_	. 0.00 mm/			
ABS VIB BRG 3-Y	2017-06-23 14:00:41	2999.4	0.40 mm/s	0.30 mm/s	0.07 mm/s	0.0	12 mm/s	Full Spectrum Plot	mm/	0.0)0 mm/_		0.00 mm/		0.00 mm/_	. 0.00 mm/			
REL SHFT VIB BRG 3-X	2017-06-23 14:00:41	2999.4	20.07 µmP9.0 V	19.18 µmP 299.0	2.96 µmPP 9	0.7 0.1	7 μmPP 13.8	Full Waterfall Plot	μm 0.	0.0	00 µm (0.0	0.00 µm	0.0	0.00 µm	0.00 µm	37.56 µ		
REL SHFT VIB BRG 8-Y	2017-06-23 14:00:41	2999.4	14.60 µmP9.3 V	13.60 µmP 266.0	3.07 µmPP 1	3.7 0.0	18 µmPP 4.3	Full Cascade Plet	μm 0.	0.0	00 µm (0.0	0.00 µm	0.0	0.00 µm	0.00 µm	37.44 μ		
ABS VIB BRG 4-X	2017-06-23 14:00:41	2999.4	0.80 mm/s	0.70 mm/s	0.11 mm/s	0.0	11 mm/s		mm/	0.0)0 mm/_		0.00 mm/_		0.00 mm/_	0.00 mm/			
ADS VID DOG 4-V	2017-06-22 14:00-41	2000 4	0.10 mm/a	0.00 mm/c	0.00 mm/o	0.0	11 mm/c	Bearing Analysis	nu/	0.0	10 mm/		0.00 mm/		0.00 mm/	0.00 mm/			
	2017 00 23 14:00:41	2333.4	0.10 mm/s	0.00 mm/s	0.00 mm/s	0.0	11 1111/ 5	Transient Trend Plot		0.0	/0 mm/		0.00 11117 -		0.00 1111/ .	. 0.00 mm/			
								Transient Spectrum Plot										-	
REL SHET VIB BRG 4-X	2017-06-28 14:00:41	2999.4	25.14 µmP8.8 V	24.12 µmP 47.9	5.21 µmPP 1	196.8 0.1	13 µmPP 53.3	Transient Waveform Plot	μm 0.	00 0.0	JU μm ι	1.0	0.00 µm	0.0	0.00 µm	0.00 µm	48.24 µ		
								Transient Orbit & Waveform Plot											
REL SHFT VIB BRG 4-Y	2017-06-23 14:00:41	2999.4	18.87 µmP8.7 V	18.02 µmP 72.3	4.33 μmPP 1	194.8 0.0	19 μmPP 127.8	Transient Polar Plot	μm 0.	00 0.0)0 µ.m (1.0	0.00 µm	0.0	0.00 µm	0.00 µm	43.24 μ		
							- Contractor - Con	Transient Shart Centerline Plot										-	
ABS VIB BRG 5-X	2017-06-23 14:00:41	2999.4	1.30 mm/s	1.20 mm/s	0.12 mm/s	0.0	11 mm/s	Transient A-Y Plot	mm/	0.0	10 mm/		0.00 mm/_		0.00 mm/_	0.00 mm/			
ABS VIB BRG 5-Y	2017-06-23 14:00:41	2999.4	1.30 mm/s	1.20 mm/s	0.12 mm/s	0.0	IU mm/s	Transient S-V Plot	mm/	0.0	10 mm/		0.00 mm/_		0.00 mm/_	. 0.00 mm/			4-0
								Transient Bode Plot Transient Cascade Plot											
REL SHFT VIB BRG 5-X	2017-06-23 14:00:41	2999.4	70.56 µmP −8.1 V	70.09 µmP 102.0	6.00 µmPP 1	126.0 0.2	2 μmPP 97.5	Transient Full Spectrum Plot Transient Full Waterfall Plot	μm 0.	00 0.0	00 µm ().0	0.00 µm	0.0	0.00 µm	0.00 µm	81.42 µ		
								Transient Full Cascade Plot Transient Campbell Plot											
REL SHFT VIB BRG 5-Y	2017-06-23 14:00:41	2999.4	13.95 µmP8.2 V	12.13 µmP 106.7	5.41 µmPP 1	29.2 0.1	0μmPP 71.0	Alarm Trend Plot	μm 0.	00 0.0)0 μm ().0	0.00 µm	0.0	0.00 µm	0.00 µm	81.42 µ		
ABS GEN F BRG 6-X	2017-06-23 14:00:41	2999.4	2.20 mm/s	2.20 mm/s	0.22 mm/s	0.0	12 mm/s	Alarm Spectrum Plot	mm/	0.0	00 mm/		0.00 mm/_		0.00 mm/_	0.00 mm/_			
ABS GEN F BRG 6-Y	2017-06-23 14:00:41	2999.4	2.10 mm/s	2.10 mm/s	0.22 mm/s	0.0	11 mm/s	Alarm Waveform Plot	mm/	0.0	00 mm/_		0.00 mm/_		0.00 mm/_	0.00 mm/			
REL SHFT GEN F BRG6X	2017-06-23 14:00:41	2999.4	68.03 µmP8.4 V	66.65 µmP 213.0	12.63 µmP 1	150.0 0.1	13 µmPP 79.8	Alarm Full Spectrum Plot	µm 0.	00 0.0	0 μm 0	0.0	0.00 µm	0.0	0.00 µm	0.00 µm	120.79 µ		
4		6	1	1 1 1			III	Country Clickowsk						1					+, *
								Copy to Clipboard											
New Display								CSV											-
								Close									C	P NUM SCI	RL INS
🔊 🛅 🔼		1	the second second	-	Section Section		Card and the second	Contract of the local division of the				The second	-	-					4:00

Drag and drop navigation

infiSYS Analysis View	
File Graph List View Tools Window Help [2] [2] [1]	· · · · · · · · · · · · · · · · · · ·
Train Plant O1 <stg u#1=""> TSS ABS VIB BRG 1-X ABS VIB BRG 1-Y ABS VIB BRG 2-Y ABS VIB BRG 2-Y ABS VIB BRG 2-Y ABS VIB BRG 3-Y ABS VIB BRG 3-Y ABS VIB BRG 3-Y ABS VIB BRG 4-Y ABS VIB BRG 4-X ABS VIB BRG 4-X ABS VIB BRG 5-X ABS VIB</stg>	Image: A constraint of the state of the
ABS VIB BRG 5-Y REL SHFT VIB BRG 5-X REL SHFT VIB BRG 5-Y ABS GEN F BRG 6-X ABS GEN F BRG 6-Y	

Plant wise remote analysis system

FM Vib Assist Vibration Analysis Software

Our Wireless Solution

- Wireless sensors
- Tri-Axial
- Wirepass based
- Gateway communicator
- Cloud based solution
- Common software for wired/wireless system

Our Wireless Solution

Tri-axial Sensor with Temperature measurement

Frequency range : up to 6.3kHz (+/-3dB) Sampling rate : 26.6 KHz /16bit Configurable full-scale : ±2/±4/±8/±16g

Temperature measurement : -40°C to +85 °C Resolution: 0.1°C Accuracy: +/- 2°C (mounting dependent) Repeatability: +/- 0.1°C

Velocity: RMS, PEAK, P2P Acceleration: RMS, PEAK, P2P, Kurtosis, Crest

Sample amount: 4096 max Lines of resolution: 1600 lines max Averages: configurable up to 9 Overlap: 0 to 100% Windowing: optional Hanning

General schematic

Plus these too

- Rule Based Diagnostics
- Time Based Auto Diagnostics
- Training @ Our place for vibration analysis

