Name: **Score:** 0 / 42 points (0%) [2 open-ended questions not graded] ## C8&9Practice | Multi | nle | Cho | ice | |--------|-----|-----|-----| | MILLIA | DIC | | | *Identify the choice that best completes the statement or answers the question.* | н | - 6 | ١, | |---|-----|----| | н | | - | - 1. There are _____ paired and _____ unpaired electrons in the Lewis symbol for a phosphorus atom. - a. 4, 2 - b. 2, 4 - c. 2, 3 - d. 4, 3 - e. 0, 3 **ANSWER:** C POINTS: 0/1 - 2. Based on the octet rule, iodine most likely forms an ion. - a. I²⁺ - b. I^{4+} - c. I⁴⁻ - d. I^+ - e. I ANSWER: E POINTS: 0/1 - 3. Which of the following would have to gain two electrons in order to achieve a noble gas electron configuration? - O Sr Na Se Br - a. Br - b. Sr - c. Na - d. O, Se - e. Sr, O, Se **ANSWER:** D POINTS: 0/1 - 4. The electron configuration of the S^{2-} ion is _____. - a. $[Ar]3s^23p^6$ | b. [Ar]3s ² 3p ² c. [Ne]3s ² 3p ² d. [Ne]3s ² 3p ⁶ e. [Kr]3s ² 2p ⁻⁶ ANSWER: D | |--| |
POINTS: 0/1 5. A double bond consists of pairs of electrons shared between two atoms. a. 1 b. 2 c. 3 d. 4 e. 6 | | ANSWER: B POINTS: 0/1 | | 6. The Lewis structure of HCN (H bonded to C) shows that has nonbonding electron pairs. a. C, 1 b. N, 1 c. H, 1 d. N, 2 e. C, 2 | | ANSWER: B POINTS: 0/1 | | 7. The formal charge on carbon in the molecule below is mc007- 1.ipg a. 0 b. +1 c. +2 d. +3 e1 | | ANSWER: A POINTS: 0/1 | |
 8. How many equivalent resonance forms can be drawn for CO₃² (carbon is the central atom)? a. 1 b. 2 c. 3 d. 4 | e. 0 **ANSWER:** C POINTS: 0/19. Using the table of average bond energies below, the ΔH for the reaction is $C = O(g) + 2H_2(g) \rightarrow H_3C - O - H(g)$ Bond: C-O C=O C=O C-H H-H O-H 358 799 1072 413 436 463 D (kJ/mol): a. +276b. -276 c. +735d. -735 e. -116 **ANSWER:** E **POINTS: 0/1** ____ 10. Of the ions below, only _____ has a noble gas electron configuration. a. S^{3} b. O^{2+} c. I⁺ d. Ke. Cl **ANSWER:** E POINTS: 0/1____ 11. In ionic bond formation, the lattice energy of ions _____ as the magnitude of the ion charges and the radii a. increases, decrease, increase b. increases, increase, increase c. decreases, increase, increase d. increases, increase, decrease e. increases, decrease, decrease ANSWER: D POINTS: 0/1 12. The diagram below is the Born-Huber cycle for the formation of crystalline potassium fluoride. Which energy change corresponds to the first ionization energy of potassium? - a. 2 - b. 5 - c. 4 - d. 3 - e. 6 ANSWER: D POINTS: 0/1 ___ 13. Of the bonds below, ____ is the least polar. - a. Na, S - b. P, S - c. C, F - d. Si, Cl - e. Na, Cl **ANSWER:** B **POINTS:** 0 / 1 ____ 14. The Lewis structure of N₂H₂ shows _____. - a. a nitrogen-nitrogen triple bond - b. a nitrogen-nitrogen single bond - c. each nitrogen has one nonbonding electron pair - d. each nitrogen has two nonbonding electron pairs - e. each hydrogen has one nonbonding electron pair ANSWER: C POINTS: 0 / 1 ___ 15. To convert from one resonance structure to another, _____. - a. only atoms can be moved - b. electrons and atoms can both be moved - c. only electrons can be moved d. neither electrons nor atoms can be moved | | e. electrons must be added | |----|---| | | ANSWER: C POINTS: 0/1 | | 16 | A valid Lewis structure of cannot be drawn without violating the octet rule. a. NI_3 b. SO_2 c. ICl_5 d. SiF_4 e. CO_2 | | | ANSWER: C POINTS: 0/1 | | 17 | Given that the average bond energies for C-H and C-Br bonds are 413 and 276 kJ/mol, respectively, the heat of atomization of bromoform (CHBr ₃) is kJ/mol. a. 1241 b. 689 c689 d. 1378 e1378 | | | ANSWER: A | | 18 | POINTS: 0 / 1 Of the bonds C-N, C N, and C N, the C-N bond is a. strongest/shortest b. strongest/longest c. weakest/shortest d. weakest/longest e. intermediate in both strength and length | | | ANSWER: D POINTS: 0/1 | | 19 | The molecular geometry of the CS ₂ molecule is a. linear b. bent c. tetrahedral d. trigonal planar e. T-shaped | | | ANSWER: A POINTS: 0 / 1 | | E | | _ | |---|---|--------| | | | \neg | | | | _ | | | _ | | | | | • | - a. bent - b. trigonal planar - c. trigonal pyramidal - d. tetrahedral - e. T-shaped **ANSWER:** C POINTS: 0/1 ____ 21. The F-N-F bond angle in the NF₃ molecule is slightly less than _____. ____ 20. The molecular geometry of the PHCl₂ molecule is _____ - a 90° - b. 109.5° - c. 120° - d. 180° - e. 60° **ANSWER:** B POINTS: 0/1 - 22. The molecular geometry of the H₃O⁺ ion is _____. - a. linear - b. tetrahedral - c. bent - d. trigonal pyramidal - e. octahedral **ANSWER:** D POINTS: 0/1 - _____. 23. The hybridization of the central atom in the XeF₄ molecule is ______. - a. sp - b. sp^2 - c. sp^3 - d. sp³d - e. sp^3d^2 **ANSWER:** E POINTS: 0/1 - ___ 24. The electron-domain geometry of the AsF₆ ion is octahedral. The hybrid orbitals used by the As atom for bonding are ____ orbitals. - a. sp^2d^2 - b. sp^3 - c. sp^3d - $d. sp^3 d^2$ e. sp² | ANSWER: | D | | | | |---------|---|---|---|--| | POINTS. | Λ | / | 1 | | |
25. | In order to produce sp ³ hybrid orbitals, s atomic orbital(s) and p atomic orbital(s) must be mixed. a. one, two b. one, three c. one, one d. two, two e. two, three | |---------|---| | | ANSWER: B POINTS: 0/1 | |
26. | There are σ and π bonds in the H ₂ C=C=CH ₂ molecule.
a. 4, 2
b. 6, 4
c. 2, 2
d. 2, 6
e. 6, 2
ANSWER: E
POINTS: 0 / 1 | |
27. | The basis of the VSEPR model of molecular bonding is a. regions of electron density on an atom will organize themselves so as to maximize s-character b. regions of electron density in the valence shell of an atom will arrange themselves so as to maximize overlap c. atomic orbitals of the bonding atoms must overlap for a bond to form d. electron domains in the valence shell of an atom will arrange themselves so as to minimize repulsions e. hybrid orbitals will form as necessary to, as closely as possible, achieve spherical symmetry | | | ANSWER: D POINTS: 0 / 1 | | 28 | The molecular geometry of the right-most carbon in the molecule below is | mc028-1.jpg a. trigonal planar b. trigonal bipyramidalc. tetrahedral d. octahedrale. T-shaped | | ANSWER: A POINTS: 0/1 | | |-----------|--|------------------------| |
_ 29. | The bond angles marked a, b, and c in the molecule below are, and, respectively. | e about, | | | a. 109.5°, 109.5°, 109.5°
b. 120°, 109.5°, 120°
c. 109.5°, 109.5°, 120°
d. 90°, 180°, 90°
e. 109.5°, 109.5°, 90° | | | | ANSWER: C POINTS: 0 / 1 | | | _ 30. | Of the molecules below, only is polar. a. SbF_5 b. AsH_3 c. I_2 d. SF_6 e. CH_4 | | | | ANSWER: B POINTS: 0 / 1 | | | _ 31. | Of the molecules below, only is nonpolar. a. BF ₃ b. NF ₃ c. IF ₃ d. PBr ₃ e. BrCl ₃ | | | | ANSWER: A POINTS: 0 / 1 | | | _ | The molecular geometry of the BeCl ₂ molecule is | , and this molecule is | | | | a. linear, nonpolar b. linear, polar c. bent, nonpolar d. bent, polar e. trigonal planar, polar | |----------|-------|--| | | | ANSWER: A POINTS: 0 / 1 | | | _ 33. | According to valence bond theory, which orbitals overlap in the formation of the bond in HBr? a. 1s on H and 4p on Br b. 1s on H and 4s on Br c. 1s on H and 3p on Br d. 2s on H and 4p on Br e. 2s on H and 3p on Br | | | | ANSWER: A POINTS: 0/1 | | | _ 34. | The electron-domain geometry of a carbon-centered compound is tetrahedral. The hybridization of the central carbon atom is a. sp b. sp^2 c. sp^3 d. sp^3d e. sp^3d^2 | | | | ANSWER: C POINTS: 0/1 | | | _ 35. | Of the following, the central atom is sp^3d^2 hybridized only in a. PCl_5 b. XeF_4 c. PH_3 d. Br_3 e. BeF_2 | | | | ANSWER: B POINTS: 0/1 | | <u> </u> | _ 36. | A typical triple bond a. consists of one σ bond and two π bonds b. consists of three shared electrons | | | c. consists of two π bonds and one π bond d. consists of six shared electron pairs e. is longer than a single bond | |---------|--| | | ANSWER: A POINTS: 0 / 1 | | 37. | In a polyatomic molecule, "localized" bonding electrons are associated with a. one particular atom b. two particular atoms c. all of the atoms in the molecule d. all of the π bonds in the molecule e. two or more σ bonds in the molecule | | | ANSWER: B POINTS: 0 / 1 | | 38. | The carbon-carbon σ bond in ethylene, H ₂ C=CH ₂ , results from the overlap of a. sp hybrid orbitals b. sp ³ hybrid orbitals c. sp ² hybrid orbitals d. s atomic orbitals e. p atomic orbitals | | | ANSWER: C POINTS: 0 / 1 | |
39. | The N-N bond in HNNH consists of a. one σ bond and one π bond b. one σ bond and two π bonds c. two σ bonds and one π bond d. two σ bonds and two π bonds e. one σ bond and no π bonds | | | ANSWER: A POINTS: 0 / 1 | |
40. | Based on molecular orbital theory, the bond orders of the H–H bonds in $\rm H_2$, $\rm H_2^+$, and $\rm H_2^-$ are, respectively a, respectively b, 1, 1/2, and 0 c, 1, 0, and 1/2 d, 1, 1/2, and 1/2 e, 1, 2, and 0 | **ANSWER:** D POINTS: 0/1 41. A molecular orbital can accommodate a maximum of electron(s). - a. one - b. two - c. four - d. six - e. twelve ANSWER: B POINTS: 0 / 1 42. Molecular Orbital theory correctly predicts diamagnetism of fluorine gas, F₂. This is because - a. the bond order in F_2 can be shown to be equal to 1. - b. there are more electrons in the bonding orbitals than in the antibonding orbitals. - c. all electrons in the MO electron configuration of F_2 are paired. - d. the energy of the π_{2p} MOs is higher than that of the σ_{2p} MO - e. the F–F bond enthalpy is very low ANSWER: C POINTS: 0/1 ## Free Response - 43. Carbon dioxide gas is bubbled into water. - a. Write and balance a chemical equation to describe the process. Recall your strong vs. weak acid knowledge. - b. Draw the Lewis structures for the reactants and products. Include any <u>valid</u> resonance structures. - c. Calculate the change in enthalpy for this reaction using bond energy values. - d. Are the C-O bonds in teh reactant stronger or weaker than those in the product? Explain. Is your explanation consistent with the sign of the enthalpy change that you calculated? Explain. **RESPONSE:** ANSWER: ? **POINTS:** -- / 1 - 44. Consider the chemical species IF₅ and IF₄¹⁺ - a. Draw the Lewis structures of each species. b. Identify the orbital hybridization, geometry, and bond angles for each. - c. Predict which, if any, is a polar species. Justify your answer. - d. Predict the oxidation number of iodine in each species. Give another example of an ion with the same oxidation number for iodine as ${\rm IF_4}^{1+}$ has. - e. Would you expect the conversion from ${\rm IF}_5$ to ${\rm IF_4}^{1+}$ to be endothermic or exothermic. Explain. **RESPONSE:** **ANSWER:** ? **POINTS:** -- / 1