Math 3331 - ODEs Sample Test 2 Solutions

1. Let $A=A(t)$ be the amount of salt at any time. Initially the tank contains pure water so $A(0)=0$. The rate in is $r_{i}=5 \mathrm{gal} / \mathrm{min}$ and rate out $r_{\mathrm{o}}=10 \mathrm{gal} / \mathrm{min}$ meaning the volume in the tank is decreasing so

$$
V=V_{0}+\left(r_{i}-r_{\mathrm{o}}\right) t=500+(5-10) t=500-5 t
$$

The change in salt at any time is given by

$$
\frac{d A}{d t}=r_{i} c_{i}-r_{\mathrm{o}} c_{\mathrm{o}}
$$

where c_{i} and c_{0} are concentrations in and out. Since we are given that $c_{i}=2 \mathrm{lb} / \mathrm{gal}$ and $c_{\mathrm{o}}=A(t) / V(t)$ then we have

$$
\begin{aligned}
\frac{d A}{d t} & =2 \cdot 5-10 \cdot \frac{A}{500-5 t} \\
& =10-\frac{2 A}{100-t}
\end{aligned}
$$

This is linear so

$$
\frac{d A}{d t}+\frac{2 A}{100-t}=10
$$

The integrating factor is $\mu=\exp \left(\int \frac{2}{100-t} d t\right)=\exp (-2 \ln |100-t|)=1 /(100-t)^{2}$ so

$$
\frac{d}{d t}\left(\frac{A}{(100-t)^{2}}\right)=\frac{10}{(100-t)^{2}}
$$

Integrating gives

$$
\frac{A}{(100-t)^{2}}=\frac{10}{(100-t)}+c
$$

The initial condition $A(0)=0$ gives $c=-1 / 10$ and finally giving the amount of salt at any time

$$
A=10(100-t)-\frac{1}{10}(100-t)^{2}
$$

When the tank is empty $V=0$ which happens at $t=100$ and $A(100)=0$.
2. Let $P=P(t)$ be the population of rabbits. The differential equation is

$$
\frac{P}{d T}=k P(1000-P)
$$

Separating gives

$$
\frac{d P}{P(1000-P)}=k d t
$$

or

$$
\frac{1}{1000}\left(\frac{1}{P}+\frac{1}{1000-P}\right) d P=k d t
$$

and multiplying by 1000

$$
\left(\frac{1}{P}+\frac{1}{1000-P}\right) d P=1000 k d t
$$

We can absorb the 1000 into the k. Integrating gives

$$
\ln P+\ln (1000-P)=k t+\ln c
$$

or

$$
\begin{equation*}
\frac{P}{1000-P}=c e^{k t} \tag{1}
\end{equation*}
$$

Using the initial condition gives $P(0)=100$ gives $c=1 / 9$ and further $P(1)=120$ gives $k=.204794$. Solving (1) for P gives

$$
P=\frac{1000 e^{204794 t}}{e^{204794 t}+9}
$$

3. Assuming Newton's law of cooling we have

$$
\frac{d T}{d t}=k\left(T_{\infty}-T\right)
$$

subject to $T(0)=160$ and $T(20)=150$. Here $T_{\infty}=70$. Separating the DE gives

$$
\frac{d T}{70-T}=k d t
$$

which we write as

$$
\frac{d T}{T-70}=-k d t
$$

as T is greater than the room temperature 70 . Integrating gives

$$
\ln |T-70|=-k t+\ln c
$$

or

$$
T=70+c e^{-k t}
$$

Using $T(0)=160$ gives $c=90$ and using $T(20)=150$ gives $k=.005882$. Thus, the temperature at any time is given by

$$
T=70+90 e^{-.005882 t} .
$$

4. Solve the following

$$
\begin{equation*}
y^{\prime \prime}-5 y^{\prime}+6 y=0, \quad y(0)=1, \quad y^{\prime}(0)=0 \tag{i}
\end{equation*}
$$

Soln: The CE is $m^{2}-5 m+6=0$ so $(m-2)(m-3)=0$ giving $m=2, m=3$. The solution is

$$
y=c_{1} e^{2 x}+c_{2} e^{3 x}
$$

The IC's gives $c_{1}+c_{2}=1,2 c_{1}+3 c_{2}=0$. Solving gives $c_{1}=3, c_{2}=-2$ leading to the solution

$$
y=3 e^{2 x}-2 e^{3 x}
$$

(ii) $y^{\prime \prime}+2 y^{\prime}+10 y=0, \quad y(0)=-1, \quad y^{\prime}(0)=4$

Soln: The CE is $m^{2}+2 m+10=0$ giving $m=-1 \pm 3 i$. The solution is

$$
y=c_{1} e^{-x} \cos 3 x+c_{2} e^{-x} \sin 3 x
$$

The IC's gives $c_{1}=-1,-c_{1}+3 c_{2}=4$. Solving gives $c_{1}=-1, c_{2}=1$ leading to the solution

$$
y=-e^{-x} \cos 3 x+e^{-x} \sin 3 x
$$

(iii) $4 y^{\prime \prime}-4 y^{\prime}+y=0, \quad y(0)=0, y^{\prime}(0)=1$

Soln: The CE is $4 m^{2}-4 m+1=0$ so $(2 m-1)(2 m-1)=0$ giving $m=1 / 2, m=1 / 2$. The solution is

$$
y=c_{1} e^{1 / 2 x}+c_{2} x e^{1 / 2 x}
$$

The IC's gives $c_{1}=0, c_{2}=1$ leading to the solution

$$
y=x e^{1 / 2 x}
$$

5. (i) Solve

$$
x^{2} y^{\prime \prime}-x y^{\prime}+y=0,
$$

given that $y_{1}=x$ is one solution.

Soln: Let $y=x u$ so $y^{\prime}=x u^{\prime}+u$ and $y^{\prime \prime}=x u^{\prime \prime}+2 u^{\prime}$. Substituting and simplifying gives

$$
x^{3} u^{\prime \prime}+x^{2} u^{\prime}=0
$$

Letting $u^{\prime}=v$ so $u^{\prime \prime}=v^{\prime}$ gives

$$
x^{3} v^{\prime}+x^{2} v=0
$$

Separating gives

$$
\frac{d v}{v}=-\frac{1}{x} d x
$$

which integrates to

$$
v=\frac{1}{x}
$$

Since $u^{\prime}=v$ this integrates once more giving

$$
u=\ln |x|
$$

and since $y=x u$ we obtain the second solution $y=x \ln |x|$. Thus the general solution is

$$
y=c_{1} x+c_{2} x \ln |x|
$$

5. (ii) Solve

$$
x y^{\prime \prime}-(x+1) y^{\prime}+y=0
$$

given that $y_{1}=e^{x}$ is one solution.

Soln: Let $y=e^{x} u$ so $y^{\prime}=e^{x} u^{\prime}+e^{x} u$ and $y^{\prime \prime}=e^{x} u^{\prime \prime}+2 x^{x} u^{\prime}+e^{x} u$. Substituting and simplifying gives

$$
x u^{\prime \prime}+(x+1) u^{\prime}=0
$$

Letting $u^{\prime}=v$ so $u^{\prime \prime}=v^{\prime}$ gives

$$
x v^{\prime}+(x-1) v=0
$$

Separating gives

$$
\frac{d v}{v}=\frac{1-x}{x} d x
$$

which integrates to

$$
v=x e^{-x}
$$

Since $u^{\prime}=v$ this integrates once more giving

$$
u=-(x+1) e^{-x}
$$

and since $y=e^{x} u$ we obtain the second solution $y=-(x+1)$. Thus the general solution is

$$
y=c_{1} e^{x}+c_{2}(x+1)
$$

noting that we absorbed the -1 into c_{2}.

