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Abstract

The vast majority of high school courses in the U.S. separate classrooms into stan-
dard and honors tracks. This paper characterizes the efficiency and distributional
impact of changing the share of students enrolling in the honors track. We first in-
troduce a model of tracking in which students choose their track for each course, but
schools can adjust an array of incentives that implicitly govern the enrollment share
of the honors track. We show that determining the administrator’s optimal choice of
honors track size requires knowledge of a set of treatment effect functions capturing
the impact of alternative honors enrollment shares on different parts of the distribution
of student predicted performance. We then use rich administrative data from North
Carolina public high schools to estimate these treatment effect functions by quintile of
predicted performance. Across a wide variety of model specifications and alternative
pareto weights over achievement gains for different quintiles, we find that the optimal
honors track contains 20% to 30% of a course’s students. Furthermore, decreasing
the size of honors tracks with more than 35% of students would yield a Pareto im-
provement across predicted performance quintiles. If all North Carolina high schools
adopted the optimal honors program size, we estimate that their students would gain
an average of 0.02 test score SDs per course relative to the baseline score distribution,
with considerably larger gains for schools making substantial adjustments.
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1 Introduction
Tracking is the process of separating students by ability in order to customize the level of
content that students experience. Archbald and Keleher (2008) estimate that over 80% of
high schools in the US offer courses that feature multiple tracks representing different paces
and rigor. Several papers examine the achievement effect of the track choices of marginal
students (e.g. Smith and Todd, 2001; Card and Giuliano, 2016). A number of others consider
the impact of introducing tracking or removing it entirely (e.g. Figlio and Page, 2002; Duflo
et al., 2011). Yet among schools that offer both honors and regular versions of courses,
there is wide variation both across schools and within schools across courses in the share
of students that enroll in the honors track. Motivated by the lack of consensus about the
optimal honors track size, this paper considers the school’s choice of how selective to make
its honors track.

The effects of reducing the size of the honors track are ex-ante ambiguous, depend on
the initial size of the honors track, and are likely to vary by the type of student. Expanding
access to honors versions of courses allows the marginal students to experience the greater
rigor and peer quality of the honors track. However, as more students move into honors,
the honors track becomes diluted and the regular track experiences a brain drain, decreasing
the average student quality in both tracks. Furthermore, after students self-sort, teachers
may then alter the level of instruction to align with the new student composition of each
track. Other classroom characteristics, such as teacher assignment and class size, may also be
affected as decentralized schools reallocate resources between the tracks, further obfuscating
the effects of the expansion on different types of students.

We investigate the distributional impact of alternative choices of honors track size by
estimating separate flexible functions by category of student preparedness that map a course’s
fraction in honors into expected standardized test score performance. To justify and motivate
our empirical approach, we also introduce a simple theoretical sorting model of a typical high
school environment in which students can self-sort into their chosen track for each course,
but an administrator can adjust the costs of doing so to implicitly select a preferred honors
track size. The model yields conditions under which the functions we estimate are sufficient
to determine the administrator’s optimal choice of course-wide enrollment shares in each
track.

There are three essential challenges to estimating the impact of changing the intensive
margin of honors selectivity. First, like other school policy interventions, the expected per-
student achievement impact of changing the size of the honors track is likely to be small rela-
tive to all of the other student, teacher, and school inputs that affect test score performance.
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Thus, the amount of variation necessary to obtain sufficient power to detect treatment effects
from alternative honors track shares is daunting, particularly when there are strong theoret-
ical reasons to expect heterogeneous and non-monotonic effects from increased selectivity.
In particular, the onerous sample and specification requirements generally preclude the use
of small scale experiments and narrowly defined instrumental variables that would otherwise
provide credible identification.

Second, because introducing an honors track or changing its size may involve altering
not just the depth with which content is covered but also the scope of the curriculum itself,
standardized tests may become misaligned with what students are taught, creating mea-
surement error that is correlated with the change in the honors enrollment share. Third,
valid identification of the effect of changing the size of honors is empirically difficult because
the honors enrollment share is partially endogenous to school, teacher and student char-
acteristics that affect student achievement. For example, an unobservably better-prepared
student population might drive both the share of students in honors and average test score
performance.

The North Carolina administrative records we use are particularly well-suited to address
all three challenges. The data contain histories of elementary and middle school test scores
for the near universe of public high school students from 1995 to 2011. In addition, the data
feature statewide course-specific tests in eleven high school courses, of which we focus on
six that were consistently offered and for which tracks are easily inferred.1 By facilitating
comparisons across schools, across school cohorts, and across courses within a cohort, these
two features ensure that an enormous amount of variation in honors track sizes and contem-
poraneous achievement can be harnessed to identify heterogeneity in impacts at different
margins of selectivity for different student subpopulations.

Furthermore, North Carolina’s accountability system provides strong incentives to prin-
cipals and teachers to adhere to the curriculum tested by the statewide exams regardless
of track, including test score-based teacher bonuses and public ratings of schools. Such in-
centives mitigate concerns about misalignment between the content taught versus tested in
each track.

Finally, the data provide rich controls at the school, teacher, family, classroom, and
student levels, including parental educational attainment, school size, class size, student
demographics, and teacher experience, education, and licensing test performance. These
controls collectively capture many of the inputs that jointly drive test score performance
and the size of the honors track, thus dramatically reducing the scope for simultaneity and
1The courses excluded either have multiple advanced tracks such as honors and Advanced Placement, are
generally taken in middle school, or are infrequently tested.
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omitted variable biases.
In our baseline specification, we pool the cross-sectional, time series, and cross-course

variation in the share of a course’s students that choose the honors track, since there are
plausible sources of potentially exogenous variation at each level. In particular, phone con-
versations with staff at several North Carolina schools indicated that different principals and
department heads exhibit idiosyncratic beliefs on the optimal size of an honors track or pref-
erence weights for relative performance of different student subpopulations. Also, relatively
modest changes in cohort size may affect the number of classrooms that must be offered in
a course to meet class size objectives. This could change the natural set of honors shares
depending on the track of the classroom added or removed from offerings.

We then aggregate to the school-course-year-preparedness quintile level, which sidesteps
the selection problems associated with individual students’ choices of track that have been the
focus of much of the tracking literature. We also restrict the sample to schools with typical
distributions of student past performance, so that the regular and honors peer environments
associated with a given honors fraction are likely to be similar across schools. We then regress
test scores on a cubic function of the fraction of students in honors in the associated school-
course-year combination, along with our full set of controls. To account for heterogeneity
in impact, separate cubic coefficients are estimated for each quintile of a regression index of
student preparedness based on past test scores. Validity of our baseline estimates requires
that, conditional on our full set of controls, the variation in the share of a course’s students
that chooses the honors track is unrelated to other unobserved school, teacher, and student
inputs that may affect test score performance.

To address remaining endogeneity concerns, we employ several alternative specifications
that introduce either fixed effects at various levels or instrumental variables in order to
isolate different and in some cases mutually exclusive sources of variation in honors track
size. We concede that no single specification represents an airtight identification strategy;
instead our confidence in the results stems from their consistency across these specifications.
In order for spurious correlations to drive our results, separate sources of endogeneity from
different levels of variation would have to generate bias functions with the same pattern and
similar magnitudes across the interval of honors enrollment shares for the first quintile of
our preparedness index, and would then need to agree again on other bias functions with
distinct patterns and magnitude for each of the other four quintiles we consider.

We find that students in the first (highest) predicted achievement quintile benefit the most
from honors programs that comprise 20-30% of the student body; they enjoy an expected
increase of 0.08 test score standard deviations relative to a version of the course without
tracking. The second quintile exhibits similar but smaller effects as the first, with an average
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test score gain of about 0.05 standard deviations (SDs) for the 20-30% range, but the test
score gains for the second quintile decrease at a slower rate when the share of the student
body increases past 30%. The third quintile experiences its largest gains from slightly larger
honors programs, gaining an average of 0.04 SD when 25-35% of the student body is enrolled
in honors. The fourth quintile is relatively unaffected by variation in the size of the honors
program, but does exhibit small gains of about 0.025 SDs relative to the absence of tracking
when the share of students in honors is between 20 and 30%. The fifth quintile does not
exhibit any statistically or economically significant gains from any exclusiveness relative to
trackless courses, but is hurt by the existence of honors tracks with more than 35% of the
student body in them.

When administrators value the gains of all quintiles equally, honors tracks with 20-30%
of student body enrollment maximize the school’s average score, with average gains of 0.04
SDs compared to the absence of an honors track. Furthermore, enough schools and courses
feature suboptimal honors enrollment shares so that if all schools switched from their current
honors program size to the optimal size, we predict that North Carolina high school students
would gain an average of 0.02 test score SDs. The 20-30% range for the share of students in
honors still maximizes the weighted average performance and delivers sizable gains relative
to no tracking even with a compensatory weighting system that weighs the achievement gains
of quintiles 1, 2, 3, and 4 at 20%, 40%, 60%, and 80% of those of quintile 5, respectively. For
honors shares greater than 30%, the benefit of having more students placed into the honors
program seems to be more than offset by the cost of having both the regular and honors
track decrease their average student quality and the level of instruction.

Furthermore, since these relatively small per-student gains would be enjoyed by millions
of students and thousands of high schools, changing honors track enrollment shares poten-
tially represents a low cost avenue for generating a substantial aggregate gain in student
achievement. Using a back of the envelope calculation that assumes that tracking-induced
test score gains generate the same impact on earnings potential as Chetty et al. (2014a,b)
found for teacher quality-induced test score gains, we estimate that transitioning all North
Carolina high schools’ current honors enrollment shares to the optimal 20-30% shares for
six core courses would yield an aggregate increase in age 28 earnings of $44 million for each
cohort.

Our contribution to the tracking literature is to quantify the impacts of changing the
intensive margin of honors track selectivity in a context where students self-select into tracks
conditional on capacity constraints implicitly set by school administrators. Other papers
have evaluated the extensive margin choice of whether to have any tracking, in several cases
by exploiting experimental or quasi-experimental variation. These papers generally do not
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analyze the size of the honors track when it exists. Some of these papers have found that
tracking helps the top students and hurts the bottom students (Betts and Shkolnik, 2000;
Hoffer, 1992; Argys et al., 1996; Epple et al., 2002; Fu and Mehta, 2018). Others have found
that tracking does not hurt any students (Zimmer, 2003; Figlio and Page, 2002; Duflo et al.,
2011; Card and Giuliano, 2016) or has small or insignificant effects (Pischke and Manning,
2006; Lefgren, 2004). Our results suggest that these seemingly contradictory results might
potentially be reconcilable if the different papers feature samples of schools with different
mixes of honors enrollment shares.

Fu and Mehta (2018) represents the rare paper in this literature that incorporates an
explicit role for honors track selectivity. The authors build a structural model that includes
an administrator choosing how to assign elementary school students to different tracks. The
model permits heterogeneous effects for tracking schemes that vary with the size of each track.
However, while their approach permits a broader welfare analysis, it also requires strong
assumptions to simultaneously identify the parameters that govern tracking in combination
with other preference and technological parameters related to other choices in the model.
Furthermore, they focus on elementary schools, and their tracking data are not as rich or
reliable as the North Carolina administrative data.2

A second strand of the literature considers the effect on an individual student of moving
into an honors or gifted track, either using regression discontinuities (Card and Giuliano,
2016) or propensity score matching (Hoffer, 1992; Long et al., 2012; Smith and Todd, 2001).
These papers generally find that enrolling in advanced tracks improves test scores for the
marginal students they consider. Our estimates combine the effects on the marginal students
with the accompanying effects of diluting the honors track and reducing the peer quality in
the regular track. Our results suggest that the impact of honors is not limited to just the
marginal students, since we find that students whose past test scores strongly suggest they
will be inframarginal are still affected by changes in honors track size.

Finally, this paper also contributes to the much larger literature considering peer effects
on academic achievement. While our approach does not isolate the contribution of peer
effects, such effects are likely to be one of the driving forces for our results. Hanushek et al.
(2006) and Lefgren (2004) find that having better peers improved outcomes for students
across the ability distribution. Mehta et al. (2019) find that improved peer quality increases
academic performance through both cognitive and non-cognitive mechanisms, such as study
time. Imberman et al. (2012) also find that all students benefit from higher achieving peers,
but their estimates suggest in addition that the highest ability students are the most sensitive
2The authors are forced to infer the track based on variation in teachers’ self reports of the quality of their
students, which may in some cases reflect sampling variation rather than tracking per se.
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to the quality of their peers. Our results are consistent with theirs, since we find that top
students gain most from small honors programs, where the peer quality is presumably high,
and bottom students are relatively unaffected by small honors programs, suggesting that they
are fairly insensitive to peer effects from top students. By adding additional assumptions
about student assignment, Fu and Mehta (2018) are able to separately identify peer effects,
and similarly find that changing the fraction of students in honors induces changes in peer
effects which differ by the type of student affected.

The remainder of the paper will be structured as follows. Section 2 presents a theoretical
model that governs the administrator’s implicit choice of the size and/or selectivity of the
honors track. Section 3 then describes the data, Section 4 lays out the empirical approach,
and Section 5 presents the results. Section 6 provides several robustness checks, and Section
7 interprets the findings and concludes.

2 Model
In this section we first describe the planner’s tracking problem that the school administrator
must solve, which clarifies the required decision inputs that this paper seeks to provide. We
then introduce a simple education production function and classroom sorting equilibrium
in order to derive a methodology for estimating these decision inputs and to elucidate the
assumptions this approach requires.

2.1 The Administrator’s Problem

Most high schools allow students to choose their tracks for each course they take. Nonethe-
less, school administrators have a variety of levers within their control that can alter student
incentives to enroll in honors. For example, administrators can preallocate a particular share
of classrooms and associated time slots to honors that can affect the scheduling convenience
of choosing the honors track. They can also adjust the homework loads in each track, set
automatic GPA boosts from taking the honors version of a course, and require mandatory
meetings with counselors who can encourage students to enroll in the honors track or dis-
courage them from doing so. Given this reality, rather than assume that administrators can
determine the complete allocation of students to tracks for each course, we instead assume
that they select the cost of enrolling in honors as a means of implicitly choosing the fraction
of students in each track.3 Given this cost, students’ and parents’ choices determine the
3While most of these levers are not observable in the North Carolina administrative data, GPA boosts are
an exception. A simple bivariate regression with course, year, and school fixed effects provides suggestive
evidence for our assumption: a one point GPA boost that makes a “B” grade in an honors class equivalent
to an “A” in a regular class is associated with a highly significant 12 percentage point increase in the share
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particular composition of each course’s tracks.
While the administrator can adjust these incentives separately for each course and co-

hort, we first consider the administrator’s problem for an unspecified course and year and
temporarily suppress any dependence of the inputs on course and year. Let f denote the
chosen fraction of students in honors. Let θq denote the preference weight that the admin-
istrator gives to the performance of subgroup q, and let Wq denote the share of students in
subgroup q among the chosen course and cohort. While these subgroups could be arbitrary
combinations of predetermined observable student characteristics, in our empirical work we
will use quintiles of predicted student performance based on their test score histories. The
weights may reflect adminstrator preferences for gains by different types of students, the
relative amount of pressure they face from different groups of parents, administrators, or
the priorities for academic growth for different observed types generated by local, state, and
federal educational objectives (such as those incentivized by No Child Left Behind). Finally,
let E[Yi(f)] and E[Y q(f)] capture the expected test score of student i and the expected
mean test score of students in subgroup q, respectively, as a function of the chosen honors
fraction f . We assume that the bulk of the information used by the administrator to predict
test scores is contained in the subgroup assignment, so that E[Yi(f)] ≈ E[Y q(f)]. Then,
assuming further that administrators seek to maximize some weighted average of student
performance, we can write the administrator’s problem as:

max
f

1

N

N∑
i=1

θq(i)E[Yi(f)] ≈ max
f

Q∑
q=1

WqθqE[Y q(f)] (1)

This formulation suggests that the principal does not need to predict exactly which students
will switch track when the chosen honors fraction changes nor the impact on any given
individual from switching track or experiencing a more selective track. Rather, the principal
only needs to understand how shifting f changes the mean performance of each subgroup via
the new classroom sorting equilibrium. This insight motivates our approach of aggregating
over individual track choice and comparing mean outcomes of different subgroups under
different tracking regimes. In the next subsection we provide assumptions on the sorting
equilibrium that justify this simplified approach.

Under the linear objective function (1), the optimal honors fraction only depends on the
degree to which alternative fractions shift test scores of various subgroups, rather than the
components of subgroups’ mean test scores that are invariant to the honors fraction. Thus,
it suffices to focus on the “treatment effect functions” E[∆Y q(f)] associated with alternative

choosing the honors track. Unfortunately, GPA boosts are not reported by a sufficient number of districts
to be used to form instruments.
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choices of f :

argmax
f

Q∑
q=1

Wqθq(i)E[Y q(f)] = argmax
f

Q∑
q=1

WqθqE[∆Y q(f)] (2)

2.2 Test Score Production

Let Yistj capture the standardized test score of student i in course j taken at school s during
year t. We model the educational production function as follows:

Yistj = dhistjh̃(qistj, ϵistj|q⃗h, ϵ⃗h) + dristj r̃(qistj, ϵistj|q⃗r, ϵ⃗r) +XO
istjβ

O +XU
istjβ

U + µistj. (3)

The student’s choice of track is represented by the indicator variables dhistj and dristj, with
values of 1 signifying enrollment in honors and regular tracks, respectively. Schools that
do not offer separate tracks in a given course feature both dhistj = 0 and dristj = 0. The
functions h̃(qistj, ϵistj|q⃗r, ϵ⃗r) and r̃(qistj, ϵistj|q⃗r, ϵ⃗r) capture shifts in achievement from taking
the honors and regular tracks, respectively. These shifts are functions of the student’s own
inputs, which are partly predictable based on the student’s observable subgroup qistj but
also depend on an unobservable idiosyncratic component ϵistj. ϵistj captures deviations in
expected performance due to, for example, accumulated skills or effort unaccounted for
by subgroup. Such deviations vary not just across students but within students across
school-course-year combinations. Importantly, the impact of the track choice on achievement
also depends on the peer environment within the chosen track, which is reflected in the
dependence of the functions h̃(∗) and r̃(∗) on the vectors (q⃗h, ϵ⃗h) and (q⃗r, ϵ⃗r) capturing
the subgroups and idiosyncratic contributions of other members of the honors and regular
tracks. This flexible formulation of track effects acknowledges that students’ production in
the classroom will be affected by how the material matches with their ability and how the
peer environment interacts with their own ability and effort. Track-specific teacher inputs
and course rigor are assumed to be functions of the kinds of students selecting into the track
in a given school-course-year, and thus are implicitly captured by the functions h̃(∗) and
r̃(∗).

XO
istj and XU

istj capture other observed and unobserved student, school, or course inputs,
respectively, that affect i’s learning, while µistj captures measurement error that causes the
test score to fail to perfectly reflect the student’s learning in the chosen course. Impor-
tantly, by imposing that these inputs are additively separable from the inputs that enter
the track-specific functions h(∗) and r(∗), we have assumed they have the same impact on
test scores regardless of track. This implicitly requires that the standardized tests used to
assess knowledge in each course do not depend on the track chosen, which is true in the
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North Carolina context we consider.4 While somewhat restrictive, the additive separability
assumption implies that these inputs are irrelevant to the administrator’s tracking problem.
Thus, we can rewrite achievement in terms of the difference between performance in the
chosen track and performance in a pooled version of the course with no tracks:

∆Yistj = dhistjh(qistj, ϵistj|q⃗h, ϵ⃗h) + dristjr(qistj, ϵistj|q⃗r, ϵ⃗r). (4)

where h(qistj, ϵistj|q⃗h, ϵ⃗h) and r(qistj, ϵistj|q⃗r, ϵ⃗r) now capture the contribution of honors and
regular tracks, respectively, compared to a trackless environment. Recasting achievement
production this way facilitates a focus on the interactions between the student and peer
characteristics that are likely to be of primary importance. Note that this formulation is
nonetheless less restrictive than many linear specifications in the literature, since it allows
the impact of observed and unobserved student ability components q and ϵ to depend on
each other and on the choice of track.

2.3 A Simple Model of Student Track Choice

Now consider the student’s choice of honors vs. regular track in a course that features only
these two tracks. Suppose that each student chooses the track that maximizes his or her test
score net of track-specific effort costs, scheduling opportunity costs, and GPA boosts. Let
cistj capture the difference in student i’s idiosyncratic composite cost (measured in test-score
utility equivalents) of joining the honors track h relative to the regular track r at school s
at time t in course j. Next, let αstj capture a component of the composite cost difference
that is common to all students in (s, t, j). Importantly, assume that the administrator has
the ability to shift αstj by any arbitrary amount by adjusting the relative GPA boost or
homework load in the honors track.

The student’s track choice can thus be written as:

dhistj =


1, if h(qistj, ϵistj|q⃗h, ϵ⃗h)− r(qistj, ϵistj|q⃗r, ϵ⃗r)︸ ︷︷ ︸

Difference in academic gains

−cistj − αstj︸ ︷︷ ︸
Effort, convenience,

and grade cost

> 0

0, otherwise

Next, let gstj(ϵ, c|q) denote the cohort’s joint conditional distribution of students’ un-
observed ability components and idiosyncratic effort/scheduling costs for any given ability
group q. To simplify notation, we assume that the school cohorts in consideration are large
enough and the ability groups are few enough to approximate gstj(ϵ, c|q) for each q with a
4Furthermore, administrator, parent, and student preferences for high scores help ensure that the curricula
for the two tracks do not diverge too far from one another.
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continuous joint density. Then we can define α∗
stj(f) as the threshold common cost com-

ponent α∗
stj that causes a fraction f of students in the chosen school-year-course to choose

the honors track. Specifically, α∗
stj(f) is implicitly defined as the solution to the following

equation:5 ∑
q

Wstq

∫∫
dhistj(αstj, q, ϵ, c)gstj(ϵ, c|q)dϵdc = f. (5)

Next, we assume that the composition of students across schools, years, and courses is
very similar among a large subset S of school-year-course combinations:

Assumption 1. gstj(ϵ, c|q) ≈ g(ϵ, c|q) ∀q ∀(s, t, j) ∈ S and Wstjq ≈ Wq ∀ (s, t, j) ∈ S

Under Assumption 1, as courses become large the threshold cost function α∗
stj(f) becomes

common among sufficiently similar schools and course-year combinations within schools:
αstj(f) ≈ αf for all (s, t, j) ∈ S. Furthermore, because the conditional distribution g(ϵ, c|dh, q)
also becomes common, the vectors of track-specific peers (q⃗r, ϵ⃗r) and (q⃗h, ϵ⃗h) also depend
only on f (through α∗(f)) rather than separately on s, t, or j. This in turn implies that
h(qistj, ϵistj|q⃗h, ϵ⃗h) ≈ h(qistj, ϵistj|fstj) and r(qistj, ϵistj|q⃗r, ϵ⃗r) ≈ r(qistj, ϵistj|fstj). It also implies
that the subgroup-specific probability of choosing honors depends only on f :

P (dh = 1|qistj = q, f) =

∫∫
dh(α∗(f), ϵ, c, q)g(ϵ, c|qistj = q)dϵdc (6)

Thus, the implicit choice of f by the administrator (through α∗(f)) can serve as a
sufficient statistic for the peer composition of both the honors and regular tracks in all
school-year-course combinations where this common joint distribution of ability and costs
represents a sufficiently close approximation. Essentially, this assumption rules out heteroge-
neous treatments across schools or courses for the same honors fraction, so that differences
in achievement distributions across schools or courses featuring different honors fractions
can be interpreted as (possibly heterogeneous) treatment effects. In our empirical work, we
attempt to make this approximation plausible by removing schools from our sample whose
students exhibit a distribution of past performance on state exams that is too far from the
state norm.

However, even if the distributions g(ϵ, c|q) are roughly common among schools, they
may not be known by any school administrator, since both ϵ and c are unobserved for
5Note that since dhistj depends on αstj both directly and indirectly through the peer vectors q⃗h(αstj), ϵ⃗h(αstj),
we must assume that the track-specific achievement functions h(∗) and r(∗) are sufficiently insensitive
to small changes in peer composition that the fraction choosing honors is monotonically and smoothly
decreasing in αstj for each q and spans a large range of fractions for feasible administrator choices of αstj .
This ensures that there exist unique solutions to equation 5 for a wide range of f values.
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each student. Thus, any given principal will have a difficult time inferring both g(ϵ, c|q)
and the track-specific achievement functions h(q, ϵ|f) and f(q, ϵ|f) from data on student
performance.

Note, though, that the administrator’s problem (1) only requires as inputs E[∆Y q(f)],
the subgroup-specific mean test score performance gains as functions of the honors fraction
f . Thus, we can exploit the fact that E[∆Y q(f)] can be written as a simple weighted average
of the expected track-specific performance of the subsets of group q that sort into the honors
and regular tracks, respectively:

E[∆Y q(f)] = P (dh = 1|q, f)E[h(q, ϵ|f)|dh = 1] + P (dr = 1|q, f)E[r(q, ϵ|f)|dr = 1] (7)

Since the conditional expectation functions E[h(q, ϵ|f)|dh = 1] and E[r(q, ϵ|f)|dr = 1] in
(7) depend only on g(ϵ, c|q) and dh(α∗(f), ϵ, c, q), h(q, ϵ|f), and r(q, ϵ|f), which are them-
selves determined by f through α∗(f), E[∆Y q(f)] only depends on the school, course, and
year through the administrator’s choice of f .6 Since the objects E[h(q, ϵ|f)|dh = 1] and
E[r(q, ϵ|f)|dr = 1] are means of performance among selected samples of students sorting
into each track (partly on the basis of unobserved ability ϵ), they are not objects of interest
in their own right, and they do not allow the recovery of the full structural functions h(q, ϵ|f)
r(q, ϵ|f) without much stronger assumptions on either h(∗) and r(∗) or g(ϵ, c|q). However,
the above progression makes clear that as long as g(ϵ, c|q) and Wq are roughly stable for each
q across courses and time, identification of the structural functions is unnecessary to solve
the administrator’s problem.

Essentially, one can simply aggregate over the student-level choice of track, utilizing the
fact that every student must choose some track, and compare mean outcomes of students
in the same subgroup across schools, cohorts, or courses featuring different administrator
choices of f to identify the conditional expectation functions E[Y q(f)] for each subgroup q.
Importantly, these functions capture not only the achievement gains or losses from students
who have their track choice changed through changes to α∗

f but also how changing f alters
the peer effects and level of instruction experienced by other members of the subpopulation.
6E[h(q, ϵ|f)|dh = 1] and E[r(q, ϵ|f)|dr = 1] are defined by:

E[h(q, ϵ|f)|dh = 1] =

∫∫
dh(α∗(f), ϵ, c, q)h(q, ϵ|f)g(ϵ, c|q)dϵdc∫∫

dh(α∗(f), ϵ, c, q)g(ϵ, c|q)dϵdc
and (8)

E[r(q, ϵ|f)|dr = 1] =

∫∫
dr(α∗(f), ϵ, c, q)r(q, ϵ|f)g(ϵ, c|q)dϵdc∫∫

dr(α∗(f), ϵ, c, q)g(ϵ, c|q)dϵdc
(9)
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3 Data & Background
We use administrative data provided by the North Carolina Department of Public Instruction
for all public schools between 1995 and 2011. These data and their surrounding institutional
context have several important features that make it suitable for our analysis.

First, the track associated with each high school classroom is reported for each course,
both by school administrators at the beginning of the year and directly by students during
assessments at the end of the year. Such dual reporting provides confidence that track is
being measured correctly.7

Second, North Carolina required statewide standardized end-of course exams as part of
11 distinct high school courses during our sample period. Importantly, because the same
exams were administered to all schools and all tracks within a school, these test scores
represent a common metric by which to compare schools that choose different shares of
honors enrollment.

Of course, drawing valid inferences about relative student learning using test scores from
different tracking regimes requires that the alignment between the curriculum and the test
content does not systematically vary by track. For example, one might be concerned that
much of what is taught in the honors version of the course is not tested on the state exam.
However, the North Carolina ABC accountability system that was in place throughout the
sample period provides strong incentives for teachers teaching tested courses to adhere to
the state curriculum. First, schools are rated publicly based on student test score growth on
these exams, and underperforming schools are at risk of sanctions and even closure, so that
principals risk their reputations and even their jobs when their teachers do not teach what
is tested (Ahn and Vigdor, 2014). Second, teachers at underperforming schools are also at
risk of losing their jobs, while teachers at high performing schools are eligible for annual
salary bonuses of $1,000 to $1,500 (Vigdor et al., 2008). Finally, student performance on
these exams contributes a state-mandated minimum of 25% of the student’s course grade,
so students have an incentive to study the tested material and parents have an incentive to
ensure that teachers adhere to the curriculum regardless of track (Zinth, 2012). Hence, in
this North Carolina context, the honors track is likely to primarily represent greater depth
and difficulty of covered material rather than greater breadth.

We exclude five of the eleven tested courses from our sample due to either a small set of
test years (Civics and Economics, Law & Politics), inconsistency in grade level (Algebra 1
is often offered in middle school rather than high school), or the existence of Advancement
7Naturally there are occasional discrepancies due to students misreporting the track of their classroom or
students changing track during the academic year. In such cases we use the school-reported track of their
classroom in our analysis, but our results are robust to dropping observations featuring discrepancies.

12



Placement classrooms, discussed further below (US History and Physics). Thus, our sample
consists of standardized scores from the following six courses: Algebra 2, Biology, Chemistry,
English 1, Geometry, and Physical Science. Appendix Figure A.1, which displays the 2006
statewide distributions of student scores for our final sample from each of the six remaining
courses, reveals no evidence of any floor or ceiling effects.8

Table 2 examines the tracking options available in each course for all school-year-courses
with at least 30 student observations. There exists an honors program in most school-
year-course combinations, but remedial programs are rare. Furthermore, the remedial track
generally accounts for a very small portion of the student body when it exists (see Figure
A.2). Given insufficient power to detect the impact of alternative remedial track sizes, we
control for the share of students in remedial classrooms (interacted with quintile of predicted
performance), but do not estimate a separate treatment effect function for the remedial track.
Because most of the courses tested by state standardized exams tend to be offered in 9th
and 10th grade, they do not feature an advanced placement (AP) version of the curriculum.
The two exceptions are Physics and U.S. History. We drop these courses from our sample,
since we fear that teachers in AP classrooms in these courses may adapt their curricula to
align more with the AP exam than the North Carolina end-of-course exam, making the latter
exam a less accurate measure of learning.9 Thus, we focus attention on regular and honors
tracks, and use the share of students enrolled in the honors track in a given school-course-
year as our main independent variable of interest, in alignment with the honors fraction f

in Section 2 above.
Third, the large number of schools, cohorts, and students contained in the North Carolina

data ensures that sufficient identifying variation exists to provide properly powered tests of
the impact of alternative levels of honors enrollment shares on student performance across
the ability distribution. While tracking policy is important because it affects the entire
student population in every course, its test score impact per student-course is likely to be
relatively small, since much of the variation in student performance is driven by student-
and parent-specific factors beyond the school’s control. A lack of power has heretofore forced
researchers to focus on the extensive margin of whether to offer any tracking rather than the
intensive margin of honors selectivity.

Finally, the North Carolina administrative data offers a wide array of observed control
8More years are available by request from the authors. No course-year in our sample exhibits bunching
around the upper or lower limit of the score range.

9We also drop school-year-course combinations featuring classrooms adhering to international baccalaureate
standards for the same reason. This proves to be inconsequential, since most schools that offer the IB cur-
riculum are too high-achieving to satisfy our other sample restriction described below that their associated
courses plausibly satisfy Assumption 1.
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variables at the school, teacher, classroom, and student levels. As emphasized in the following
section, such rich controls are critical for addressing omitted variable bias stemming from
correlations between the honors share and other school, teacher, and student inputs that
contribute to test scores. Of particular note are histories of students’ standardized test
scores during grades 7 and 8 in math, English and (for some cohorts) science. These histories
capture differential student preparedness across schools and cohorts that might both influence
principal’s decisions about honors track size and predict future student performance.

3.1 Assignment to Preparedness Quintiles and Restricting
the Sample of Schools

The test score histories also provide a basis for assigning students to the observed prepared-
ness types that are necessary for providing a holistic assessment of the impact of alternative
choices of honors track size. Specifically, we assign each student to a predicted quintile
in the statewide performance distribution (with quintile 1 denoting the highest predicted
performance) based on the distribution of students’ regression indices from a regression of
test scores in the sampled high school subjects on grade 7 and 8 English and math scores.
We allow the coefficients on these past scores to be course-specific, so that the same student
may be assigned to different quintiles for different courses if their past performance indicates
different relative strengths in the skills required by these courses.10 For the sake of brevity,
henceforth we refer to these statewide predicted quintiles merely as quintiles, and will be
explicit on the occasion in which within-school student rankings are instead used as the basis
for assignment to a quintile.

Recall that formal justification for using the fraction in honors as a sufficient statistic for
peer environment in each track invoked Assumption 1, which required each school-year-course
combination to feature the same joint distribution of abilities (observed and unobserved) and
effort costs among students. Clearly this condition will not be satisfied exactly; however, our
method only requires that these joint distributions are sufficiently similar across schools and
particularly across cohorts and courses within schools so that peer environments would be
comparable if honors fractions were equalized. More specifically, we require that comparisons
between such units featuring exogenously different honors fractions are informative about
how each unit’s achievement distribution would change if it were to adjust its own honors
fraction.
10Specifically, we estimate Yistj = English7istjβ1j + math7istjβ2j + English8istjβ3j + math8istjβ4j +
ϵistj . We then assign course-specific quintiles based on the distribution of PredictedScoreistj =

English7istj β̂1j + math7istj β̂2j + English8istj β̂3j + math8istj β̂4j. Results are robust to the inclusion
of science test scores; however, science scores are only available for a small number of years.
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However, a less selective honors track may result in a considerably different ability dis-
tribution among students choosing the track at an extremely privileged school relative to a
school with few resources and struggling families. To gauge the scale of the problem, Ap-
pendix Figure A.4 looks at how many quintiles students would need to shift, on average, in
order for each schools’ distribution of student preparedness quintiles to match the statewide
(uniform) distribution of predicted quintiles. While the majority of schools appear to have
nearly uniform distributions, there is a substantial right tail of schools with substantially
skewed distributions. We restrict the sample to schools which require fewer than 0.5 quin-
tile changes per student to match the uniform distribution, which removes about 30% of
the observations from the original sample. Appendix Figure A.5a shows the histograms of
the six schools with required per-student quintile changes closest to and less than one half.
While this sample restriction ensures plausible comparability among schools, it may limit
the external validity of our estimates for schools with very low or very high student past
performance. As a robustness check, we also consider a specification where the above metric
for the spread of student quality is less than one third. Appendix Figure A.5b displays
histograms of the six school-courses where the average number of quintile shifts required for
a uniform distribution are closest to a third.11

In addition to restrictions placed on the sets of courses and schools, we also drop all high
school test scores from students with missing 7th or 8th grade math or English test scores
(since they cannot reliably be assigned to a predicted performance quintile), and we drop all
courses offered prior to 1999 to ensure that 7th and 8th middle school test score histories exist
for nearly all students in the remaining courses in the sample. Finally, we require each school-
course-year in the sample to feature at least 30 tested students so that average characteristics
and average performance by quintile would be subject to minimal measurement error. After
all of these sample restrictions, our baseline sample contains 2,125,883 total test scores from
335 high schools and 12,882 school-year-course combinations.

3.2 Summary Statistics

If Assumption 1 holds, each principal is perfectly informed about E[Y q(f)], and each has the
same preference weights θq, then each principal’s optimal choice of f to solve (2) would be
the same, and there would be no identifying variation in f . Appendix Figure A.3 allays this
fear by displaying the distribution of honors shares for the six courses in our final sample
among school-year-courses with honors tracks. Every subinterval between 0.1 and 0.6 shows
frequent use in all six courses, and Chemistry features a nontrivial share of school-year
11Note that North Carolina ranks toward the middle of U.S. states for educational performance, suggesting

that our results should be externally valid for most schools throughout the U.S. (U.S. News (2019)).
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combinations with more than 60% of students in honors. This suggests that administrators
either vary in their preference weights θq or hold differential beliefs about E[Y q(f)]. Given
the dearth of convincing evidence from the literature on the particular tradeoffs associated
with different honors track sizes, such varied beliefs are not surprising.

Table 1 decomposes the variance in the honors fraction f among school-year-course com-
binations in our estimation sample. Unconditionally, differences in school means of honors
fractions (pooling across courses and years) account for 37.7% of the total variance, while
year-specific deviations from the multi-year mean account for another 12.6%, and course-
specific deviations from the school-year mean account for the remaining 49.8%. Adding our
baseline control variables (described in the next section) removes about 30% of the total
variance, but only slightly changes the contributions of the three decomposition components
to the residual variance (to 39.1%, 13.4%, and 47.3%, respectively). When evaluating ro-
bustness to our baseline specification later in the paper, we consider several specifications
that systematically omit subsets of these components.

Table 3 provides means and standard deviations of the controls used in our baseline
specification by category of honors enrollment share based on our estimation sample of
school-year-course combinations. Relative to school-year-courses without tracking, those
with smaller honors tracks (< 35% of students) have very similar distributions of student
demographics, teacher credentials, and parents’ education and only slighty superior past
achievement. The one major difference is that school-year-course combinations from small
schools (low average cohort size) are more likely not to offer an honors track. Relative to both
school-course-years without tracking and with smaller honors tracks, those with larger honors
tracks (> 35% of students) tend to have students with somewhat higher past test scores and
slightly more educated parents. Overall, though, the distributions of characteristics across
these three honors fraction categories overlap considerably, so at first blush it seems that
much of the variation in honors fractions is not directly tied to the composition of students
or teachers at the school.

Figure 1 plots in blue the average honors enrollment rate for bins of the coursewide
honors fraction separately by within-school (rather than statewide) quintile of predicted
performance. We also plot in red the enrollment rate one would expect if students were
perfectly sorted to tracks based on their relative predicted performance. Perfect sorting on
predicted performance would result in a line with a slope of 5 within the interval of honors
fraction corresponding to the chosen quintile ([0,.2] for quintile 1, [.2,.4] for quintile 2, and
so on) and a flat line with zero slope elsewhere. The final cell in Figure 1 shows the pooled
distribution of honors fractions among all school-course-years in the sample.

Students in top quintiles unsurprisingly enroll in honors at much higher rates than stu-
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dents in other quintiles. Nonetheless, the plots of observed honors enrollment patterns reveal
quite imperfect sorting, suggesting that unobserved ability and heterogeneous effort costs
do play an important role in track choice.12 For example, a course with 20% of students in
honors tends to be chosen by only 58% of top quintile students (rather than the predicted
100%) and by 25%, 11%, 5%, and 1% of students in quintiles, 2-5, respectively. Similarly,
a course with 60% of students in honors still has 20% of quintile 2 students enrolling in
the regular track while 20% of students in quintile 5 enroll in honors. For quintiles 2 and
3 in particular, these unobserved sorting factors play a large role in track choices, as both
quintiles have significant honors enrollment rates for all coursewide shares of students in
honors.

Figure 2 plots the average contemporaneous test score performance in test score standard
deviations from the statewide mean for bins of the share of students in honors, separately by
preparedness quintile. Interestingly, if we disregard the very noisy values for shares of honors
above 65% that are observed extremely infrequently in the data, we see that regardless of
quintile, the average performance is at or near its peak when the share of students in honors
is around 40%. However, in order to verify that this finding reflects a true pareto-optimal
honors share rather than a spurious correlation between honors fraction and other school
and student inputs, we now describe our more rigorous estimation procedure.

4 Empirical Approach
4.1 Baseline Specification

Our primary specification is an aggregated version of the education production function
(3) from Section 2.2. Recall from Section 2.3 that the objects of interest, quintile-specific
treatment effect functions of the honors fraction (E[∆Y q(fstj)]), are aggregate objects that
only vary at the school-year-course-quintile level. Thus, because the control variables XO

istj

enter linearly and are assumed to be additively separable from E[∆Y q(fstj)], we can estimate
the parameters of interest in (3) at the school-year-course-quintile level without introducing
any bias and with minimal lost efficiency. Furthermore, such aggregation allows us to avoid
selection problems from individual track choice. Thus, our primary specifications all take
the following form:

Y stjq = E[∆Y q(fstj)] +Xstjqβ
X + Γstjqβ

Γ + ωstjq. (10)
12Various measures of ranking on observed ability, including shorter or longer performance history on alter-

native sets of tests, all show high levels of sorting on unobservables.
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Each specification implements E[∆Y q(fstj)] as a set of quintile-specific, flexibly parame-
terized functions of fstj, the fraction taking the honors version among all students taking
course j in school s in year t, with the chosen functional forms varying across specifications.
Our baseline specification imposes that E[∆Y q(fstj)] for each quintile takes the form of a
restricted cubic function:

E[∆Y q(fstj)] = γlin
q fstj + γsq

q f 2
stj − (γlin

q + γsq
q )f 3

stj (11)

The coefficients in equation (11) restrict the treatment effect to be the same when placing
zero students in honors classes and when placing all students in honors classes, since both
scenarios arguably represent an absence of tracking.13 This functional form allows the lo-
cation and level of the achievement maximum (or minimum) to be determined by the data
while still exploiting the efficiency gains from summarizing a function with two parame-
ters. We also present results from other functional forms, including unrestricted cubic and
restricted quartic specifications, as robustness checks in Section 6. Importantly, the coeffi-
cients γ⃗lin = {γlin

1 , ..., γlin
5 } and γ⃗sq = {γsq

1 , ..., γsq
5 } are quintile-specific in order to capture

heterogeneous effects among different levels of student preparedness.
Xstjq contains a vector of observed school, teacher, and quintile-mean student control

variables that in some cases are specific to the course j and/or year t. Γstjq represents a
design matrix or matrices capturing fixed effects for various one- and two-dimensional combi-
nations of (s, t, j, q). Thus, the theoretical objectXO

istj from equation (3) is operationalized as
[Xstjq,Γstjq] ≡ X

O

stjq in equation (10). ωstjq ≡ X
U

stjqβ
U + µstjq captures the combined impact

of mean unobserved student, teacher, and school inputs and mean test score measurement
error at the (s, t, j, q) level.

Our baseline specification pools all the variation in the honors fraction fstj that occurs
between schools, between years within schools, and between courses within school-year com-
binations. We pool partly to generate maximally precise estimates of the parameters γ⃗lin

and γ⃗sq, but also because there are plausible sources of exogenous variation at each level.
For example, smaller schools may not be able to support the multiple number of class-

rooms per course that tracking requires, and surpassing the cohort size thresholds beyond
which additional classrooms can be supported may not otherwise affect student outcomes
(beyond simple class size effects for which we include separate controls). Similarly, due to
differential parental pressure, personal pedagogical beliefs, or accountability pressure, prin-
cipals may differentially weigh performance by different quintiles or have incorrect beliefs
about the impact of tracking for reasons unrelated to any of the other unobserved inputs
13Three of the largest sources of achievement changes from alternative honors enrollment shares are the same

when the fraction of students in honors is equal to zero or one: peer effects, allocation of teachers among
tracks, and specialized instruction.
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affecting their students’ performance, leading to exogeneously different chosen honors frac-
tions. Switching costs from new course preparation for certain teachers may cause schools
not to track even when other similar schools do so, perhaps because of differences in the past
course histories of their teachers.

Exogenous time series variation in the honors fraction occurring within schools include
natural idiosyncratic changes in cohort size that require adding or removing classrooms or
deterring or encouraging students to take honors to avoid exceeding classroom capacities. It
might also include idiosyncratic variation in the past course preps of newly hired teachers.
Exogenous between-course variation stems from idiosyncratic pedagogical preferences by
department heads or slightly different student demand for different courses due to scheduling
conflicts (which can also vary across cohorts).

On the other hand, the variation in honors fractions at each level is likely to contain an
endogenous component as well. Schools may be more likely to dedicate a larger share of
course capacity to the honors track when they serve well-prepared students, as suggested
by the summary statistics above. And student demand for honors in a particular year may
exceed administrator expectations when a cohort is particularly able or motivated. Fur-
thermore, in addition to correlations with unobserved components of student composition,
unobserved teacher and school inputs can also be correlated with or actively cause changes
in the honors share. For example, perhaps the principals most willing to raise standards
for students by encouraging the honors track also invest more time and resources in other
achievement-raising policies. Or a school that has particularly effective teachers in a given
course may wish to reward them by allowing them to teach honors versions more frequently,
and thus increases the share of that course’s classrooms that offer the honors version.

Unfortunately, observable variables that isolate only the exogenous sources of variation
are either not available or yield instruments that are too weak to detect the hypothesized
heterogeneity in achievement impacts across the student ability distribution. Since we esti-
mate the model via ordinary least squares, in order for our baseline estimates to be unbiased,
unobserved inputs contained in the error term must be uncorrelated with the honors share
fstj as well as its square and cube, conditional on the controls Xstjq and Γstjq.14 Thus, our
baseline specification relies heavily on the richness of the North Carolina administrative data
to provide a set of powerful controls that absorbs the most plausible sources of endogeneity.

The full list of baseline controls and their sample means and standard deviations by
category of honors share are provided in Table 3. To address bias from correlation with
student composition, in our baseline specification the vector Xstjq contains student ability
14Specifically, we assume E[ωstjqfstj |Xstjq,Γstjq] = 0, E[ωstjqf

2
stj |Xstjq,Γstjq] = 0, and

E[ωstjqf
3
stj |Xstjq,Γstjq] = 0.
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and preparedness measures (mean test scores in grade 7-8 math and English interacted
with quintile, share with gifted status), student demographics (race shares), and family
socioeconomic indicators (parental education categories). Note that introducing a variety of
such measures as aggregate shares at school and school-course-year-quintile levels rather than
at the individual-level makes them stronger controls; at such higher levels of aggregation, they
implicitly control for unobserved school and cohort characteristics by potentially spanning
the common amenity space that lures certain kinds of observably and unobservably superior
or inferior students to the school or course within the school (Altonji and Mansfield, 2018).

To address endogeneity from teacher inputs and remaining school inputs beyond those
that affect student composition, Xstjq also includes proxies for teacher quality (experience,
certification scores, degree/license status), and controls for the school’s size and Title 1
status. We also control for both the number of classes offered and the mean class size at
the (s, t, j) level, important inputs that may sometimes move in tandem with otherwise
idiosyncratic changes in honors shares. Thus, we intend for our treatment effect functions to
isolate the impact of changing the honors share conditional on class size (i.e. from converting
a class from regular to honors track) rather than combining the impact of simultaneous
changes in both class size and honors share (i.e. from adding an extra regular track class to
the existing roster of classrooms).

All controls are interacted with the full set of course indicator variables to allow dif-
ferential predictive power in different courses. Finally, in our baseline specification Γstjq

includes a full set of year-course-quintile fixed effects, which removes potential bias from
secular changes in statewide course curricula or the relative difficulty of standardized test
questions that target different parts of the ability distribution that may be correlated with
statewide trends in honors fractions.

While we believe that these controls adequately address a multitude of potential endo-
geneity problems, we nonetheless consider three alternative specifications to partially address
remaining concerns about simultaneity bias or omitted variable bias.

The first alternative specification adds a set of school fixed effects to Γstjq, so that the
parameters of interest are only identified by differential changes in honors fractions and
achievement across cohorts and courses within schools. While school fixed effects address
concerns stemming from greater honors enrollment shares causing or responding to student
sorting among schools, adding these fixed effects also generates noisier estimates, since be-
tween school variation accounts for 39.2% of residual identifying variation net of controls in
our baseline specification.

The second alternative specification we consider uses the honors share of the previous
cohort in the same school-course combination, along with its square, as instruments for the
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corresponding contemporaneous share and its square. The exclusion restriction for this IV
specification requires that the past share of students in honors affects current test scores only
through inertia in the share of honors over time conditional on controls. This IV approach
purges estimates of any endogenous honors share response to unobservable changes in cohort
quality or teacher staffing within a school. Implicitly, this specification puts greater emphasis
on between-school and within-school/across-course variation at the expense of time-series
variation.

The third alternative specification uses a similar IV approach, except that the mean
honors share among all other contemporaneous courses (and its corresponding square and
cube) are used an instruments for the honors share in the chosen course, its square, and its
cube. By generating predicted honors fractions that are pooled across other courses, this
leave-one-out IV approach removes any endogeneity stemming from higher teacher quality
in particular courses driving higher honors fractions. This estimator essentially relies only
on between-school and within-school/across cohort variation instead.

While no single one of these alternative specifications is intended to allay all fears about
bias in isolation, collectively they can potentially provide considerable reassurance if results
are consistent across all of these specifications, since each level of variation is excluded from at
least one of these specifications. After all, if substantial endogeneity biases exist, they would
need to operate with the same force (relative to the exogenous variation) at each level of
variation and for each quintile of student preparedness in order to generate such consistency.
Put another way, our flexibility in allowing separate cubic functions of the honors fraction
for each quintile also provides more opportunities for sizeable endogeneity biases to reveal
themselves through distinct results patterns across specifications that magnify or reduce the
role these sources of endogeneity play in driving results.

We cluster standard errors at the school level in each specification, both to be conservative
and because we expect considerable autocorrelation in errors across course-years from the
same school. In addition, each specification weighs observations by the share of the students
at the school-year-course that are in each quintile, so that all school-year-courses are weighted
equally.15

15A weighting scheme based on the number of students rather than within-school-year shares would prioritize
the efficacy of administrators’ actions at large schools over smaller schools. Given that we are interested
in providing inputs to principals of all school types, we prefer weighting schools rather than students
equally. As per the recommendations of (Solon et al., 2015), specifications are available upon request in
which weights proportional to the number of students in the school-year-course quintile combination. Point
estimates and standard errors are similar for the different weighting schemes.
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5 Results
5.1 Quintile Treatment Effects

The red lines of Figure 3a display predicted values of treatment effects on achievement scaled
in standard deviations of standardized test scores for a dense grid of potential honors fractions
from our baseline restricted-cubic specification, which pools all sources of residual variation
in the honors fraction among school-year-course combinations. Note that all predicted values
capture treatment effects for alternative honors fractions relative to an absence of tracking,
which has been normalized to zero. Dashed blue lines indicate the upper and lower bounds
on 95% pointwise confidence intervals that were created by using the delta method to convert
the variance-covariance matrix associated with point estimates for the cubic parameters γ⃗

into confidence intervals for each predicted value along the grid.16 The bottom right cell in
the figure displays the support of the honors share distribution for school-year-courses that
feature an honors track. Note that there is limited support among honors programs with
shares greater than 65% or between 0 and 15%, so our predicted values in these ranges are
primarily driven by our functional form assumptions and should be viewed skeptically. Table
4 provides the predicted values and the associated 95% confidence intervals separately by
quintile for several candidate honors fractions that underlie the Figures 3a - 4b for both our
baseline and alternative specifications. Appendix Table 1 provides the underlying parameter
estimates γ⃗q for each quintile q for these specifications.

Starting with quintile 1, we observe that top students benefit significantly from honors
programs with fewer than 30% of students in them: when the treatment effect function
reaches its estimated peak honors share of .24, they gain an estimated .079 standard devia-
tions in state test score performance relative to the absence of tracking. This is similar to
the predicted increase in student achievement associated with switching from a high school
teacher of median effectiveness to a 67th percentile teacher (Mansfield, 2015). However,
these gains quickly disappear as the honors fraction increases beyond 30%. Since around
80% of quintile 1 students will enroll in honors if it contains at least 30% of their cohort,
the sharp decrease in gains as honors becomes more selective is likely due to the dilution in
peer quality within the honors track, perhaps combined with smaller and smaller gains from
switching track for the remaining marginal students. Imberman et al. (2012) found that high
achieving students are especially sensitive to peer effects, potentially justifying why quintile
1 experiences such a pronounced decrease as the share of students in honors is increased.
16We chose pointwise confidence intervals rather than confidence bands because we are generally comparing

predicted values at particular honors shares against the absence of tracking, rather than evaluating joint
hypotheses involving predicted values over a continuous range of honors fractions, such as whether there
exists any nonzero honors fraction that makes quintile 2 worse off than the absence of tracking.
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Students in quintiles 2 and 3 also particularly benefit from fairly small honors programs.
Relative to the absence of tracks, the gains from the existence of an honors track rise until
peak gains of about 0.055 SDs and 0.040 SDs, respectively, when 25% and 28% of all students
are choosing honors. Interestingly, this peak occurs at a fraction where large shares of
students in these quintiles are near the margin of choosing honors: around 50% of quintile
2 students and 25% for quintile 3 students generally enroll in an honors track that serves
30% of the cohort, with these shares continuing to rise significantly as the coursewide share
of students in honors increases beyond 30%.

Several competing mechanisms are potentially at play for these quintiles. As the honors
track increases from a very small size to a moderate size, students from these quintiles are
likely to be the marginal students, and the pedagogy in the honors track is likely becoming
better and better aligned with their desired pace. The regular track is beginning to lose high
quality peers, but is still likely to be fairly well aligned with the desired pace for quintile
3 students. As honors selectivity continues to fall, however, there are more inframarginal
quintile 2 and 3 students already in the honors track who are experiencing dilution, and the
median student in the regular track may increasingly require a slower pace than is optimal
for the remaining quintile 2 and 3 students.

Decomposing these competing mechanisms to isolate how each incremental expansion of
the honors track affects marginal students, inframarginal honors track students, and infra-
marginal regular track students within each quintile would require strong assumptions on
the degree to which unobservable ability vs. scheduling costs is driving students’ selection of
track. Indeed, the appeal of our approach is that it can provide the policy-relevant inputs for
administrators without requiring questionable assumptions about student sorting to tracks.
Thus, we do not attempt such a decomposition here.

Quintile 4 students seem to be fairly insensitive to the size of the honors track. Equiva-
lence of a two track menu with a trackless course can only be rejected with 95% confidence
for shares of students in honors less than 30%. The point estimate at the peak, which is at
an estimated 21.6%, is .029 SDs.

Quintile 5 exhibits only small, statistically insignificant gains from small honors programs,
and begins to experience losses relative to a no tracking regime once the honors program
grows beyond 30%. The losses achieve statistical significance at the 95% level around an
honors share of 50%. These results are consistent with the peer effect literature that has
found that lower achieving students are the least sensitive to the positive peer effects from the
highest ability students (Imberman et al., 2012; Mehta et al., 2019; Fruehwirth, 2013; Fu and
Mehta, 2018). Although having a small honors program decreases the average peer quality
for the overwhelming majority of bottom quintile students who do not enroll in honors (over
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90% remain in the regular track with a 40% cohort-wide honors share), the compositional
changes may be offset by a better paced class. However, perhaps when the honors program
grows beyond 40%, the bottom quintile students who do not enroll in honors (still around
80% when the cohort-wide percent in honors is 60%) share the classroom with fewer middle
tier students with whom they might otherwise profitably interact.

We next consider the three alternative specifications introduced in Section 4. Estimated
treatment effect functions for these specifications are presented in Figures 3b, 4a, and 4b.
Recall that the alternative specifications are identified by different subsets of the variation
identifying our baseline model. Figure 3b corresponds to the school fixed effects specifica-
tion that isolates variation in honors policies that either change over time and/or vary by
course within a school. The school fixed effect specification yields quite similar shapes and
peak locations to the baseline specification across all quintiles, despite removing 39% of the
identifying variation. However, the peak gains from optimally sized honors tracks tend to
be around .02 SDs smaller across quintiles.

Figure 4a presents results from the first IV specification, which uses lagged course-specific
honors shares as instruments for current honors shares. It seeks to remove cohort-specific
variation at each school while leaving both stable between-school and stable between-course
within-school differences in honors enrollment shares. It is motivated by the idea that school
and department administrators may have idiosyncratic preferences or beliefs about honors
efficacy that systematically shape their default choices of honors shares across years. Since
there is a large persistent component of honors shares across years, the first stage is quite
strong.17 This specification yields point estimates that are noisier but also slightly (around
.01SD) larger in magnitude than the baseline specification. The larger magnitudes could
simply reflect either sampling error or a slight upward bias in the between-school variation
that accounts for a larger share of identifying variation, but another possible explanation
is that honors shares may be reported with error that is corrected by the IV specification,
suggesting that the estimates from the baseline specification may be attenuated.

The third alternative specification alters the IV approach by using the mean honors
fraction across all other courses in the same school-year as the instrument for the honors
fraction in the chosen course. This specification removes systematic between-course variation
in honors shares, leaving only persistent differences in schools’ tendencies to have larger or
smaller honors tracks as well as transitory cohort-specific variation in mean honors shares.
Figure 4b shows that this second IV approach generally yields the same shapes and nearly
17The F statistics for the instruments for the first (linear) term in the cubic are all above 390, while their

counterparts for the second (quadratic) and third (cubic) terms are all above 290 and 150, respectively.
Estimates for the IV specification are produced using the ”cmp” Stata function (Roodman, 2007).
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the same magnitudes for the treatment effect functions as the baseline specification, albeit
with slightly noisier point estimates, demonstrating that the general pattern of results does
not hinge exclusively on the exogeneity of the residual between-course variation (about 47.4%
of total residual baseline variation). This specification does feature a peak for quintile 3 at a
slightly higher honors share, around 40%, than other specifications, which is consistent with
the fact that a disproportionate number of quintile 3 students are near the honors margin
around 40% relative to other quintiles.

Perhaps most importantly, though, the baseline specification and all three alternative
specifications share four qualitative features: 1) students in the top quintiles benefit signif-
icantly from honors programs containing fewer than 30% of the student body; 2) students
in the 2nd and 3rd quintiles benefit most from honors programs with 20-40% of the student
body in them; 3) Students in the 4th quintile are relatively unaffected by changing the frac-
tion of students in honors, with potentially small gains from small honors programs; and 4)
students in quintile 5 are on average unaffected by honors programs with less than 40% of
the student body in them and hurt by honors programs with more than 40% of the student
body in them. As emphasized above, such consistency is unlikely to occur if endogeneity
were driving the results, since different sources of endogeneity would need to cause the same
pattern of bias across the interval of honors shares for all five quintiles of the preparedness
distribution.

Interestingly, our results show that honors tracking programs are not zero sum. Small
honors programs (between 25% and 40%) provide a Pareto improvement across quintiles
relative to large honors programs (> 40%), with some quintiles exhibiting sizable gains.
Note that the decline in efficiency as honors tracks expand beyond 40% seems unlikely to
be attributable to a consistent negative correlation with unobserved student quality that
occurs at all three levels of variation. After all, recall from Table 3 that, if anything, the
observed student characteristics (in particular the distribution of past test scores and parents’
education) seem more favorable for school-year-course combinations featuring honors shares
above .35. Thus, to generate the estimated decline spuriously, one would need mean values
of observed and unobserved favorable student characteristics to be negatively correlated
across school-year-courses featuring different honors shares, which would conflict with the
predictions of standard models of student sorting.

One can potentially reconcile our results with papers finding that introducing tracking
does not harm any students if the samples in those papers primarily contain schools that
have small honors programs (Zimmer, 2003; Figlio and Page, 2002; Pischke and Manning,
2006). Similarly, one can also potentially reconcile our results with papers finding that honors
programs help top students and hurt bottom students if those papers sampled a greater share
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of schools with larger honors programs (Betts and Shkolnik, 2000; Hoffer, 1992; Argys et al.,
1996; Epple et al., 2002).

5.2 Administrator’s Problem

Armed with the estimates just presented of the quintile specific treatment effect functions
{Ê[∆Y q(f)]}, we can now reconsider the administrator’s problem (2) from Section 2.1.
Recall that solving for the optimal choice of honors selectivity also requires supplying weights
{θq} capturing the relative importance the administrator places on achievement gains from
each quintile of the student preparedness distribution. We consider two sets of weights. The
first set weighs all quintiles equally (θq = 1

5
∀q), while the second set strongly prioritizes

bottom quintiles, so that test score gains for quintiles 1, 2, 3, and 4 are weighted at 20%,
40%, 60%, and 80% of gains for quintile 5 respectively (θq = q

15
∀q).18

The left panel of Figure 6 shows the average net student gains as a function of the hon-
ors fraction under equal weighting of quintiles, based on the estimates from the baseline
specification.19 The maximized gain of 0.04 SDs relative to the absence of tracking occur
when honors tracks contain just over 20% and 30% of students. The right panel of Figure
6 displays weighted average gains with the second set of weights that prioritize students
in bottom quintiles. Notably, the maximum weighted average gain still occurs at honors
programs with enrollment shares between 20% and 30%, with a weighted average impact
of 0.03 SDs. More generally, tracking schemes in which honors accounts for 20% to 30% of
enrollment dominate those with larger honors tracks for any weighting scheme that places
at least 10% of the weight on each of the five quintiles. In other words, further increases in
the share of students in honors beyond 35% generate consistent decreases aggregate achieve-
ment gains for every reasonable weighting scheme over the remaining support of the data.
The remarkable robustness of the optimal honors program size across weighting schemes is
driven by gains for the top 60% of students from small honors programs and the lack of
negative effect of small honors programs on students in the bottom 40% of the preparedness
distribution.

The optimal size for an honors track is also robust across specifications. Figure 5 displays
the average effect for the three alternate specifications under both weighting schemes. The
school fixed effect specification, on the left side of Figure 5, has a smaller maximized weighted
average gain, but the optimal share in honors remains around 20%. The lagged course-
specific IV specification presented in Figure 5 has larger point estimates for the weighted
18Additional weighting schemes are available upon request from the authors.
19Confidence intervals for the values of the administrator’s objective function are also generated using the

delta method.
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average gain, but the same optimal share of honors. The IV specification based on average
honors shares from other courses from Figure 4b mimics the baseline specification closely,
with the same weighted average gains of .04 SDs and .03 SDs under equal and compensatory
weighting, respectively.

A .04 SD aggregate gain from introducing an honors track serving around 25% of students
may seem relatively small; holding the baseline test score distribution fixed as a reference
point, it would move a student at the statewide median to the 51.6th percentile. However, this
mean gain includes all students in the cohort for every course in which tracking is introduced.
Also, the small value may be misleading given that the lion’s share of achievement variance
is determined by parents, innate student ability, and previous schools and teachers. Thus, it
represents a considerable change in the value added of the high school. For example, using
the estimates of Branch et al. (2012), it is equivalent to replacing a principal of median
quality with one at the 64% of the principal quality distribution.

Furthermore, recent papers by Chetty et al. (2014a,b) and Carrell et al. (2018) analyzing
changes in teacher quality and peer quality, respectively, have shown that policies generating
modest short-run academic gains can produce substantial impacts on later life outcomes.
Since teacher reallocation and specialization and changes in peer composition are two of
the mechanisms through which honors track size is hypothesized to affect test scores, it
seems plausible that tracking-induced achievement gains might similarly translate to later
outcomes. While our data do not contain long-run outcomes of interest, we can perform a
rough projection of the effect of our estimated test score gains on future earnings by assuming
that test score gains from varying the size of honors programs have the same effect on age
28 earnings as the test score gains from improvements in teacher quality found in Chetty
et al. (2014b,a).

Under this assumption, an initially trackless school that introduces optimally sized honors
tracks for each core course in the sample could expect their students’ earnings at age 28 to
increase by an average of 0.4%.20 For a high school class of 100 students near the age 28
median income, this implies an increase in aggregate age 28 earnings of over $88,000. This
estimate would grow further if other courses not tested, such as English classes beyond
English 1, enjoyed similar gains from tracking.

Of course, many schools already feature tracks near the optimal size for most of their
courses. However, there remain a substantial share of school-year-courses in our sample
that either do not use tracking or feature honors track sizes well outside the optimal range.
20This calculation assumes for simplicity that all students would have the 2018 median income at age 28

of $36,910 in the absence of tracking, and that test score gains from each subject can be translated to
earnings gains and then aggregated across subjects.
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If all schools in our sample switched from their current honors program size to an honors
program with 20 to 30% of the student body in it, our estimates suggest that the average
North Carolina student would experience a test score gain of over 0.02 SDs (about the
same amount as switching from the median teacher to a 55th percentile teacher (Mansfield,
2015)). Since North Carolina averages about 100,000 students per cohort, this corresponds
to an aggregate statewide increase in age 28 earnings of over $44 million.

Clearly, such back-of-the-envelope calculations are quite speculative; for example, they
ignore general equilibrium effects from aggregate shifts in quality-adjusted labor supply as
well as the substantial costs (and possible class size benefits) associated with staffing multiple
tracks at small schools.21 Nonetheless, they serve to highlight the possibility that small
per-student gains from a superior tracking system can aggregate to very large earnings
contributions when combining effects across many courses, schools, states, and years.

Limited or lack of benefit for the bottom quintile students could be addressed by reallo-
cating resources to those students. These resources could include reduced class size for the
regular track or a more targeted allocation of high-quality teachers to the regular track.

6 Robustness Checks
In order to maximize power, all of the results presented to this point have imposed that
each quintile’s expected achievement follows a restricted cubic function of the fraction of
students in the honors track that takes on zero values at both ends of the unit interval.
However, to demonstrate that our main findings are not driven primarily by assumptions
about functional form, here we present results from several alternative specifications for
the shape of E[∆Y q(fstj)]. Predicted treatment effects at candidate honors shares for all
specifications are displayed in Table 5, while coefficient estimates are displayed in Table 2.

Figure A.6 plots a flexible semi-parametric specification that replaces the cubic specifi-
cation with a set of interactions between student preparedness quintiles and quintiles of the
fraction of students in honors:

E[∆Y q(fstj)] =
∑
q′

∑
f ′

1(q = q′)1(fstj = f ′)λq′f ′ (12)

Due to considerably greater imprecision, Figure A.6 plots estimated treatment effects along
with 90% rather than 95% pointwise confidence intervals. Nonetheless, one can clearly see
the same qualitative patterns for each quintile as Figure 3a. Specifically, for quintiles 1-4,
expected gains compared to no tracking are generally above zero for honors shares between
21Note that a full welfare analysis also requires incorporating the effort costs paid by students. See Fu and

Mehta (2018) for an example of a complete welfare assessment.
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0% and 20%, then rise further between 20-40% before falling again for larger shares. The
estimates for quintile 5 exhibit the same shape, but with negligible gains for small honors
tracks relative to no tracking and meaningful losses when honors shares are so high that
most students in this quintile are effectively in a remedial class.

Next, we consider relaxing the restriction that 100% of students in honors is equivalent to
0%. This addresses the possibility that a designation of “honors” connotes higher standards
and a slightly more rigorous curriculum even when the student population is the same.
Appendix Figure A.7 displays the results from an unrestricted cubic specification that fits
three parameters per quintile. The shapes of the conditional expectation functions are quite
similar over the range between 0% and 70% honors that spans nearly the entire support
of the data, so that the specifications only meaningfully differ in their extrapolations to
rarely-observed honors shares above 70%.

We also consider a specification that introduces a discontinuity at 0 to distinguish the
absence of tracking from a very small tracking program:

E[∆Y q(fstj)] = γlin
q fstj + γsq

q f 2
stj − (γlin

q + γsq
q )f 3

stj + γindicator
q 1(fstj∈(0,1)) (13)

Theoretically, this captures the possibility that teacher allocation and curriculum prepa-
ration may change discretely when even a tiny honors track exists. More practically, it
ensures that the fitted values for smaller honors track sizes are not primarily being driven
by the performance of students in untracked courses combined with a functional form that
requires smoothness at 0. Appendix Figure A.8 shows that none of the quintiles features a
discontinuity that is statistically or practically significant.

Appendix Figure A.9 considers a constrained quartic specification:

E[∆Y q(fstj)] = γlin
q fstj + γsq

q f 2
stj + γcb

q f
3
stj − (γlin

q + γsq
q + γcb

q )f
4
stj (14)

The estimated predicted values are somewhat noisier than their cubic counterparts but are
otherwise essentially unchanged.

We also consider two additional specifications that exchange reduced precision for ar-
guably superior isolation of exogenous variation. First, inspired by the “Maimonides rule”
identification strategy of Angrist and Lavy (1999) and others, we employ a specification that
uses the share of classrooms that are assigned to the honors track as an instrument for the
share of all students who take the honors track. Essentially, the high per-pupil staffing cost
of offering class times with very few students may limit the set of viable honors fractions
a school can choose. For example, a school with around 75 students in a cohort may have
too many students for two classes and two few for four classes, so that the only feasible
shares of honors classes are 0, .33, and .66. A larger cohort of 90 students might force the
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school to allocate four classes, leading to honors class shares of 0, .25, .5, or .75. Thus,
the discreteness inherent in forming classes may cause relatively small differences in cohort
sizes to cause substantial arguably exogenous differences in honors shares (conditional on
controls for class size). Appendix Figure A.10 displays the treatment effect functions from
this additional IV specification. Again, the basic patterns remain the same for all quintiles.

Second, we augment our baseline specification with a full set of school-year combination
fixed effects, so that estimates are identified exclusively by comparisons in relative perfor-
mance across courses featuring different honors share within cohorts. These fixed effects are
likely to remove almost all bias caused by student sorting, since these courses are being pop-
ulated by nearly the same set of students.22 Thus, any remaining bias would require either
that the relative honors share responds to particular cohorts’ unobserved mean comparative
advantage in some subject (likely to be negligible) or that it responds to differential unob-
served mean teacher quality or track-specific experience across courses (Cook and Mansfield,
2016). Appendix Figure A.11 displays results from this specification. The patterns are the
same, but the effect sizes are somewhat muted, and the estimates are imprecise. One possible
explanation for smaller impacts are that across-course differences in honors shares are likely
to be quite small and transitory, and may not engender some of the teacher re-optimization
of pace and pedagogical approach that drives gains from tracking.

Finally, it is possible that the school-year-courses chosen in section 3.1 are not sufficiently
similar in their joint distributions of student abilities and costs to satisfy Assumption 1 and
thus make the peer environment comparable in different schools featuring the same honors
fraction. Thus, we re-estimate our baseline specification on a smaller subset of schools in
which students’ prior achievement would need to change by less than a third of a quintile on
average to match the statewide uniform distribution of quintiles. Figure A.12 shows that the
point estimates are nearly the same with the restricted sample, but with larger confidence
intervals.

7 Conclusion
In this paper we use rich administrative data to identify the treatment effects of changing the
size of the honors track, operationalized via functions of the share of students who enroll in
honors, with separate functions estimated for each quintile of an index of student predicted
performance. Importantly, our approach explicitly accommodates endogenous self-sorting
of students into the honors and regular tracks conditional on the administrator-determined
22Some core courses, such as English 1 and Biology, are taken nearly universally, while others, such as

Chemistry, are not taken by a substantial share of students.
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capacity of the honors track. We then show that our set of estimated treatment effect
functions suffice to determine the optimal share of students in each track in an administrator’s
planning problem.

We obtain the result that the optimal share of students in the honors track is between 20%
and 30%. Based on results from our baseline specification, if all North Carolina public high
schools switched from their current honors track sizes (including the absence of an honors
program) to one with 20% to 30% of students in it, their students would on average gain over
0.02 SDs in test score performance compared to the existing statewide test score distribution.
Altering the size of the honors track thus represents a low cost method to improve test score
performance, particularly for larger schools that are already offering the relevant courses in
several class periods. Importantly, the tradeoff between efficiency and equity is minimal,
since highly prepared and moderately prepared students benefit considerably from small
honors tracks (between 0.04 and 0.08 SDs) relative to the absence of tracking, while less
prepared students only begin to experience losses when the honors track expands to nearly
half the student population. Because these small per-student gains apply to such a wide
population of students and high schools, our back-of-the-envelope calculations suggest that
they could translate to aggregate skill development worth tens of millions of dollars in future
earnings potential. To provide reassurance about the validity of these findings, we show
that they are extremely robust across several alternative specifications featuring different
samples, functional form assumptions, or segments of variation that remove different sources
of endogeneity.

A few caveats about external validity are necessary. First, our approach assumes that
students and their parents ultimately make track choices for each class, but that school
administrators can alter incentives as necessary to induce their desired aggregate shares of
students in each track. Thus, our results may not be externally valid for high schools where
principals relinquish any role in shaping the honors track or for high schools where students
can be assigned to tracks without their permission.

Similarly, our approach also requires drawing comparisons among the considerable ma-
jority of schools whose student populations feature distributions of past performance that
minimally deviate from the statewide distribution. Thus, our results may not be externally
valid to high schools with particularly large shares of very advanced or struggling students,
since the peer composition in their honors or regular tracks may not be well-approximated
by those at other schools, even conditional on the same student share in the honors track.

In addition, the North Carolina context we consider provides strong incentives to keep
the breadth of material covered by the course similar among both tracks in order to pre-
pare all students for a common statewide standardized exam. This feature is essential for
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generating internally valid estimates by facilitating comparisons on a single achievement met-
ric. However, we cannot verify external validity for contexts in which different tracks have
substantially different curricula (e.g. Advanced Placement or International Baccalaureate),
though we have no a priori reason to believe that our results would not generalize.

Finally, while our results may provide parents with a basis for comparing the tracking
policies of schools they are considering, they are not intended to provide parents with infor-
mation on whether or not their child should enroll in honors in a given course. This would
require estimates of a different set of parameters that capture student-level treatment effects
from switching tracks. A full decomposition of the effect from expanding the honors track
into effects on the marginal students and peer effects in both the expanding and contracting
tracks necessitates combining our estimates with exogenous variation in student-level track
choices.
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Tables

Table 1: Decomposing the Total and Residual Variance
in Honors Enrollment Share

Variance Component
% of Total Variance

V ar(fstj)
% of Residual Variance

V ar(fstj −Xstjβ)

Between School 37.7% 39.2%

Within School/Across Year 12.6% 13.5%

Within School-Year/Across Course 49.8% 47.4%

Notes: The subscripts s, t, and j denote school, year, and course, respectively. “Between School”
captures V ar(fs) in Column 1 and V ar(fs − Xsβ) in Column 2. “Within School/Across Year”
captures V ar(fst)−V ar(fs) and V ar(fst−Xstβ)−V ar(fs−Xsβ), respectively. “Within School-
Year/Across Course” captures V ar(fstj)− V ar(fst) and V ar(fstj −Xstjβ)− V ar(fst −Xstβ),
respectively.

Table 2: Frequency of Tracking Offerings by Course

Course
Name

No
tracking

Only
honors

Only
remedial

Honors &
remedial

Honors
& AP

Only
AP

Honors,
AP, &
remedial

Algebra 1 6872 588 131 16 0 0 0
Algebra 2 316 3695 3 9 0 0 0
Biology 422 4078 22 125 0 0 0
Chemistry 405 2230 0 0 0 0 0
English 1 179 4343 17 334 0 0 0
Geometry 466 3599 3 21 0 0 0
PSCI 2128 1190 102 83 0 0 0
Physics 30 416 0 0 129 18 0
US History 93 668 8 17 2149 245 47

Notes: Each cell provides the total number of school-year combinations in which the course indicated by the row title
is offered under the tracking regime featured in the column titles. “PSCI” denotes physical science. The sample of
school-years is limited to those with at least 30 test scores.
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Table 3: Summary Statistics for Control Variables in Xsjct

by Honors Enrollment Share
No honors tracking Share ∈ (0, 0.35) Share ∈ [0.35, 1)

mean mean mean
VARIABLES (sd) (sd) (sd)

Title 1 status 0.977 0.987 0.986
(0.150) (0.115) (0.119)

Cohort size 171.0 280.8 320.0
(134.3) (174.1) (279.3)

Average class size 17.07 18.00 17.65
(4.377) (3.864) (10.61)

Share of seats in remedial classes 0.00481 0.00281 0.00127
(0.0356) (0.0177) (0.00943)

7th grade math scores 0.220 0.296 0.478
(0.471) (0.350) (0.340)

8th grade math scores 0.544 0.613 0.776
(0.508) (0.375) (0.356)

7th grade reading scores 0.198 0.255 0.417
(0.389) (0.286) (0.267)

8th grade reading scores 0.502 0.557 0.712
(0.384) (0.283) (0.264)

Average Praxis scores 541.0 544.0 527.7
(180.6) (148.1) (168.0)

Teacher share with
Bachelor’s 0.901 0.890 0.872

(0.246) (0.225) (0.249)
Master’s 0.265 0.245 0.274

(0.371) (0.316) (0.338)
Advanced degree 0.00595 0.00909 0.00831

(0.0597) (0.0655) (0.0666)
Doctorate 0.00777 0.00214 0.00381

(0.0761) (0.0329) (0.0474)
Standard professional II licenses 0.899 0.907 0.901

(0.251) (0.202) (0.221)
Standard professional I licenses 0.0558 0.0547 0.0624

(0.194) (0.156) (0.176)
Provisional licenses 0.0201 0.0154 0.0127

(0.117) (0.0891) (0.0827)
Temporary licenses 0.0302 0.0261 0.0272

(0.135) (0.108) (0.116)
0 years exp 0.0622 0.0493 0.0700

(0.203) (0.166) (0.201)
1 year exp 0.0326 0.0322 0.0341

(0.142) (0.119) (0.131)
2 years exp 0.0383 0.0350 0.0352

(0.163) (0.129) (0.133)
3-5 years exp 0.112 0.107 0.0977

(0.264) (0.220) (0.224)
6-11 years exp 0.217 0.211 0.213

(0.348) (0.299) (0.316)
12+ years exp 0.538 0.566 0.550

(0.422) (0.368) (0.386)
. Fraction of students

Whose parents lack a HS diploma/GED 0.0667 0.0616 0.0429
(0.0491) (0.0396) (0.0322)

Whose parents have a HS diploma 0.254 0.240 0.182
(0.0927) (0.0826) (0.0818)

Whose parents have some college 0.122 0.121 0.120
(0.0588) (0.0472) (0.0478)

Whose parents attended trade or business school 0.0517 0.0467 0.0401
(0.0624) (0.0541) (0.0368)

Whose parents attended community college 0.210 0.203 0.186
(0.0735) (0.0646) (0.0763)

Whose parents have a 4-year degree 0.205 0.224 0.283
(0.0946) (0.0856) (0.0942)

Whose parents have graduate degrees 0.0749 0.0817 0.132
(0.0644) (0.0578) (0.0882)

With gifted status 0.106 0.135 0.170
(0.150) (0.127) (0.160)

With learning disabilities 0.0405 0.0357 0.0275
(0.0429) (0.0308) (0.0276)

That are Hispanic 0.0408 0.0437 0.0467
(0.0412) (0.0410) (0.0417)

That are black 0.236 0.251 0.262
(0.184) (0.178) (0.174)

That are white 0.696 0.675 0.661
(0.198) (0.195) (0.190)

That are Asian 0.0149 0.0135 0.0193
(0.0227) (0.0191) (0.0199)

School-course-year-quintiles 9,393 27,093 18,539

Notes: Each entry provides mean values (and standard deviations in parentheses) for the control variable listed in
the row label among all school-year-course observations. The sample here matches the one used for our baseline
specification, which is limited to school-years with at least 30 test score observations and which feature typical
distributions of student quality (See Section 3.1).
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Table 4: Estimates of the Values of the Quintile-Specific Treatment Effect Functions
E[∆Y q(f)] at Several Candidate Honors Enrollment Fractions for the Baseline and

Alternative Specifications
Specification Share in honors Quintile 1 Quintile 2 Quintile 3 Quintile 4 Quintile 5
OLS .15 .0695 .0479 .0321 .0267 .0118

( .0434, .0956) ( .0255, .0703) ( .0102, .0541) ( .0053, .0482) ( -.0079, .0316)
.3 .0748 .0535 .0396 .0255 -.0005

( .0424, .107) ( .0249, .082) ( .0113, .0678) ( -.0018, .0528) ( -.0256, .0245)
.45 .0413 .0331 .0309 .0083 -.0242

( .0074, .0753) ( .0020, .0642) ( .0004, .0613) ( -.0210, .0375) ( -.0513, .0029)
.6 -.0053 .0030 .0147 -.0131 -.0464

( -.0447, .0342) ( -.0332, .0393) ( -.0200, .0493) ( -.0466, .0203) ( -.0778, -.0149)

OLS School FEs .15 .0448 .0253 .0141 .0088 -.0035
( .0223, .0672) ( .0066, .0441) ( -.0047, .0329) ( -.0096, .0273) ( -.0225, .0155)

.3 .0458 .0267 .0184 .0048 -.0169
( .0170, .0746) ( .0015, .0519) ( -.0065, .0433) ( -.0199, .0295) ( -.0424, .0085)

.45 .0210 .0138 .0159 -.0057 -.0332
( -.0085, .0505) ( -.0134, .0409) ( -.0104, .0423) ( -.0323, .0208) ( -.0614, -.0049)

.6 -.0116 -.0038 .0098 -.0167 -.0449
( -.0432, .0200) ( -.0328, .0252) ( -.0181, .0378) ( -.0450, .0117) ( -.0766, -.0132)

Lagged IV .15 .0943 .0651 .0539 .0434 .024
( .0666, .1220) ( .0374, .0929) ( .0261, .0816) ( .0156, .0711) ( -.0037, .0518)

.3 .1010 .0684 .0600 .0425 .0090
( .0671, .1350) ( .0342, .1030) ( .0258, .0942) ( .0083, .0767) ( -.0251, .0432)

.45 .0557 .0348 .0369 .0160 -.0253
( .0193, .0921) ( -.0016, .0712) ( .0006, .0733) ( -.0204, .0524) ( -.0617, .0111)

.6 -.0078 -.0106 .0030 -.0176 -.0594
( -.0512, .0356) ( -.0540, .0328) ( -.0403, .0464) ( -.0610, .0258) ( -.1030, -.0160)

Other-course IV .15 .0667 .0464 .0289 .0217 .0177
( .0362, .0972) ( .0159, .0769) ( -.0016, .0595) ( -.0088, .0522) ( -.0129, .0482)

.3 .0747 .0575 .0439 .0255 .0103
( .0378, .1120) ( .0207, .0944) ( .0070, .0808) ( -.0114, .0623) ( -.0266, .0471)

.45 .0465 .0455 .0472 .0179 -.0101
( .0084, .0847) ( .0074, .0836) ( .0091, .0853) ( -.0202, .0561) ( -.0482, .0280)

.6 .0049 .0225 .0414 .0057 -.0313
( -.0406, .0504) ( -.0230, .0680) ( -.0040, .0869) ( -.0398, .0511) ( -.0768, .0142)

Notes: Predicted values are generated from the estimates ˆ⃗γ for the specifications in the row category for the values of the
honors enrollment share f listed in the row labels. 95% confidence intervals computed using the delta method are displayed in
parentheses. Each column presents estimates for a different quintile of the statewide predicted performance distribution among
students. “OLS” refers to the baseline specification that pools all sources of variation in the honors enrollment share. “OLS
School FEs” uses a full set of school fixed effects to isolate within-school variation. “Lagged IV” uses the previous year’s honors
enrollment share (and its square) as instruments for its contemporary counterparts in the chosen school-year-course. “Other-
course IV” uses the contemporaneous honors enrollment share (and its square) in the other tested courses as instruments for the
share and its square in the chosen course.
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Table 5: Estimates of the Values of the Quintile-Specific Treatment Effect Functions
E[∆Y q(f)] at Several Candidate Honors Enrollment Fractions for Various

Specifications Examining the Robustness of Results
Specification Share in honors Quintile 1 Quintile 2 Quintile 3 Quintile 4 Quintile 5
Bin Specification [0, .2) .0553 .0313 .0033 .0147 -.0006

( .0146, .0960) ( -.0023, .0649) ( -.0298, .0365) ( -.0178, .0473) ( -.0311, .0299)
[.2, .4) .0686 .0470 .0187 .0126 -.0210

( .0331, .1040) ( .0162, .0779) ( -.0106, .048) ( -.0160, .0412) ( -.0473, .0053)
[.4, .6) .0386 .0271 .0102 -.0072 -.0511

( -.0011, .0784) ( -.0087, .0630) ( -.0234, .0439) ( -.0408, .0264) ( -.0828, -.0193)
[.6, 1] -.0135 -.0165 -.0144 -.0340 -.0685

( -.0665, .0395) ( -.0645, .0316) ( -.0630, .0342) ( -.0830, .0151) ( -.1150, -.0215)
Unconstrained OLS .15 .0615 .0425 .0310 .0291 .0144

( .0324, .0906) ( .0177, .0673) ( .0073, .0547) ( .0058, .0524) ( -.0076, .0364)
.3 .0662 .0476 .0383 .0280 .0021

( .0304, .102) ( .0161, .0791) ( .0081, .0684) ( -.0016, .0575) ( -.0252, .0294)
.45 .0347 .0283 .0297 .0101 -.0222

( -.0002, .0714) ( -.0053, .0619) ( -.0024, .0619) ( -.0211, .0414) ( -.0509, .0064)
.6 -.0126 -.0023 .0133 -.0110 -.0440

( -.0548, .0296) ( -.0412, .0367) ( -.0238, .0504) ( -.0471, .0250) ( -.0775, -.0106)
Honors Indicator OLS .15 .0592 .0367 .0266 .0277 .0144

( .0205, .0979) ( .0033, .0701) ( -.0050, .0582) ( -.0034, .0589) ( -.0150, .0438)
.3 .0703 .0486 .0371 .0258 .0004

( .0341, .107) ( .0168, .0805) ( .0071, .0670) ( -.0039, .0556) ( -.0268, .0276)
.45 .0373 .0283 .0283 .0085 -.0233

( -.0006, .0752) ( -.0063, .0630) ( -.0041, .0607) ( -.0237, .0408) ( -.0528, .0062)
.6 -.0127 -.0058 .0099 -.0125 -.0444

( -.0603, .0349) ( -.0495, .0378) ( -.0307, .0504) ( -.0532, .0283) ( -.0818, -.0069)
Quartic .15 .0672 .0423 .0275 .0196 .0044

( .0324, .1020) ( .0124, .0722) ( -.0012, .0561) ( -.0083, .0474) ( -.0224, .0313)
.3 .0739 .0518 .0381 .0235 -.0028

( .0398, .1080) ( .0219, .0816) ( .0091, .0672) ( -.0047, .0516) ( -.0288, .0233)
.45 .0412 .0331 .0307 .0082 -.0244

( .0072, .0751) ( .0020, .0642) ( .0003, .0612) ( -.0211, .0375) ( -.0516, .0028)
.6 -.0071 -.0017 .0105 -.0198 -.0531

( -.0529, .0387) ( -.0435, .0402) ( -.0290, .0500) ( -.0586, .0191) ( -.0887, -.0175)
Class share IV .15 .0690 .0465 .0320 .0226 .0107

( .0473, .0907) ( .0248, .0682) ( .0103, .0537) ( .0009, .0443) ( -.0111, .0324)
.3 .0722 .0517 .0377 .0206 -.0032

( .0449, .0996) ( .0244, .0791) ( .0104, .0650) ( -.0067, .0480) ( -.0305, .0241)
.45 .0363 .0317 .0267 .0047 -.0283

( .0071, .0656) ( .0025, .0610) ( -.0026, .0559) ( -.0245, .0340) ( -.0575, .0010)
.6 -.0121 .0024 .0086 -.0144 -.0512

( -.0462, .0219) ( -.0317, .0364) ( -.0254, .0427) ( -.0485, .0196) ( -.0852, -.0171)
School-Year FEs .15 .0388 .0207 .0081 .0021 -.0105

( .0162, .0615) ( .0013, .0402) ( -.0122, .0285) ( -.0174, .0215) ( -.0302, .0093)
.3 .0375 .0217 .0105 -.0041 -.0254

( .008, .067) ( -.0047, .0481) ( -.0166, .0377) ( -.0303, .0222) ( -.0521, .0012)
.45 .0130 .0109 .0091 -.0136 -.0397

( -.0184, .0443) ( -.0182, .0401) ( -.0201, .0382) ( -.0424, .0152) ( -.0694, -.0100)
.6 -.0177 -.0036 .0055 -.0217 -.0479

( -.0520, .0165) ( -.0352, .0280) ( -.0258, .0368) ( -.0532, .0097) ( -.0809, -.0149)
Notes: Predicted values are generated from the estimates ˆ⃗γ for the specifications in the row category for the values of the honors
enrollment share f listed in the row labels. 95% confidence intervals computed using the delta method are displayed in parentheses. Each
column presents estimates for a different quintile of the statewide predicted performance distribution among students. “Bin Specification”
alters the baseline specification by replacing the restricted cubic function with separate indicators for whether the share of students in
honors falls within mutually exclusive intervals of length 0.2. “Unconstrained OLS” removes the restriction that the treatment effects for
0% and 100% honors enrollment are equal. “Honors Indicator OLS” alters the baseline specification by including a separate indicator
for an honors enrollment share of 0. “Quartic” fits a quartic rather than a cubic polynomial while maintaining the restriction that the
treatment effects for 0% and 100% honors enrollment are equal. “Class share IV” uses the honors classroom share (and its square) as
instruments for the coursewide honors enrollment share (and its square). “School-Year FEs” introduces a full set of fixed effects for
school-year combinations.
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Figure 1: Student Probability of Choosing the Honors Track as a Function of the
Coursewide Honors Enrollment Share by Quintile of the School-Specific Predicted

Performance Distribution

Notes: The first five graphs plot the share of students in the chosen quintile of predicted performance that
selects the honors track among narrow bins of the coursewide honors enrollment share. Quintiles for this

figure are based on school-specific rather than statewide predicted performance rankings. Each bin includes
shares in (bin minimum, bin maximum]. The bottom right cell plots the support of the data used for the
other five cells, excluding school-year-courses where either none of the students or all of the students are

enrolled in honors. The figures are based on the final sample of school-course-year-quintile observations used
to estimate the baseline specification.
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Figure 2: Average Standardized Score as a Function of the Coursewide Honors
Enrollment Share by Quintile of Student Predicted Performance

Notes: Each graph plots the mean standardized test score by narrow bins of the share of the course’s students
enrolled in honors (pooled across six subjects) for a different quintile of a regression index of predicted student

performance based on grade 7 and 8 test scores. The bin for the lowest share of students in honors includes
school-year-courses where no tracking occurs. The remaining bins consider honors enrollment shares in the

interval (bin minimum, bin maximum].
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Figure 3: Treatment Effect Functions for the Honors Enrollment Fraction by Quintile
of Predicted Student Achievement (E[∆Y q(f)]): Baseline and School Fixed Effects

Specifications

(a) Baseline

(b) School Fixed Effects

Notes: The first five graphs in each panel plot estimates of the function E[∆Y q(f)] that maps coursewide
honors enrollment fraction into expected standardized test performance by quintile of predicted performance
for the baseline (panel (a)) or school fixed effects (panel (b)) specifications. The bottom right graph in each
panel displays the density of honors enrollment shares for the baseline sample. The sample is restricted to
school-year-course combinations that serve at least 30 students, do not offer IB nor AP tracks, and whose
schools’ distributions of student preparedness closely resemble the statewide distribution (See Section 3.1).

95% pointwise confidence intervals computed using the delta method are displayed with blue dashes.
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Figure 4: Treatment Effect Functions for the Honors Enrollment Fraction by Quintile
of Predicted Student Achievement (E[∆Y q(f)]): IV Specifications

(a) IV (Previous Year’s Honors Fraction)

(b) IV (Other Courses’ Mean Honors Fraction)

Notes: Panel (a) displays estimates of the function E[∆Y q(f)] that maps coursewide honors enrollment
fraction into expected standardized test performance by quintile of student predicted performance for a

specification in which the current course’s honors enrollment share is instrumented with the previous year’s
share. Panel (b) plots analogous estimates for a specification in which the current course’s honors enrollment
share is instrumented with the mean share among other courses in the same school-year combination. Both
figures use the baseline sample of school-course-year-quintile observations (See Section 3.1 for details). The
bottom right graph in each panel displays the sample’s density of honors enrollment shares. 95% pointwise

confidence intervals computed using the delta method are displayed with blue dashes.
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Figure 5: School Average Test Score Gains as a Function of the Honors Enrollment
Fraction Using Equal vs. Compensatory Weights: Baseline Specification

(a) Equal Weighting

(b) Compensatory Weighting

Notes: Each figure displays estimates of the value of the administrator’s objective maxf
∑Q

q=1WqθqE[∆Y q(f)]
as a function of the coursewide honors enrollment fraction, where Wq is the share of the course’s students who
belong to the q-th predicted performance quintile and θq is the preference weight given to the achievement of

quintile q. The left two graphs use estimates of E[∆Y q(f)] from the baseline specification. “Equal
Weighting”: test scores gains by all quintiles are weighted equally. “Compensatory Weighting”: quintiles 1, 2,

3, 4, and 5 are assigned weight 1
15 , 2

15 , 3
15 , 4

15 , and 5
15 . Each figure relies on the baseline sample of

school-course-year-quintile observations (See Section 3.1 for details). 95% pointwise confidence intervals
computed using the delta method are displayed with blue dashes.
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Figure 6: School Average Test Score Gains as a Function of the Honors Enrollment
Fraction Using Equal vs. Compensatory Weights: Baseline Specification

(a) School FEs: Equal Weighting (b) School FEs: Compensatory Weighting

(c) Lagged IV: Equal Weighting (d) Lagged IV: Compensatory Weighting

(e) Other Course IV: Equal Weighting (f) Other Course IV: Compensatory Weighting

Notes: Each figure displays estimates of the value of the administrator’s objective maxf
∑Q

q=1WqθqE[∆Y q(f)]

as a function of the coursewide honors enrollment fraction, using estimates of treatment effects E[∆Y q(f)] from
the alternative specification listed in the subtitle (See Section 4 for details). “Equal Weighting”: test scores
gains by all quintiles are weighted equally. “Compensatory Weighting”: quintiles 1, 2, 3, 4, and 5 are assigned
weight 1

15 , 2
15 , 3

15 , 4
15 , and 5

15 . Both figures use the baseline sample of school-course-year-quintile observations
(See Section 3.1 for details). 95% pointwise confidence intervals computed using the delta method are displayed
with blue dashes.
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A Appendix

Table 1: Estimates of the Parameters {γ} Governing the Quintile-Specific Treatment
Effect Functions of the Honors Enrollment Fraction E[∆Y q(f)] for the Baseline and

Alternative Specifications

(1) (2) (3) (4)

Quintile 1-Linear Coefficient 0.734*** 0.484*** 0.997*** 0.691***
(0.138) (0.115) (0.185) (0.200)

Quintile 1-Squared Coefficient -1.995*** -1.372*** -2.713*** -1.808***
(0.401) (0.314) (0.542) (0.607)

Quintile 1-Cubic Coefficient 1.260*** 0.888*** 1.716*** 1.117***
(0.276) (0.210) (0.373) (0.424)

Quintile 2-Linear Coefficient 0.497*** 0.270*** 0.696*** 0.454***
(0.117) (0.0940) (0.154) (0.169)

Quintile 2-Squared Coefficient -1.303*** -0.747** -1.929*** -1.055***
(0.341) (0.251) (0.471) (0.519)

Quintile 2-Cubic Coefficient 0.807** 0.477** 1.233*** 0.601***
(0.236) (0.169) (0.328) (0.365)

Quintile 3-Linear Coefficient 0.316*** 0.134 0.559*** 0.245
(0.114) (0.0945) (0.154) (0.169)

Quintile 3-Squared Coefficient -0.740** -0.289 -1.470*** -0.366
(0.325) (0.252) (0.455) (0.492)

Quintile 3-Cubic Coefficient 0.424* 0.155 0.911*** 0.121
(0.224) (0.169) (0.316) (0.341)

Quintile 4-Linear Coefficient 0.298*** 0.115 0.478*** 0.219
(0.112) (0.0925) (0.150) (0.160)

Quintile 4-Squared Coefficient -0.886*** -0.423* -1.396*** -0.544
(0.321) (0.248) (0.448) (0.474)

Quintile 4-Cubic Coefficient 0.588*** 0.308* 0.919*** 0.325
(0.221) (0.167) (0.312) (0.328)

Quintile 5-Linear Coefficient 0.188* 0.0259 0.334** 0.228
(0.103) (0.0964) (0.148) (0.164)

Quintile 5-Squared Coefficient -0.824*** -0.381 -1.303*** -0.826*
(0.299) (0.269) (0.438) (0.484)

Quintile 5-Cubic Coefficient 0.636*** 0.355* 0.969*** 0.598*
(0.207) (0.186) (0.304) (0.334)

Observations 108,977 108,977 108,994 108,982
School FEs NO YES NO NO
Constrained Coefficients YES YES YES YES
Lagged IV NO NO YES NO
Other-course IV NO NO NO YES
Notes: *** p<0.01, ** p<0.05, * p<0.1. Robust standard errors clustered at the school level are in parentheses.
“Lagged IV”: instruments for the current course’s honors share using the prior year’s share. “Other-course IV”:
instruments for the current course’s honors share using the mean contemporaneous share in the other courses.
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Table 2: Estimates of the Parameters {γ} Governing the Quintile-Specific Treatment
Effect Functions of the Honors Enrollment Fraction E[∆Y q(f)] for Several

Specifications Testing Robustness to Functional Form and Endogeneity Assumptions

(1) (2) (3) (4)

Quintile 1-Linear Coefficient 0.645*** 0.847*** 0.431*** 0.738***
(0.154) (0.189) (0.116) (0.141)

Quintile 1-Squared Coefficient -1.719*** -2.186*** -1.272*** -2.054***
(0.442) (0.470) (0.318) (0.414)

Quintile 1-Cubic Coefficient 1.014*** 1.339*** 0.841*** 1.315***
(0.317) (0.298) (0.216) (0.287)

Quintile 2-Linear Coefficient 0.437*** 0.625*** 0.222** 0.483***
(0.130) (0.170) (0.0968) (0.123)

Quintile 2-Squared Coefficient -1.121*** -1.529*** -0.617** -1.271***
(0.370) (0.414) (0.260) (0.367)

Quintile 2-Cubic Coefficient 0.644** 0.904*** 0.395** 0.788***
(0.267) (0.261) (0.177) (0.257)

Quintile 3-Linear Coefficient 0.303** 0.380** 0.0774 0.323***
(0.124) (0.186) (0.102) (0.123)

Quintile 3-Squared Coefficient -0.704** -0.856** -0.168 -0.801**
(0.357) (0.424) (0.275) (0.359)

Quintile 3-Cubic Coefficient 0.392 0.476* 0.0906 0.478*
(0.265) (0.256) (0.186) (0.249)

Quintile 4-Linear Coefficient 0.324*** 0.284* 0.0517 0.257**
(0.122) (0.170) (0.0977) (0.121)

Quintile 4-Squared Coefficient -0.969*** -0.862** -0.289 -0.784**
(0.346) (0.406) (0.265) (0.352)

Quintile 4-Cubic Coefficient 0.663*** 0.578** 0.237 0.528**
(0.248) (0.251) (0.181) (0.243)

Quintile 5-Linear Coefficient 0.217* 0.155 -0.0428 0.183
(0.117) (0.162) (0.0998) (0.114)

Quintile 5-Squared Coefficient -0.917*** -0.765** -0.218 -0.842**
(0.345) (0.378) (0.276) (0.333)

Quintile 5-Cubic Coefficient 0.721*** 0.610*** 0.261 0.660***
(0.259) (0.233) (0.190) (0.230)

Observations 108,977 108,977 108,977 108,977
School FEs NO NO NO NO
School-Year FEs NO NO YES NO
Constrained Coefficents NO YES YES YES
Class Share IV NO NO NO YES
Honors Indicator NO YES NO NO
Sorting Metric<.5 YES YES YES YES
Notes: *** p<0.01, ** p<0.05, * p<0.1. Robust standard errors clustered at the school level are in paren-
theses. “Class Share IV”: instruments for the current course’s honors enrollment share using its honors
classroom share. “Honors Indicator”: includes an indicator for the existence of tracking.
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Figures

Figure A.1: Confirming the Absence of Floor and Ceiling Effects: The 2006 Empirical
Distribution of Pre-Standardized Scale Scores for the Sample Courses

Notes: Each histogram depicts the distribution of pre-standardized student scale scores for the courses
included in the final sample for the year 2006. The histograms confirm the absence of bunching near the

ceiling or floor of the test score range. More years are available by request.
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Figure A.2: The Distribution of Remedial Enrollment Shares

Notes: This figure depicts the fraction of students in the remedial track for school-year-courses from the
baseline sample in which a remedial track exists. Fewer than 4% of school-year-courses in the sample have a

remedial track.

Figure A.3: The Distribution of Honors Track Enrollment Shares by Course

Notes: Each figure depicts the distribution of the fraction of students who enroll in the honors track for
school-year-courses in which an honors track exists for the labeled course. The figures rely on the baseline

sample of school-course-year observations (See Section 3.1 for details).
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Figure A.4: Assessing the Validity of Assumption 1: The Distribution of
School-Specific of Departures from the Statewide Composition of Student Predicted

Performance

Notes: This figure displays the distribution among high schools of the average number of quintiles of an index
of predicted test score performance by which the school’s students would need to be shifted to match the

statewide (uniform) distribution of student predicted performance quintiles. Larger values indicate that the
school’s student population is more atypical.
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Figure A.5: The Distribution of Student Predicted Performance Quintiles for the
Schools on the Margin of Sample Inclusion

(a) 0.5 Quintile Shifts/Student

(b) 0.33 Quintile Shifts/Student

Notes: Figure (a) displays the distribution of students classified by statewide quintile of the regression index
of predicted test scores for the six schools with the highest deviations from the statewide (uniform)

distribution of quintiles that still qualified for the baseline sample (0.5 required quintile shifts per student on
average to reach the uniform distribution). Figure (b) plots the distributions for the six marginal schools

when the standard is lowered to one-third quintile shifts per student.
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Figure A.6: Testing Robustness to Alternative Functional Forms for the Treatment
Effect Functions E[∆Y q(f)]: Estimating Quintile-Specific Treatment Effects

Separately by 20% Interval of Honors Enrollment Share

Notes: The first five graphs plot estimates of the function E[∆Y q(f)] that maps coursewide honors enrollment
fraction into expected standardized test performance by quintile of predicted performance for a specification

that interacts indicators for student preparedness quintile with indicators for whether the current course’
honors share falls in a particular interval of width 0.2 (with the last two intervals combined due to minimal

support). The bottom right graph in each panel displays the density of honors enrollment shares for the chosen
sample. 95% pointwise confidence intervals computed using the delta method are displayed with blue dashes.
The figures rely on the baseline sample of school-course-year-quintile observations (See Section 3.1 for details).
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Figure A.7: Testing Robustness to Alternative Functional Forms for the Treatment
Effect Functions E[∆Y q(f)]: Unrestricted Cubic Specification

Notes: This figure plots estimates of the function E[∆Y q(f)] that maps coursewide honors enrollment fraction
into expected standardized test performance by quintile of predicted performance for a specification that does

not restrict the value of the treatment effect to be zero at the right end of the unit interval. 95% pointwise
confidence intervals computed using the delta method are displayed with blue dashes. The bottom right graph
in each panel displays the density of honors enrollment shares for the chosen sample. The figures rely on the

baseline sample of school-course-year-quintile observations (See Section 3.1 for details).
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Figure A.8: Testing Robustness to Alternative Functional Forms for the Treatment
Effect Functions E[∆Y q(f)]: Discontinuity Permitted at a Zero Honors Enrollment

Share

Notes: This figure plots estimates of the function E[∆Y q(f)] that maps coursewide honors enrollment fraction
into expected standardized test performance by quintile of predicted performance for a specification that

includes a separate indicator for whether the course features any tracking. This ensures that predicted values
at low enrollment shares are not affected by performance in untracked schools or courses. 95% pointwise

confidence intervals computed using the delta method are displayed with blue dashes. The bottom right graph
in each panel displays the density of honors enrollment shares for the chosen sample. The figures rely on the

baseline sample of school-course-year-quintile observations (See Section 3.1 for details).
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Figure A.9: Testing Robustness to Alternative Functional Forms for the Treatment
Effect Functions E[∆Y q(f)]: Restricted Quartic

Notes: This figure plots estimates of the function E[∆Y q(f)] that maps coursewide honors enrollment fraction
into expected standardized test performance by quintile of predicted performance for a restricted quartic

specification. We restrict the quartic to take the value 0 at both ends of the unit interval, so that there are
three free parameters estimated for each quintile of predicted performance. 95% pointwise confidence intervals

computed using the delta method are displayed with blue dashes. The bottom right graph in each panel
displays the density of honors enrollment shares for the chosen sample. The figures rely on the baseline sample

of school-course-year-quintile observations (See Section 3.1 for details).
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Figure A.10: Testing Robustness to Alternative Functional Forms for the Treatment
Effect Functions E[∆Y q(f)]: Using the Share of Honors Classrooms as an Instrument

for the Honors Enrollment Share

Notes: This figure plots estimates of the function E[∆Y q(f)] that maps coursewide honors enrollment fraction
into expected standardized test performance by quintile of predicted performance for a specification that

instruments the course’s share of enrollment in the honors track (and its square) with the course’s share of
honors classrooms (and its square). 95% pointwise confidence intervals computed using the delta method are
displayed with blue dashes. The bottom right graph in each panel displays the density of honors enrollment

shares for the chosen sample. The figures rely on the baseline sample of school-course-year-quintile
observations (See Section 3.1 for details).
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Figure A.11: Testing Robustness to Alternative Functional Forms for the Treatment
Effect Functions E[∆Y q(f)]: Specification Featuring School-Year Fixed Effects

Notes: This figure plots estimates of the function E[∆Y q(f)] that maps coursewide honors enrollment fraction
into expected standardized test performance by quintile of predicted performance for a specification that

augments the baseline specification by including a set of school-year fixed efffects. 95% pointwise confidence
intervals computed using the delta method are displayed with blue dashes. The bottom right graph in each

panel displays the density of honors enrollment shares for the chosen sample. The figures rely on the baseline
sample of school-course-year-quintile observations (See Section 3.1 for details).

56



Figure A.12: Testing Robustness to Violations of Assumption 1: Specification
Featuring a Restricted Sample of School-Courses Featuring More Typical

Distributions of Predicted Student Performance Based on Middle School Performance

Notes: This figure plots estimates of the function E[∆Y q(f)] that maps coursewide honors enrollment fraction
into expected standardized test performance by quintile of predicted performance for the baseline specification

but using an alternative sample that restricts the set of school-courses to those where the average student
would need to shift their quintile of the preparedness index by less than 1/3 in order for the school-course to
match the statewide (uniform) distribution of quintiles. 95% pointwise confidence intervals computed using

the delta method are displayed with blue dashes. The bottom right graph in each panel displays the density of
honors enrollment shares for the chosen sample.
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