

Mechanical properties of thermoelectric materials

Dr Hugo Williams Ramy Mesalam

hugo.williams@le.ac.uk

Authors and acknowledgements

Hugo Williams, Ramy Mesalam, Richard Ambrosi and the Radioisotope Power Systems team Department of Engineering and Department of Physics & Astronomy University of Leicester

Mike Reece, Kan Chen, Huanpo Ning Queen Mary University of London

Kevin Simpson, Mark Robbins and team European Thermodynamics Ltd., Kibworth, Leicestershire

Keith Stephenson European Space Agency, ESTEC, Noordwijk, The Netherlands

Colleagues at National Nuclear Laboratory and Airbus Defence and Space

Contents

- European Radioisotope Thermoelectric Generator (RTG) development
- Pilot study on mechanical property enhancement using SPS and nano-B₄C.
- Mechanical challenges for Space RTGs
- Research challenges and future perspective

RTG Development in the UK

- UoL has led RTG development in UK under contract to ESA since 2010:
 - PI: Prof. Richard Ambrosi, UoL
- Aim: Develop a first iteration RTG design for Europe optimised for ²⁴¹Am fuel
- Designed, built and tested a small-scale lab prototype:
 - Target power 5 W_e from 83 W_{th} (electrically heated)
 - Develop a test bed for the integrated system performance of thermoelectric materials & modules
- Produced a 10 W_e refined flight design based on this architecture
- Next phase of work will be a 'breadboard' for the refined flight design

RTG Laboratory prototype

▲ 8 mm, Ti heatshield

▲ 8 mm, Au heatshield

• 6 mm BST + B4C, Au heat shield

5

RTG Architecture & implications

For the thermoelectrics:

- Bi₂Te₃ based materials
- Compression & shear loading
- Modules with high aspect ratio legs

Enhanced Bi₂Te₃ thermoelectrics

- Most active research on thermoelectric materials focuses on zT
- Mechanical properties and behaviour of materials and modules is under-represented in the literature.

Conventional material production is by directional solidification

 Very poor strength and/or toughness
due to cleavage along the basal crystallographic plane // to growth Polycrystalline, fine grained materials: better mechanical properties

Williams HR et al. 2015. Spark Plasma Sintered bismuth telluride-based thermoelectric materials incorporating dispersed boron carbide. *Journal of Alloys and Compounds*. **626**. 368-374.

Enhanced Bi₂Te₃ thermoelectrics

- Literature indicates that addition of small volume fraction of nanoscale particles can enhance mechanical properties further and maintain/increase zT.
- Nano-scale B_4C added at up to 0.5 vol% to p-type $Bi_{0.5}Sb_{1.5}Te_3$ produced by mechanical alloying and Spark Plasma Sintering (SPS).

- p-type selected because generally more mechanically challenging than n-type
- Up to 0.2 vol% B_4C the effect on zT is negligible.

Williams HR et al. 2015. *Journal of Alloys and Compounds*. **626**. 368-374.

Enhanced Bi₂Te₃ thermoelectrics

- Addition of nano-scale B₄C significantly improved Vickers hardness over and above the benefit of a polycrystalline material.
- Fracture toughness also measured for polycrystalline material, conventional materials were so brittle that few valid failures were obtained

Material	Fracture toughness K _{lc} (MPa m ^{1/2}) ±1σ	
Conventional Directional Solidified	Invalid failures	
SPS	0.79 ± 0.03	
SPS + 0.2 vol% B ₄ C	0.80 ± 0.01	

Queen Mary

Williams HR et al. 2015. *Journal of Alloys and Compounds*. **626**. 368-374.

Bi₂Te₃ module mechanical integration

- Manufacture challenges for long legs with conventional materials
- RTG efficiency is linked to static compression strength of modules:
 - Study suggests good thermal conduction well within compression capability of modules, even with conventional materials
- Launch vibration imposes compression and shear

Mechanical Properties of Interest

Machinability

Reduce Strength Limiting Flaws!

$$\propto \left(\frac{HE}{(K_{Ic})^2}\right)^{-1}$$

Reduce Brittleness Index

Thermomechanical Response

Thermoelastic Approach

$$R = \frac{\sigma_f k (1 - \nu)}{E \, \alpha_{CTE}}$$

Energy Balance Approach

$$R = \frac{K_{Ic}(1-\nu^2)^{0.5}}{E\alpha_{CTE}}$$

Increase Resistance Index

Modal Response $([K] - \omega^2 [M]) \{\varphi\} = 0$ **Horizontal Loading** σ_{f} τ_{max}

Mechanical Characterisation of Thermoelectric Materials

	Property	Procedure	Coupon Size	Sample Size	Statistical Analysis
σ_{f}	Flexural Strength	ASTM C1161 (4pt-Bending)	$1.5 x 2.0 x 25 mm^3$	30	Weibull
K _{Ic}	Facture Toughness	ISO 23146 (SEVNB)	3.0 x 4.0 x 25 mm ³	30	Weibull
Е	Elastic Modulus	ISO 14577 (Nanoindentation)	N/S	30	Gaussian
Н	Hardness	ASTM C1327 (Vickers Ind)	N/S	30	Gaussian

Supporting crystallography (e.g. XRD) and Fractography (SEM)

Sample size for full 'flight' qualification - research studies in literature have used using smaller specimen groups

Polycrystalline & enhancements

Research group	Year	Thermoelectric Material	Processing Method	Enhancement Mechanism	Fracture Toughness improvement (%)	ZT Improvement (%)
Duan et al.	2012	CoSb _{2.875} Te _{0.125}	BM-SPS	nano _p -TiN	40	10
Schmidt et al.	2015	Mg ₂ Si	BM-SPS	nano _p -SiC	33 ^v	NS
Zhao et al.	2008	Bi ₂ Te ₃	MA-BM-SPS	nano _p -SiC	18 ^v	2
Liu et al.	2010	$Bi_{0.5}Sb_{1.5}Te_3$	BM-SPS	nano _p -SiC	12 ^v	10*
Duan et al.	2014	$Co_4Sb_{11.5}Te_{0.5}$	BM-SPS	$nano_{p}\text{-}Co_{4}Sb_{11.5}Te_{0.5}$	11	0
Akao et al.	2014	Zn ₄ Sb ₃	BM-HP	nano _w -SiC	10 ^v	-30
Akao et al.	2014	Zn_4Sb_3	BM-HE	nano _w -SiC	9×	-30
Wan et al.	2015	CeFe ₄ Sb ₁₂	MA-M-SPS	Short C _f	4	2

^v Measured by Vickers indentation method

The Current Trend

Bi₂Te₃ Based Alloys

Challenges and next steps

- Most thermoelectric development work reported is focused on zT enhancement.
- Literature on mechanical property enhancement requires review and consolidation, but there are promising approaches for improving properties
- Critical mechanical properties are almost certainly different for different configurations of thermoelectric device.
- Larger test campaigns will be required to generate statistically meaningful data for engineering application.
- In published literature, the direction of mechanical (and thermoelectric) property measurements is often not clearly stated, making comparisons difficult!
- Next phase of ESA project at UoL (working with QMUL/ETL) will investigate n-type Bi₂Te₃-based material, but also develop wider mechanical testing expertise and capability which we hope will support wider thermoelectric applications.

Support slides: material orientations

Williams HR et al. 2015. Spark Plasma Sintered bismuth telluride-based thermoelectric materials incorporating dispersed boron carbide. *Journal of Alloys and Compounds*. **626**. 368-374.

