

Improving Network Robustness through Edge Augmentation While Preserving Strong Structural Controllability

W. Abbas¹, M. Shabbir², H. Jaleel³, and X. Koutsoukos¹

¹Vanderbilt University, Nashville, TN, US ²Information Technology University, Lahore, Pakistan ³Lahore University of Management Sciences, Pakistan

American Control Conference, 2020

Controllability and Robustness in Networks

Controllability and robustness are crucial attributes of a networked dynamical system.

Network Controllability

How can we drive a network of agents from some initial state to a final state by controlling only a small subset of agents, referred to as leaders?

Network Robustness

How can we minimize the effect of node/edge removals on the overall network structure?

Structural aspect

How can we minimize the effect of noisy information on the network's overall performance

Functional aspect

Controllability and Robustness in Networks

Controllability and robustness properties in networks are conflicting at times^{1,2}.

How can we **improve one property** (for instance, by modifying the network graph) without deteriorating the other property?

¹F. Pasqualetti, C. Favaretto, S. Zhao, and S. Zampieri, "Fragility and controllability tradeoff in complex networks," ACC 2018.

²W. Abbas, M. Shabbir, M. Yazicioğlu and A. Akber, "On the trade-off between controllability and robustness in networks of diffusively coupled agents," ACC 2019.

Network Controllability

We consider a network of agents with Laplacian dynamics.

Network Controllability

Sometimes weights are unknown due to system uncertainties. So we want a controllability notion that is independent of edge weights.

 Strong Structural Controllability
 $\mathcal{L} =$
 $\Gamma = \begin{bmatrix} \mathcal{B} & -\mathcal{L}_w \mathcal{B} & \cdots & (-\mathcal{L}_w)^{n-1} \mathcal{B} \end{bmatrix}$ Dimension of SSC

 \mathbf{w} $\mathbf{Rank}(\mathbf{\Gamma})$ \mathbf{M}

$$= \begin{bmatrix} \times & \times & \times & \times & 0 & \times \\ \times & \times & \times & 0 & 0 & 0 \\ \times & \times & \times & 0 & \times & 0 \\ \times & 0 & 0 & \times & \times & 0 \\ 0 & 0 & \times & \times & \times & \times \\ \times & 0 & 0 & 0 & \times & \times \end{bmatrix}$$

Network Controllability and Graph Distances

Preserving distances between certain node pairs guarantees a lower bound on the SSC dimension.

→ A. Y. Yazıcıoğlu, W. Abbas, and M. Egerstedt, "Graph distances and controllability of networks," IEEE TAC, 2016

Network Controllability and Graph Distances

A subset of pair-wise distances between nodes in a graph provides a tight lower bound on the dimension of SSC.

Preserving these distances guarantees a lower bound on the SSC dimension.

Example:

Preserving distances between nodes in the following node pairs ensures that the dimension of SSC is at least 5.

$$(v_1, v_2)$$
 (v_1, v_3) (v_1, v_6) (v_1, v_7)
 (v_3, v_2) (v_3, v_6) (v_3, v_7)

Network Robustness

Kirchhoff index (K_f) of a graph is widely used^{1,2} to measure network's robustness to node/link failures and to noise.

In fact, network robustness, as measured by K_f , increases monotonically with edge additions.

However, adding edges could also deteriorate network's controllability.

How can we maximally add edges in a network to improve robustness while preserving its SSC?

¹W. Ellens, et al. "Effective graph resistance," *Linear Algebra and its Applications* (2011) ²G. F. Young, L. Scardovi, and N. E. Leonard, "Robustness of noisy consensus dynamics with directed communication," ACC 2010.

Improving Network Robustness while Preserving Controllability

Approach:

Add edges while preserving a SSC controllability bound.

Add edges while preserving distances between leaders and 'some' other nodes.

Basic problem:

Given a node pair (*a*, *b*), add maximum edges while preserving a distance between those two nodes

Distance Preserving Edge Augmentation (DPEA)

Given G = (V, E), and two nodes $a, b \in V$ such that $d_G(a, b) = k$. Add maximum no. of edges in G while preserving the distance between a and b.

Clique Chains

Optimal solution of the DPEA problem is related to a special class of graphs known as **clique chains**.

DPEA and Clique Chains

Theorem: For a given G = (V, E), and nodes $a, b \in V$ where $d_G(a, b) = k > 1$, optimal solution to the DPEA problem is a clique chain of the form $G_k(n_0 = 1, n_1, ..., n_k = 1)$.

We provide a method to construct such clique chains.

Clique Chain Construction for DPEA

Given:	G = (V, E),	$a, b \in V$,	d _G (a,	b) = k	
Construct: Clique chain $G_k(n_o = 1, n_1,, n_k = 1)$ solving DPEA.					
$S_i^{\mathbf{a}} = \{ v \in V \mid d_G(\mathbf{a}, v) \in V \mid d_G(\mathbf{a}, v) \in V \}$	v) = i Fixed: node	Fixed: nodes included in some		Every fixed node lies in a unique S_i^a (S_i^b).	
ch = 17 + 1	shortest par	between <i>a</i> and <i>b</i> .	Free	nodes can be placed in appropriate	
$S_i^{o} = \{ v \in V \mid d_G(b, \cdot) \}$	v = i Free: remain	Free: remaining nodes.		r S_i^b by creating edges.	

Edge Augmentation to Preserve SSC Controllability Bound

First Approach:

Node pairs:

 (v_1, v_5) (v_1, v_4) (v_1, v_3) (v_1, v_2) (v_1, v_6)

Solve DPEA for each node pair

First Approach (Intersection)

$$(v_{1}, v_{4}) \quad (v_{1}, v_{5}) \quad (v_{1}, v_{9}) \quad (v_{1}, v_{7}) \quad (v_{1}, v_{15}) \quad (v_{1}, v_{3}) \quad (v_{1}, v_{11}) \quad (v_{1}, v_{2}) \quad (v_{1}, v_{6})$$

$$(v_{4}, v_{5}) \quad (v_{4}, v_{9}) \quad (v_{4}, v_{7}) \quad (v_{4}, v_{15}) \quad (v_{4}, v_{3}) \quad (v_{4}, v_{11}) \quad (v_{4}, v_{2}) \quad (v_{4}, v_{6})$$

Solve DPEA for each node pair and then take common (intersecting) edges

Second Approach (Randomized Algorithm)

Basic idea remains the same:

Add edges while preserving distances between leaders and 'some' nodes.

Obtain all missing edges E'.

Randomly select a missing edge $e \in E'$.

If adding **e** does not change distances between desired node pairs, then keep it. Otherwise, discard it.

Repeat until no more missing edge is left

Does not change any desired distance, **so keep it**.

Node pairs:

 $(v_1, v_5) (v_1, v_4) (v_1, v_3) (v_1, v_2) (v_1, v_6)$

Second Approach (Randomized Algorithm)

Basic idea remains the same:

Add edges while preserving distances between leaders and 'some' nodes.

Obtain all missing edges E'.

Randomly select a missing edge $e \in E'$.

If adding **e** does not change distances between desired node pairs, then keep it. Otherwise, discard it.

Repeat until no more missing edge is left

Changes the distance between v₁ and v₆, so discard it.

Node pairs:

$$(v_1, v_5) (v_1, v_4) (v_1, v_3) (v_1, v_2) (v_1, v_6)$$

Proposition: The randomized algorithm returns an α -approximate solution with probability at least $1 - e^{-c(\frac{t}{T})^{\alpha t}}$, when repeated *c* times.

Here,

- $T \leq E'$ is the number of edges that are (individually) legal to add to the input graph.
- $t \leq T$ is the size of an (unknown) optimal solution.

Example:

If T = 100 and t = 0.92 T, then repeating the randomized algorithm c = 500 times gives a (3/4) - approximate solution with probability at least 0.8.

Simulation Results

Erdos – Renyi (ER) Random Graphs G(N,p):

 $N = 50, \quad p = 0.2$

(Each point is an average of 100 randomly generated instances.)

Lower bound on the dimension of SSC as a function of no. of leaders.

A comparison of Intersection (algo 1) and Randomized (algo 2) algorithms to add edges.

(Randomized algorithm is repeated c = 150 times.)

Simulation Results

Barabasi – Albert (**BA**) Random Graphs $G(N, \gamma)$:

 $N = 50, \qquad \gamma = 5$

(Each point is an average of 100 randomly generated instances.)

Lower bound on the dimension of SSC as a function of no. of leaders.

A comparison of Intersection (algo 1) and Randomized (algo 2) algorithms to add edges.

(Randomized algorithm is repeated c = 150 times.)

Summary & Conclusions

Add edges to improve robustness while preserving SSC

Add edges while preserving distances between certain nodes

DPEA problem

Intersection algorithm

Randomized algorithm

Thank You

(waseem.abbas@vanderbilt.edu)