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Trembling-hand perfect equilibrium

L R

U 1, 1 2, 0

D 0, 2 2, 2
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• Two pure strategy equilibria (U,L) and (D,R).

• Assume row player is playing (1- ε, ε) for 0 < ε < 1 …
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• In game theory, trembling hand perfect 

equilibrium is a refinement of Nash

equilibrium due to Reinhard Selten. A trembling 

hand perfect equilibrium is an equilibrium that 

takes the possibility of off-the-equilibrium play 

into account by assuming that the players, 

through a “slip of the hand” or tremble, may 

choose unintended strategies, albeit with 

negligible probability.
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• First we define a perturbed game. A perturbed game is a copy 

of a base game, with the restriction that only totally mixed 

strategies are allowed to be played. A totally mixed strategy is a 

mixed strategy where every pure strategy is played with non-

zero probability. This is the "trembling hands" of the players; 

they sometimes play a different strategy than the one they 

intended to play. Then we define a strategy set S (in a base 

game) as being trembling hand perfect if there is a sequence of 

perturbed games that converge to the base game in which there 

is a series of Nash equilibria that converge to S.
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Evolutionarily stable strategies

• A mixed strategy x* in a two-player symmetric game is an 

evolutionarily stable strategy (ESS) if for every mixed strategy x 

that differs from x* there exists ε0 = ε0(x) > 0 such that, for all ε

in (0, ε0),

(1- ε)u1(x,x*) + εu1(x,x) < (1- ε)u1(x*,x*) + εu1(x*,x)

• Interpret x* as distribution of types among “normal” individuals. 

Consider a mutation making use of strategy x, and assume that 

the proportion of this mutation in the population is ε.

• In ESS, the expected payoff of the mutation is smaller than the 

expected payoff of a normal individual, and hence the 

proportion of mutations will decrease and eventually disappear 

over time, with the composition of the population returning to 

being mostly x*. An ESS is therefore a mixed strategy of the 

column player that is immune to being overtaken by mutations.
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Sequential equilibrium

• Sequential equilibrium is a refinement of Nash Equilibrium for 

extensive form games due to David M. Kreps and Robert 

Wilson. A sequential equilibrium specifies not only a strategy 

for each of the players but also a belief for each of the players. 

A belief gives, for each information set of the game belonging to 

the player, a probability distribution on the nodes in the 

information set. A profile of strategies and beliefs is called an 

assessment for the game. Informally speaking, an assessment is 

a perfect Bayesian equilibrium if its strategies are sensible given 

its beliefs and its beliefs are confirmed on the outcome path 

given by its strategies. The definition of sequential equilibrium 

further requires that there be arbitrarily small perturbations of 

beliefs and associated strategies with the same property.
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Proper equilibrium
• Proper equilibrium is a refinement of Nash Equilibrium due to 

Roger B. Myerson. Proper equilibrium further refines Reinhard 

Selten's notion of a trembling hand perfect equilibrium by 

assuming that more costly trembles are made with significantly 

smaller probability than less costly ones.

• Given a normal form game and a parameter ϵ > 0, a totally 

mixed strategy profile σ is defined to be ϵ-proper if, whenever a 

player has two pure strategies s and s' such that the expected 

payoff of playing s is smaller than the expected payoff of 

playing s' (that is u(s, σ−i) < u(s′, σ−i)), then the probability 

assigned to s is at most ϵ times the probability assigned to s'. A 

strategy profile of the game is then said to be a proper 

equilibrium if it is a limit point, as ϵ approaches 0, of a sequence 

of ϵ-proper strategy profiles.
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Matching pennies with a twist

Guess 

heads up

Guess Tails 

up

Grab penny

Hide Heads 

Up

-1,1 0,0 -1,1

Hide Tails 

Up

0,0 -1,1 -1,1
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• The Nash equilibria of the game are the strategy profiles where Player 2 

grabs the penny with probability 1. Any mixed strategy of Player 1 is in 

(Nash) equilibrium with this pure strategy of Player 2. Any such pair is even 

trembling hand perfect. Intuitively, since Player 1 expects Player 2 to grab the 

penny, he is not concerned about leaving Player 2 uncertain about whether it 

is heads up or tails up. However, it can be seen that the unique proper 

equilibrium of this game is the one where Player 1 hides the penny heads up 

with probability 1/2 and tails up with probability 1/2 (and Player 2 grabs the 

penny). This unique proper equilibrium can be motivated intuitively as 

follows: Player 1 fully expects Player 2 to grab the penny. However, Player 1 

still prepares for the unlikely event that Player 2 does not grab the penny and 

instead for some reason decides to make a guess. Player 1 prepares for this 

event by making sure that Player 2 has no information about whether the 

penny is heads up or tails up, exactly as in the original Matching Pennies 

game.
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Critiques of Nash equilibrium

• Is it too strict?

– Does not exist in all games

– Might rule out some more “reasonable” strategies (e.g., a 

“safer” maxmin strategy)

• Not strict enough?

– Potentially many equilibria to select through

– Refinements: subgame perfect, trembling-hand perfect, 

Sequential equilibrium, proper equilibrium, evolutionarily 

stable strategy, …

• Just right?

• It depends??
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Repeated games

• Γ= (N, (Si) i in N, (ui) i in N)

• Players play Γ over and over. 

• Three cases:

– Finite number of stages T, and every player wants to 

maximize his average payoff.

– The game lasts an infinite number of stages, and every player 

wants to maximize the upper limit of his average payoffs

– The game lasts an infinite number of stages, and each player 

wants to maximize the time-discounted sum of his payoffs.

• Let M = maxi in N maxs in S |ui(s)|
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D C

D 1, 1 4, 0

C 0, 4 3, 3
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• At every equilibrium of the two-stage repeated game, 

the players play (D,D) in both stages.

• Proof:

– Suppose instead there exists an equilibrium in which the 

players do not play (D,D) with positive probability in some 

stage. Let t in {1,2} be the last stage in which there is 

positive probability they do not play (D,D) and suppose that 

in this event, Player I does not play D at stage t. This means 

that if the game continues after stage t the players will play 

(D,D). We will show that this strategy cannot be an 

equilibrium strategy.
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• Case 1: t = 1.

– Consider the strategy of Player I at which he plays D in both 

stages. We will show that this strategy grants him a higher 

payoff. Since D strictly dominates C, Player I’s payoff rises 

if he switches from C to D in the first stage. And since, by 

assumption, after stage t the players play (D,D) (since stage t 

is the last stage in which they may not play (D,D)), Player I’s 

payoff in the second stage was supposed to be 1. By playing 

D in the second stage, Player I’s payoff is either 1 or 4 

(depending on whether Player II plays D or C); in either case, 

Player I cannot lose in the second stage. The sum total of 

Player I’s payoffs therefore rises.
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• Case 2: t = 2.

– Consider the strategy of Player I at which he plays in the first 

stage what the original strategy tells him to play, and in the 

second stage he plays D. Player I’s payoff in the first stage 

does not change, but because D strictly dominates C, his 

payoff in the second stage does increase. The sum total of 

Player I’s payoffs therefore increases.
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• Note that despite the fact that at every equilibrium of 

the two-stage repeated game the players play (D,D) in 

every stage, it is possible that at equilibrium, the 

strategy C is used off the equilibrium path; that is, if a 

player does deviate from the equilibrium strategy, the 

other player may play C with positive probability. For 

example, consider the following strategy σ1:

– Play D in the first stage.

– In the second stage, play as follows: if in the first stage the 

other player played D, play D in the second stage; otherwise 

play [1/8(C), 7/8(D)] in the second stage.

• Direct inspection shows that the strategy vector (σ1, σ2) 

is an equilibrium of the two-stage repeated game.
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• As we saw, in the finitely repeated Prisoner’s 

Dilemma, at every equilibrium the players play 

(D,D) in every stage. Does this extend to every 

repeated game? That is, does every equilibrium 

strategy of a repeated game call on the players 

to play a one-stage equilibrium in every stage? 
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D C P

D 1, 1 4, 0 -1, 0

C 0, 4 3, 3 -1, 0

P 0, -1 0, -1 -2, -2
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• This game is similar to the Prisoner’s Dilemma, with the 

addition of a third action P to each player, yielding low payoffs 

for both players. Note that action P (Punishment) is strictly 

dominated by action D. After eliminating P for both players, we 

are left with the one-stage Prisoner’s Dilemma, whose only 

equilibrium is (D,D). It follows that the equilibrium is (D,D). It 

follows that playing (D,D) in both stages of repeated game is an 

equilibrium. In contrast with standard repeated Prisoner’s 

Dilemma, there are additional equilibria in the repeated game:

– Play C in the first stage

– If your opponent played C in the first stage, play D in the second stage. 

Otherwise, play P in the second stage.
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• If both players play this strategy, they will both play C 

in the first stage and D in the second stage, and each 

player’s total payoff will be 4 (in contrast to the total 

payoff 2 that they receive under the equilibrium of 

playing (D,D) in both stages). 
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• Folk Theorem: Under some technical conditions the set 

of equilibrium payoffs is (or approximates) the set of 

feasible and individually rational payoffs of the base 

game. Can be extended for discounted infinitely 

repeated games and to uniform ε-equilibria for finitely 

repeated games.
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• Any Nash equilibrium payoff in a repeated game must satisfy 

two properties:

• 1. Individual rationality (IR): the payoff must weakly 

dominate the minmax payoff profile of the constituent stage 

game. I.e, the equilibrium payoff of each player must be at least 

as large as the minmax payoff of that player. This is because a 

player achieving less than his minmax payoff always has 

incentive to deviate by simply playing his minmax strategy at 

every history.

• 2. Feasibility: the payoff must be a convex combination of 

possible payoff profiles of the stage game. This is because the 

payoff in a repeated game is just a weighted average of payoffs 

in the basic games.
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• Folk theorems are partially converse claims: they say 

that, under certain conditions (are different in each folk 

theorem), every payoff that is both IR and feasible can 

be realized as a Nash equilibrium payoff profile in the 

repeated game.

• There are various folk theorems, some relate to 

finitely-repeated games while others relate to 

infinitely-repeated games.
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• For example, in the one-shot Prisoner's Dilemma, if 

both players cooperate that is not a Nash equilibrium. 

The only Nash equilibrium that both players defect, 

which is also a mutual minmax profile. One folk 

theorem says that, in the infinitely repeated version of 

the game, provided players are sufficiently patient, 

there is a Nash equilibrium such that both players 

cooperate on the equilibrium path. But in finitely 

repeated game by using backward induction it can be 

determined that players play Nash equilibrium in last 

period of the game which is defecting.
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Fictitious play

• Simple “learning” update rule

• Initially proposed as an iterative method for computing Nash 

equilibria in zero-sum games, not as a learning model!

• Brown, G.W. (1951) “Iterative Solutions of Games by Fictitious 

Play”

• Algorithm:

Initialize beliefs about the opponent’s strategy

Repeat:

1) Play a best response to the assessed strategy of 

the opponent

2) Observe the opponent’s actual play and update 

beliefs accordingly
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• In fictitious play, the agent believes that his 

opponent is playing the mixed strategy given by 

the empirical distribution of the opponent’s 

previous actions. That is, if A is the set of the 

opponent’s actions, and for every a in A we let 

w(a) be the number of times that the opponent 

has played action a, then the agent assess the 

probability of a in the opponent’s mixed 

strategy as

– P(a) = w(a) / ∑a’ in Aw(a’)
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• For example, in a repeated Prisoner’s Dilemma game, if the 

opponent has played C, C, D, C, D in the first five games, before 

the sixth game he is assumed to be playing the mixed strategy 

(0.6, 0.4). 

• In general the tie-breaking rule chosen has little effect on the 

results of fictitious play.

• On the other hand, fictitious play is very sensitive to the players’ 

initial beliefs. This choice, which can be interpreted as action 

counts that were observed before the start of the game, can have 

a radical impact on the learning process. Note that one must pick 

some nonempty prior belief for each agent; the prior beliefs 

cannot be (0,…0), since this does not define a meaningful mixed 

strategy.
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Heads Tails

Heads 1, -1 -1, 1

Tails -1, 1 1, -1
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• As the number of rounds tends to infinity, the empirical 

distribution of the play of each player will converge to 

(0.5,0.5). If we take this distribution to be the mixed 

strategy of each player, the play converges to the 

unique Nash equilibrium of the normal form stage 

game, that in which each player plays the mixed 

strategy (0.5,0.5).



32

• Definition: An action profile a is a steady state (or 

absorbing state) of fictitious play if it is the case that 

whenever a is played at round t it is also played at 

round t+1 (and hence in all future rounds as well).

• Theorem: If a pure-strategy profile is a strict Nash 

equilibrium of a stage game, then it is a steady state of 

fictitious play in the repeated game.

• Theorem: If a pure-strategy profile is a steady state of 

fictitious play in the repeated game, then it is a 

(possibly weak) Nash equilibrium in the stage game.
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• Note that one cannot guarantee that fictitious play 

always converges to a Nash equilibrium, if only 

because agents can only play pure strategies and a 

pure-strategy Nash equilibrium may not exist in a 

given game. However, while the stage game strategies 

may not converge, the empirical distribution of the 

stage game strategies over multiple iterations may. And 

indeed this was the case in the Matching Pennies 

example given earlier, where the empirical distribution 

of each player’s strategy converged to their mixed 

strategy (in the unique Nash equilibrium of the game).
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• Theorem: If the empirical distribution of each 

player’s strategies converges in fictitious play, 

then it converges to a Nash equilibrium.

• Note that this result does not make any claims 

about the distribution of the particular outcomes 

played, only about the final strategy profile.
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Anti-Coordination game

• Two pure Nash equilibria, (A,B) and (B,A) with 

payoffs of 1, and one mixed where both do 0.5 

A/B with payoffs of 0.5. Suppose the agents use 

fictitious play with weights (1, 0.5).

A B

A 0, 0 1, 1

B 1, 1 0, 0
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• The play of each player converges to the mixed 

strategy (0.5, 0.5), which is the mixed strategy Nash 

equilibrium. However, the payoff received by each 

player is 0, since the players never hit the outcomes 

with positive probability. Thus, although the empirical 

distribution of the strategies converges to the mixed 

strategy Nash equilibrium, the players may not receive 

the expecte dpayoff of the Nash equilibrium, because 

their actions are miscorrelated.
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No-regret learning

• Let αt be the average per-period reward the 

agent received up until time t, and let αt(s) be 

the average per-period reward the agent would 

have received up until time t had he played pure 

strategy s instead, assuming all other agents 

continue to play as they did. 

• Definition: The regret an agent experiences at 

time t for not having played s is 

Rt(s) = αt(s) - αt.
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• A learning rule is said to exhibit no regret if it guarantees that 

with high probability the agent will experience no positive 

regret.

• Definition: A learning rule exhibits no regret if for any pure 

strategy of the agent s it holds that Pr([lim inf Rt(s)] <= 0) = 1.

• This “in hindsight” requirement ignores the possibility that the 

opponents’ play might change as a result of the agent’s own 

play. For example, in finite-repeated Prisoner’s Dilemma, the 

only no-regret strategy is to always defect. 



41

Examples of no-regret learning rules

• Regret matching: At each time step each action is 

chosen with probability proportional to its regret. 

• Smooth Fictitious Play: Instead of playing the best 

response to the empirical frequency of the opponent’s 

play, as fictitious play prescribes, one introduces a 

perturbation that gradually diminishes over time. 
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Counterfactual regret minimization

• Both players simultaneously play no-regret strategies.

• Shown in limit to converge to Nash equilibrium in 

many classes of games (even some classes of games 

with imperfect recall – skew well-formed games).

• Can be run in multiplayer games (produced a strong 

agent for three-player limit Texas hold ‘em), though no 

significant theoretical guarantees

– Guarantees that strictly dominated actions and strategies 

won’t be played

• Used by strongest computer poker agents (all variants)

• Recently applied to medicine (robust diabetes 

management) and national security.
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Opponent modeling and exploitation

• Opponent modeling: construct prediction of opponent’s 

strategy

– Prior, how to integrate observations with prior to construct 

posterior

• Opponent exploitation:

– Rule for responding to the opponent model

• Assuming a Dirichlet prior with multinomial sampling, 

Fictitious play is optimal.

• Much more challenging in imperfect-information 

games

– Can’t apply fictitious play because we don’t know which 

information set action was taken at, so don’t know which 

node to increase counter for.
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Exploitation-exploitability tradeoff



Full 
opponent 

exploitation

Nash 
equilibrium

????

Exploitability

Exploitation
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Robust opponent exploitation

• Restricted Nash Response: assume that opponent follows model 

σ* with probability p, and plays best response to our strategy 

with probability 1-p. Compute Nash equilibrium in this game, 

where we pick strategy x that is a best response to pσ* + (1-p)y, 

and he picks y that is best response to x.
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• A strategy which can be exploited for no more than ε is 

ε-safe.

– The exploitability of a strategy is the difference between the 

game value and the performance against a nemesis. E.g., in 

Rock-Paper-Scissors, always playing Rock has exploitability 

1, and the Nash equilibrium has exploitability 0.

• Theorem: For all σ2 in Σ2, for all p in (0,1], if σ1 is a p-

RNR to σ2, then there exists an epsilon such that σ1 is 

an ε -safe best response to σ2.

– ε = expl (σ1)
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Safe opponent exploitation

• Definition. Safe strategy achieves at least the 

value of the (repeated) game in expectation

• Is safe exploitation possible (beyond selecting 

among equilibrium strategies in the one-shot 

game)?
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Rock-Paper-Scissors

• Suppose the opponent has played Rock in each of the 

first 10 iterations, while we have played the 

equilibrium σ*

• Can we exploit him by playing pure strategy Paper in 

the 11th iteration?

– Yes, but this would not be safe! 

• By similar reasoning, any deviation from σ* will be 

unsafe

• So safe exploitation is not possible in Rock-Paper-

Scissors
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Rock-Paper-Scissors-Toaster

• t is strictly dominated

– s does strictly better than t regardless of P1’s strategy

• Suppose we play NE in the first round, and he plays t

– Expected payoff of 10/3

• Then we can play R in the second round and guarantee at 
least 7/3 between the two rounds

• Safe exploitation is possible in RPST!

– Because of presence of ‘gift’ strategy t

rock paper scissors toaster

Rock 0,0 -1, 1 1, -1 4, -4

Paper 1,-1 0, 0 -1,1 3, -3

Scissors -1,1 1,-1 0,0 3, -3



50

When can opponent be exploited safely?

• Opponent played an (iterated weakly) dominated strategy?

• Opponent played a strategy that isn’t in the support of any eq?

• Definition. We received a gift if opponent played a strategy such that we have 

an equilibrium strategy for which the opponent’s strategy isn’t a best response

• Theorem. Safe exploitation is possible iff the game has gifts

R is a gift 

but not iteratively weakly dominated

L M R

U 3 2 10

D 2 3 0

L R

U 0 0

D -2 1

R isn’t in the support of any equilibrium

but is also not a gift
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Exploitation algorithms

1. Risk what you’ve won so far

2. Risk what you’ve won so far in expectation (over nature’s & own 

randomization), i.e., risk the gifts received

– Assuming the opponent plays a nemesis in states we don’t observe

• Theorem. A strategy for a two-player zero-sum game is safe iff it 

never risks more than the gifts received according to #2

• Can be used to make any opponent model / exploitation algorithm 

safe

• No prior (non-eq) opponent exploitation algorithms are safe

• We developed several new algorithms that are safe

– Present analogous results and algorithms for extensive-form 

games of perfect and imperfect-information
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Risk What You’ve Won in Expectation 

(RWYWE)

• Set k1 = 0

• for t = 1 to T do

– Set πt
i to be kt-safe best response to M

– Play action at
i according to πt

i

– Update M with opponent’s action at
-i

– Set kt+1 = kt + ui(π
t
i, a-i) – v* 
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Assignment

• HW3 due 3/2

• Midterm on 3/7 (midterm review on 3/2).

– Will cover material from lectures and homeworks (will not cover material 

from the textbooks that was not covered in lectures or homeworks).

– 3 parts: multiple choice, true/false with explanation, analytical exercises

• No class 2/28


