
The Journal of Middle East and North Africa Sciences 2020; 6(02)            http://www.jomenas.org 

 

   1 

Forecasting Value-at-Risk of Asian Stock Markets Using the RDCC-GARCH Model Under 

Different Distributional Assumptions 

 

  
Saima Farid 1 • Farhat Iqbal 2 

 
1 Balochistan University of Information Technology Engineering and Management Sciences, Quetta, Balochistan, Pakistan 

2 Department of Statistics, University of Balochistan, Quetta, Balochistan, Pakistan 

farhatiqb@gmail.com 

 

 

Abstract. The aim of this paper was to accurately and efficiently forecast from multivariate generalized autoregressive 

conditional heteroscedastic models. The Rotated Dynamic Conditional Correlation (RDCC) model with the Normal, 

Student’s-t and Multivariate Exponential Power distributions for errors were used to account for heavy tails commonly 

observed in financial time series data. The daily stock price data of Karachi, Bombay, Kuala Lumpur and Singapore stock 

exchanges from January 2008 to December 2017 were used. The predictive capability of RDCC models, with various error 

distributions, in forecasting one-day-ahead Value-at-Risk (VaR) was assessed by several back-testing procedures. The 

empirical results of the study revealed that the RDCC model with Student’s-t distribution produced more accurate and reliable 

risk forecasts than other competing models. 
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1. Introduction: 

Financial markets are considered to have an 

intense role in economic conditions for countries all over 

the world. In this regard, one of the most important 

characteristics of financial markets is to model and 

estimate the volatility. Modeling volatility is important 

as it displays the dynamic fluctuations in stock prices 

(Raja and Selvam, 2011). A measure of uncertainty for 

changes in asset prices is considered as the volatility and 

it was used earlier by Markowitz (1952) as a measure of 

risk.  

It is a well-established fact that volatility varies 

over a specific period of time and tends to cluster in 

periods: large changes in stock prices tend to have 

colossal changes in prices, and minor changes in stock 

prices tend to have small changes in prices. This 

phenomenon, when standard deviation differs over time, 

is called heteroscedasticity. Furthermore, the volatility is 

found to be autocorrelated, which elaborates that today’s 

volatility depends upon the former volatilities.  

Measuring and estimating the stock price 

volatility is a significant perception in finance in wide-

ranging, and an investment decision, owing to its 

dynamic behavior. That headed the researchers to 

anticipate various statistical and mathematical models to 

capture the volatility of stock earnings in financial 

markets all over the world. The innovative study in this 

field was put forward by Engle (1982), who first 

proposed the autoregressive conditional heteroscedastic  

(ARCH) model that permits the conditional variance to 

change over time as a function of past errors leaving the 

unconditional variance constant. Bollerslev (1986) 

suggested the generalized ARCH (GARCH) model 

permits longer memory and a more flexible lag structure. 

In this model, the conditional variance is modeled as a 

linear function of past sample variance, on the other 

hand, it also allows lagged conditional variance to enter 

in the model. 

As financial volatilities differ with the passage of 

time, so it is crucial to predict the dependence in the co-

movements of returns. Bollerslev et al. (1988) 

introduced a multivariate GARCH (MGARCH) model 

to estimate the volatilities and covolatilities for more 

than one asset returns. They defined the MGARCH 

model such as all lagged conditional variances and 

covariance were functions of every conditional variance 

and covariance as a cross product of squared and lagged 

square returns and observed that the MGARCH model 

brings flexibility in multivariate modeling. The number 

of estimated parameters increases with the increase in the 

dimension of the system in MGARCH models and to 

overcome this problem Bollerslev (1990) presented the 

Constant Conditional Correlation GARCH (CCC-

GARCH) model. In the CCC-GARCH model, the 

conditional correlations are constant, and the conditional 
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correlation is proportional to the product of the 

corresponding conditional standard deviation. Bauwens 

et al. (2006) provided a comprehensive review of 

multivariate GARCH models.  

Although the CCC-GARCH model was 

computationally attractive but the assumption of 

constant conditional correlation was found to be too 

restrictive. Tse and Tsui (2002) introduced a Time-

Varying Correlation (TVC) model to capture the time-

varying correlations of assets over time. Engle (2002) 

introduced the Dynamic Conditional Correlation 

GARCH (DCC-GARCH) model that could measure 

time-varying correlations and forecast the future 

correlations in large dimensions. Tsay (2006) reviewed 

the multivariate volatility models and concluded that a 

simple DCC model estimates the conditional variances 

and correlations jointly and satisfies the positive definite 

constraints.  

The Dynamic Conditional Correlation DCC 

model of variances and correlations with economic loss 

function was evaluated by Engle and Colacito (2006). 

They constructed portfolios to reduce the predicted 

variance of returns and estimates the accuracy of the 

covariance matrix by using asymmetric DCC, DCC-

Mean Reverting (DCC-MR) and Baba, Engle, Kroner, 

and Kraft (BEKK) models and concluded that results 

acquired from asymmetric DCC models were found to 

be significant. Cappiello et al. (2006) proposed the 

Asymmetric Generalized DCC (AG-DCC) model that 

was applicable to study correlation dynamics among 

various asset returns and investigated the existence of 

asymmetric responses in conditional variances and 

correlations. 

Iqbal (2013a, 2013b) considered a robust 

estimation of variants of multivariate GARCH models. 

To study the financial data in high dimensions, 

Noureldin et al. (2014) proposed a new class of 

multivariate model labeled as Rotated Autoregressive 

Conditional Heteroscedastic (RARCH) model. They 

showed a way to fit multivariate GARCH models with 

the help of targeting covariance. The primary structure 

was to rotate the returns on various BEKK and DCC 

models called them the rotated DCC (RDCC) and rotated 

BEKK (RBEKK) models. They applied various dynamic 

specifications of RBEKK and RDCC models and 

showed that these models provide better results as 

compared to OGARCH and GOGARCH models.  

Braione and Scholtes (2016) used the RBEKK 

model and showed that for an accurate forecast of  

Value-at-Risk (VaR) the fat tailedness and skewness 

must be considered for better VaR forecast. The Normal, 

Student’s-t and Multivariate Exponential Power 

distributions and their skewed versions were used for 

VaR forecasting and the accuracy assessed using 

backtesting procedures and concluded that skew-

Student’s-t outperforms other models. Nieto and Ruiz 

(2016) focused on VaR forecast, under practical 

applications of insurance and financial institutions and 

evaluate the time series of financial returns. 

The focus of this study was to forecast one-day-

ahead VaR from RDCC GARCH models with Normal 

and heavy-tailed distributions such as Student’s-t and 

Multivariate Exponential Power distributions. The daily 

stock exchange data of four Asian stock markets 

(Pakistan, India, Malaysia, and Singapore) were used. 

The RDCC model was used to estimate and forecast the 

VaR and various backtesting procedures were applied to 

quantify the accuracy of VaR forecast at 1% and 5% 

confidence levels. For the growth of the economy, better 

models of volatility and accurate forecasts of risk are 

necessary. The findings of this study may help in 

providing accurate and reliable forecasts for high 

dimension asset returns. 

 

2. The Rotated DCC-GARCH Model: 

In this research, we applied the efficient 

multivariate GARCH model called the Rotated 

Dynamics Conditional Correlation (RDCC) model 

proposed by Noureldin et al. (2014). This model works 

on the transformation of devolatized returns and enables 

target variances and covariances approach. This model 

enables one to estimate and forecast financial data with 

many assets and parameters.  

The returns for the individual series are calculated 

on the log difference of the prices of the series.  
 

    ��,� � 100�	
 �
�,��  � 	
 �
�,����� 
 
In multivariate formation, vector �� depend on the 

set of information ��  with zero mean and returns 

variance ��. In general, we can express as 
 ��� |���~��0,  ��� 
 
In RDCC models ���  are the returns for  � �1,2,3, ⋯ ,  ,  with ! � 1,2, … �  dimensional vector of 

asset returns. The mean return, with a given set of 

information, is zero, i.e., #���,�$����� � 0  and the 

conditional covariance  %&����,�$����� � �� . The 

standard DCC model of Engle (2002) decomposed the 

variance-covariance matrix as, 
 �� � '�(�'� 
 
where (� is the conditional correlation matrix of ���  and '�  is a diagonal matrix of conditional standard 

deviations, i.e. '� � ,!&-�.ℎ��,��  for ! � 1,2, ⋯ , �. 
Conditional variances   ℎ��,�  are typically described by 

GARCH-type models. The standardized returns of 

potentially correlated returns are  1� � '����� , where �� � ���,� , �2,� , ⋯ , �3,�� is the vector of daily returns. 

The unconditional covariances of returns are Π �5&�〈1�〉, and the conditional correlation is expressed by 

the following relationship: 
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 (� � �8� ⊗ �3�� 2: 8��8� ⊗ �3��� 2:          �2.1� 

where ⊗ is element-wise Hadamard product, 8� 

is � ; �  covariance matrix of 1�  and �3  is the N-

dimensional identity matrix. 

The RDCC models is defined as: 
 8� � �1 � < � =�Π > <1���1���? > =8���     �2.2� 

 
Here we assume  < @ 0 and = A0 and covariance stationary requires < > = M 1. This 

confirms that (� is the correlation matrix. For multiple 

assets where volatility estimation prediction and forecast 

are more flexible, we can write as: 
 8� � �Π � NΠN? � OΠO?� > N1���1���? N? > O8���O?       

                                               �2.3� 
 
Ensuring the condition of positive semi-definite matrix  �Π � NΠN? � OΠO?�, 

  
It is clear from Equation (2.3) that rotation of 

standardizing returns enables us to fit into the 

specification of the flexible dynamic of RDCC, Non-

standardized returns are decomposed as   
       Π � 
P⋀P
P? 
 
P  is the eigenvector and ⋀P holds the eigenvalues 

on the main diagonal. 

The rotated standardized returns are constructed 

as 1�R � 
P⋀P�� 2: 
P?1� 
 

where 5&��1�R � � �3  so, the variances of rotated 

standardized returns highlighted by            

 

  8�∗ � var⟨1�R|����⟩ 

        8�∗ � ��3 � NN? � OO?� > N1�̃��1�̃��? N? > O8���∗ O? 
                                                               �2.4�       8�∗ � �3 For � � 0 

 
The correlation matrix is constructed as 
 8� � 
P⋀P�� 2: 
P? 8�∗
P⋀P�� 2: 
P? 
 
The correlation matrix constructed according to 

Equation (2.1) 

Setting N � <� 2: �3  &
,  O � =� 2: �3   gives 

Scalar-RDCC model. 
 
This type of specification controls all elements of 8�X to share the common dynamics of the parameters. 

The process is co-variance stationary under the 

assumption of < > = M 1.  

The terms providing scalar RDCC model  1� �'����� 

Are standardized correlated returns.   8� � �8Y � N8YN? � O8YO?� > N1���X 1���N? > O8���O?
                                                                         �2.5� 

where A and B are � ; �  parameter matrices. 1� �
'��

[\��  are the standardized returns and 8Y � 5&�〈1�〉 is 

the unconditional matrix of 1�:  The term 8Y � N 8Y N? �O 8YO?must be positive semi-definite matrix.  

The defined model is the DCC parameterization 

of targeted correlations, which means  8� revert to 8Y  in 

the covariance stationary model. The DCC targeted-

correlation model estimated by Maximum Likelihood 

Estimation (ML-estimation) because, 8�  is estimated 

separately in the first stage and method of the moment is 

implemented to estimate 8Y.  A class of distributions for 

standardized error  1�] , such as multivariate Normal, 

Student’s-t and Multivariate Exponential Power 

distributions can be used, and the resulting models are 

called RDCC-N, RDCC-T, RDCC-MEP models, 

respectively. 

 

3. Value-at-Risk: 

In financial assets returns volatility measures how 

much prices move each day (a weak, a month or a year). 

High volatility means higher profit or risk so volatility is 

a measure of risk and Value-at-Risk (VaR) is a measure 

of market risk <% maximum loss with the specified time 

horizon. In this section, we forecast maximum loss 

(VaR) to RDCC models for portfolios.  We are interested 

that the returns of the portfolio’s fall below a certain 

limit; that certain limit is VaR. It measures the market 

risk of the portfolios, generated with the degree of 

confidence over the time horizon. To calculate VaR for 

portfolio returns, we manipulate the quantile as a relative 

term, at significance level <.  

 

3.1. VaR Estimation 

Let �� indicated as N-dimensional time vector of daily 

returns at time t and _�  is the vector of equal weights up 

to time � � 1. The portfolio returns are obtained as     �̀ ,� � _′����� 

and the portfolio VaR at time t:                 

               %&(�,b � c`,�db ,                                         �3.3�  c`,�2 � _′�����|���_���               ��|��� : Conditional covariance matrix of returns under 

given information set at time � � 1,  _�: N-dimensional vector of  equal weights, N denotes 

the number of assets,     
 

                  _� � �_�,� , ⋯ , _3,��,  _�=�3 
 c`,�: is the portfolio standard deviation and dbis the left 

quantile of the conditional distribution at  <%. To obtain 

a one-step-ahead forecast of conditional variance-

covariance matrix recursively as: 

        

             �f�g� � #���g�|���                                   �3.4� 
 

To do h-step ahead forecast:             
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 �f�gh � #���gh|���                                 �3.5� 

To obtain portfolio %&( forecasts we use the notation: 

                %&(�gh,b � ci`,�ghdb                            �3.6� 
 

Several methods are available for the calculation 

of VaR but we used two different approaches, the 

parametric approach and the Non-Parametric approach. 

The Non-Parametric approach comprises historical 

simulation which is based on historical data. Whereas the 

parametric method makes an assumption on the 

distribution of the returns. The parametric approach can 

be alienated into two parts (Dowd, 2002): 

The conditional parametric approach is based on 

GARCH type models the volatility can be modeled with 

any GARCH family model (Univariate or Multivariate), 

and then the fitted model is used for the estimation of 

VaR. 

In an unconditional parametric approach, the 

volatility of the returns is time-invariant, and they do not 

depend upon the period at which returns are observed, 

the calculated volatility based on all the returns is then 

used for the estimation of VaR. 

 

3.2. Historical Simulation 

Historical simulation (HS) is a method of 

calculating VaR, it uses past data of the returns to 

calculate VaR forecasts. HS forecast forthcoming losses 

based on historical performance. In the multivariate case 

at first, the vectors of the weights for the portfolio need 

to be defined and the sum of elements must be equals to 

unity. The HS in the multivariate case can be calculated 

in the following steps (Danielsson, 2011): 

Compute sample portfolio returns,  �̀ ,� � _′����� . 

Assort the sample portfolio returns and denote it by kl`mn�o. 

Calculate <% quantile of the sample portfolio returns, d � < ∗  . 

Extract d�h value from the assorted returns kl`mn�o. 

Historical simulation VaR,  %&(`mn� � l`mn�p< ∗  q. 
 

3.3. Unconditional Parametric Approach 

Parametric methods used for the estimation of 

VaR are based on the distribution of the returns. The 

parametric approach evaluates VaR directly from the 

volatility of the returns. In the unconditional parametric 

approach, the volatility which is obtained from the 

distribution of returns remains constant throughout the 

VaR period (Danielsson 2011). In this research, we 

derived VaR with Normal, Student’s-t and multivariate 

Exponential Power distributions.   

 

4. Backtesting: 

Wald (1950) introduced the loss function for 

measuring the difference between actual and estimated 

values of the data. A loss function is an approach applied 

to rank the accuracy of forecasted VaR by (Piontek, 

2014). Romero et al. (2014) indicated that various 

backtesting procedures were applied in the literature, 

classified into two groups: backtesting based on loss 

function and backtesting based on statistical tests. In this 

research, we apply backtesting for tests and as well as for 

loss function. Backtesting is a check on the accuracy of 

VaR forecasts and assesses the relationship of potential 

loss and accuracy of risk forecast. To predict the 

accuracy of forecasted  VaR, we implement multiple 

methods regarding statistical backtesting criteria and 

apply those tests we take start from indicator function: 

 

       ���<� � r1,              !s �̀ ,� t %&(�<�0,             !s �̀ ,� A %&(�<�             �4.1�   
 

where ��  is the indicator function with value 1 if the 

predicted VaR exceed than the portfolio returns at the 

time �� � 1�  according to Christoffersen (1998), 

elsewhere ��  is zero. The sequence must satisfy the 

independence of exception and two properties of the 

correct failure rate, and then < ∗ 100% probability is the 

probability of VaR violation. These properties combined 

into one statement to assess that, this hit function 

independently identically distributed �!!,�  with    

Bernoulli random variable by the probability  
 , ���
�~��uO�
�.   We use different categories of VaR 

accuracy tests in this paper. 

 Violation Ratio, 

 Unconditional Coverage test, 

 Independence test, and 

 Dynamic Quantile test. 

 

4.1. Violation Ratio 

The VaR is violated if actual loss surpasses the 

VaR forecast. The violation ratio can be attained by 

diving the sum of actual exceedance by the expected 

number of exceedances given the forecasted period. The 

violation ratio is intended by (Danielsson, 2011) %!v	&�!v
 (&�!v � # ∗ <                       �4.2�   
where, 

E = Number of actual exceedances. 

T= Total number of observations used to forecast VaR. <= Probability level of VaR 

Many risk managers agree that violation ratio between 

0.8 and 1.2 is reliable, in the case when the violation ratio 

is less than 0.5 or exceeds 1.5, the model is 

unsatisfactory. 

 

4.2. Unconditional Coverage Test 

The first published statistical backtest was a 

coverage test (Kupiec, 1995). The test is an 

unconditional coverage (UC) test or Proportion of 

Failure (POF) test. Its null hypothesis indicates that the 
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violated VaR percentage or failure rate 
 is consistent 

with the given confidence interval <. �w: 
 � <,5: is the 

sum of violations and s: is the length of the forecasting 

period. 
 

xy � �2 z	
 {
|�1 � 
�}�|

~|�1 � 
~�}�|��                  �4.3�  

 

The maximum likelihood estimator  
~ � }|  under 

the alternative hypothesis. The null hypothesis was 

rejected as the critical value �2�1� exceeded on <%.  

 

4.3. Independence of Violations: 

The Kupiec test has concerned only with the 

coverage of VaR estimates, but it does not take account 

of the violation’s clustering. Clustering of exceptions is 

something that helps %&(  practitioners to detect large 

losses in the rapid successions by Christoffersen (1998). 

The independent test of Christofferson designed to detect 

the clustering of VaR violations. The likelihood ratio 

framework implemented under the null hypothesis of 

independence. The probability of today for the time � does not affect by the day before �, is � � 1.  �w: 
� �
���. 
The independent test defined as: 
 

��' � �2 z	
 { 
~|�1 � 
~�}�|

~�2|[\�1 � 
~�2�|[\
~��|[[�1 � 
~���|[[�� �4.4� 

 
where 5��  is a number of violations up to � 

and  � � 1 . Independent test is not a complete test 

according to Christofferson, so he introduced the 

combination of unconditional coverage and the 

independent test, the conditional coverage CC-test 

presented as: 

 yy � xy > ��'                                     �4.5�  
 
Two separate statistics included in the CC-test, one 

unconditional coverage  xy � �2�	
������ � 	
������� 

and other is ��' � 2�	
��2�3�� � 	
��2�3���  (Braione 

and Scholtes, 2016). Campbell (2005) indicated that %&(  model fails in unconditional coverage tests or in 

independent tests while it passes through the joint test. 

He suggested running the tests separately.  

 

4.4. Dynamic Quantile (DQ) Test 

Another test is a regression-based test introduced 

by Engle and Manganelli (2004) is dynamic Quantile 

(DQ) test. The test is associated with a Quantile process �� � ���<� � <  resultant sequence is hit sequence, 

assumes the values, 
 �� �   r 1 � <          !s �� � 1   �<               !s ��   � 0                       �4.7� 

 

The indication of this approach regresses from present 

violations of the past violations, to examine the different 

restriction of the model parameters. The process of the 

DQ test is to test the joint hypothesis. =�, =2, =�, ⋯ , =�. �w : =� �  =2 �  =� � ⋯ �  =� � 0 , The assumption 

coincides with Christofferson's null hypothesis of the CC 

test. It is also possible to test the null hypothesis 

individually like individual coverage hypothesis and 

independent hypothesis.  
 �w �'8��u�: =� �  =2 �  =� � ⋯ �  =� � 0 �w �'8PP�: =� �  =2 �  =� � ⋯ �  =� � 0 

 

5. Results and Discussions 

We use the data from yahoo finance: 

www.yahoofinance.com, daily stock indices of four 

Asian countries, Pakistan, India, Malaysia, and 

Singapore from 3/1/2008 to 31/12/2017 financial log-

returns with daily prices. The daily log-returns of 

individual series are calculated on the logged difference 

of adjusted closed process for each country. The daily 

log returns are obtained by using the formula  ��,� �100�	
 ln�
�,�� – ln�
�,�������, where 
�,�  is the current 

day price and 
�,��� is the previous day's price.  

The daily closing prices and log-returns of the 

Karachi, Bombay, Kuala Lumpur, and Singapore stock 

exchange are shown in Figure 1. High and low volatility 

and volatility clustering can be observed in the log-return 

series. Therefore, one of the key interests lies in 

modeling and forecasting volatility and risk of four 

Asian stock markets throughout this particular period. 

The summary of descriptive statistics, the Jarque 

Bera test for normality, the Ljung Box test for 

autocorrelation and LM test for the log differenced 

returns is presented in Table 1. The analysis of the 

descriptive statistics reveals that except Singapore all the 

indexes had positive daily average returns. Jarque Bera 

normality test reveals that the log-returns of Pakistan, 

India, Malaysia, and Singapore are not normally 

distributed.  

Moreover, the log-returns series of all four 

countries have an excess of kurtosis (P<0.001), which 

indicates that the distribution of these log-returns has 

heavier tails in contrast to the normal distribution. 

Furthermore the 8��25�  (Ljung-Box) test on squared 

log-returns at lag 25 is found highly significant 

indicating dependence in the squared log-returns that the 

log returns. The reported value of Engle’s-LM test 

indicates that there is an ARCH effect up to lag 25, hence 

we can apply the multivariate GARCH model on the 

series of log returns. 
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Table 1. Descriptive Summary of Log returns 
 Pakistan India Malaysia Singapore 

Mean 0.0511 0.0236 0.0100 -0.0262 

Std.dev 1.2913 1.5883 0.7909 1.8422 

Median 0.0406 0.0496 0.0165 0.0000 

Minimum -9.5191 -14.8116 -6.4482 -15.7185 

Maximum 6.50652 12.0539 6.2831 13.6543 

Skewness -0.5192 -0.4884 -0.0655 0.2000 

Kurtosis 5.4370 10.0809 9.0241 12.6978 

J-B test 2815,1 9420.900 7481 14821 

P-value (0.0000) (0.0000) (0.0000) (0.0000) 

QS (25) 210.1280 352.6092 198.1394 283.6530 

P-value (0.0000) (0.0000) (0.0000) (0.0000) 

LM 325.3900 

(0.0000) 

27.7320 

(0.0060) 

56.0937 

(0.0002) 

439.5700 

(0.0000) 

Note: P-values in parenthesis. QS(25) denotes the Ljung-

Box test of squared residuals on lag 25 and LM denotes 

the Engle’s Lagrange Multiplier test. 
 

Table 2 represents the estimated parameters of the 

RDCC model, whereas all the parameters of the RDCC 

model for all three distributions are found to be 

statistically significant (P<0.001). The theoretical 

description of the RDCC model indicates that < &
, =  

greater than zero and < > = M 1  ensures the positive 

definite and stationarity for the series of log returns. The 

reported values of parameters are all greater than zero 

whereas the sum of respective parameters < &
, =  is 

also less than 1 for all four countries which indicates that 

the series of the log-returns in stationary, ergodic and 

have finite conditional variance.  

 
Figure 1. Daily Stock prices (Left) and returns (Right) of Karachi, Bombay, Singapore and Kuala Lumpur stock 

Exchanges. 
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Moreover, the direct comparison of model fit 

through Akaike Information Criteria (AIC), Bayesian 

Information Criteria (BIC) highlights that the models 

ensuring skewed distributions i.e. Student’s-t 

distribution and multivariate Exponential Power 

distribution performed better than Normal distribution.  
 
Table 2. Full sample parameters estimates 

Note: Standard errors in Parenthesis. *, ** and *** 

denotes significance at 5%, 1% and 0.1% *** 

significance levels. 

 

The Student’s-t distribution outperforms with 

minimum AIC and BIC (AIC=35904.7940, BIC= 

36020.054), whereas AIC and BIC were found very high 

for normal distribution (AIC= 50763.530, BIC= 50821.1 

60). Hence the usage of skewed distribution assumption 

seems to be justified. The Ljung-Box test at lag 25 on 

squared residuals is not found significant at a 5% 

significance level for all models, which indicates the 

adequacy of the RDCC-GARCH model for four Asian 

Stock market data. 
 
In-sample evaluation results 

Data from 3rd January 2008 to 31st December 

2015 (1500 observations), considered as an in-sample 

period, are utilized for in-sample VaR evaluation. The 

in-sample violation ratio and other backtesting results 

obtained from classical methods and RDCC models are 

reported in Table 3 and Table 4. All tests are computed 

at 1% and 5% VaR. 
 

Table 3. In-sample evaluation of classical methods 

1% VaR 

  

Historical 

Simulation 

Unconditional Parametric 

Method 

 Normal Student’s-

t 

MEP 

Violation 

Ratio 

0.9300 2.5023 2.096 2.7339 

UC 3.5409 

(0.430) 

11.2489 

(0.002) 

12.9540 

(0.003) 

14.6352 

(0.005) 

IND 12.0965 

(0.0193) 

22.3053 

(0.001) 

17.7259 

(0.003) 

12.4390 

(0.008) 

CC 15.6374 

(0.008) 

33.5542 

(0.000) 

30.6779 

(0.002) 

27.0742 

(0.004) 

DQ     

5% VaR 

Violation 

Ratio 

1.9430 3.1104 2.0712 3.3000 

UC 4.6071 

(0.552) 

15.3028 

(0.007) 

13.8701 

(0.028) 

9.2902 

(0.048) 

IND 1.7810 

(0.612) 

8.4931 

(0.031)) 

16.7207 

(0.006) 

12.0312 

(0.023) 

CC 6.3881 

(0.371) 

23.8013 

(0.017) 

30.5908 

(0.009) 

21.3214 

(0.038) 

DQ 18.3764 

(0.013) 

12.4392 

(0.033) 

26.8742 

(0.009) 

15.7772 

(0.023) 

Note. P-values in parenthesis. 

 

For 1% VaR, Historical simulation, RDCC-T, and 

RDCC-MEP have a more accurate violation ratio equal 

to 0.9300, 1.1890 and 1.3985, while violation ratio 

obtained from all other methods exceeds 2.  

 RDCC-N RDCC-T RDCC-MEP ���� 0.1451*** 

(0.0174) 

0.1564*** 

(0.0123) 

0.1567*** 

(0.0453) ���� 0.8141*** 

(0.0239) 

0.8155** 

(0.0172) 

0.8126** 

(0.0669) ���� 0.0837* 

(0.0218) 

0.0730** 

(0.0390) 

0.0771* 

(0.2389) ���� 0.9086*** 

(0.0250) 

0.9216*** 

(0.0654) 

0.9167** 

(0.1209) ���� 0.1103** 

(0.0394) 

0.1121*** 

(0.0123) 

0.1150** 

(0.0200) ���� 0.8647** 

(0.0529) 

0.8698*** 

(0.0987) 

0.8643*** 

(0.0830) ����� 0.0837*** 

(0.0186) 

0.0672*** 

(0.0432) 

0.0757** 

(0.0212) ����� 0.9115*** 

(0.0206) 

0.9291* 

(0.0234) 

0.9203* 

(0.0111) 

Alpha 0.0785* 

(0.0119) 

0.0830** 

(0.0877) 

0.0819** 

(0.0765) 

beta 

 

υ 

0.9934*** 

(0.0024) 

0.9931*** 

(0.0073) 

6.9036** 

(0.0367) 

0.9935*** 

(0.0043) 

 

Tail   1.9306*** 

(0.0663) 

Dynamic Parameters � 0.0061 0.0069 0.0067 � 0.9868 0.9862 0.9870 � > � 0.9930 0.9931 0.9937 

AIC 50557.564 49438.295 47371.220 

BIC 50614.522 49552.210 47486.480 

CAIC 50624.522 49572.210 47506.480 

Log-

likelihood 

-25268.7822 -24699.1475 -25003.009 

 

Residual Diagnostics 

QS (25) 11.8472 

(0.0864) 

9.4863 

(0.6482) 

7.8362 

(0.0832) 
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Many researchers and risk managers suggest that 

the violation ratio in the range of 0.8 to 1.2 assumes 

reliable accurateness of the model. In the case violation 

ratio greater than 1.5 or less 0.5, the model is imperfect. 

The UC test found non-significant for Historical 

simulation, RDCC-T, and RDCC-MEP whereas the 

results obtained from all other methods reject the null 

hypothesis which reveals that violated VaR is not 

consistent with the given confidence level. The IND test 

is accepted for Historical Simulation, RDCC-MEP, and 

RDCC-T which indicates that VaR violations are 

independently distributed. In the CC test, the RDCC 

model with heavy-tailed distribution showed better 

performance than other competing models. The DQ test 

is accepted for RDCC-T only, all other models contradict 

the null hypothesis of no higher-order dependence in 

VaR violation. Hence at 1% VaR RDCC-T outperforms 

all other approaches and less accurate methods amongst 

all these are unconditional parametric methods and 

RDCC-N for which none of the evaluation tests is 

accepted. 

For 5% VaR forecasting, the violation ratio for 

RDCC-T and RDCC-MEP is 1.1600 and 1.3808 which 

was minimum among all other methods. The violation 

ratio for unconditional parametric methods was highest 

amongst all other methods. The UC, CC and IND tests 

are accepted for Historical simulation, RDCC-MEP, and 

RDCC-T, while _for. all .other. methods .the results.are 

found to be significant. The DQ test is accepted for 

RDCC-T and RDCC- MEP.  For 5% VaR, we noted the 

best performance of the RDCC-T with the most reliable 

and lowest violation ratio and best results for evaluation 

tests followed by RDCC-MEP. Finally, for both 1% and 

5% VaR the coverage tests evidenced the superiority of 

RDCC-T distribution with sufficiently accurate and 

minimum violation ratio. RDCC-MEP is also found a 

closer competitor to these models as compared to other 

methods RDCC-MEP provides consistent forecasting, 

the unconditional parametric methods and RDCC-

GARCH model with a normal distribution of error 

performs worst at both confidence levels. 

 

Out-of-sample evaluation results 

The out-of-sample forecasting is valuable for 

investors, practitioners and for risk managers who desire 

to measure the model’s performance based on risks 

forecast. In this section, we use estimation results to 

compute a one-step-ahead forecast at 1% and 5% 

confidence levels.  Data from 1st January 2014 to 31st 

December 2017 (700 observations), considered as an 

out-of-sample period. The results of various evaluation 

tests for classical methods and RDCC models at 1% and 

5% confidence levels are reported in Table 5 and Table 

6. 
 
Table 5: Out-of-sample evaluation of classical methods 

1% 

 Historical 

Simulation 

Unconditional Parametric 

Method 

 Normal Student’s-

t 

MEP 

Violation 

Ratio 

1.2083 2.5023 2.1076 2.7339 

UC 11.2439 

(0.003) 

12.3852 

(0.003) 

11.4763 

(0.002) 

11.3848 

(0.002) 

IND 13.4302 

(0.009) 

11.9430 

(0.001) 

22.8520 

(0.000) 

12.3131 

(0.001) 

CC 24.6741 

(0.008) 

24.3282 

(0.006) 

34.3283 

(0.000) 

23.6979 

(0.009) 

DQ 16.9430 

(0.003) 

21.4639 

(0.000) 

13.1038 

(0.006) 

13.9208 

(0.005) 

5% 

Violation 

Ratio 

1.702 2.110 2.0712 2.3000 

UC 4.4708 

(0.070) 

12.7903 

(0.012) 

11.3980 

(0.022) 

13.8649 

(0.007) 

IND 3.5896 

(0.0743) 

12.4905 

(0.036) 

14.9826 

(0.037) 

8.2942 

(0.028) 

CC 8.0604 

(0.027) 

25.2808 

(0.007) 

26.3806 

(0.006) 

22.1591 

(0.039) 

DQ 5.4764 

(0.051) 

16.4632 

(0.009) 

12.6303 

(0.023) 

11.0394 

(0.0429) 

Note: P-values in parenthesis. 

Table 4: In-sample evaluation of RDCC-N, RDCC-T, and RDCC-MEP 

 1% VaR 5% VaR 

 RDCC-N RDCC-T RDCC-MEP RDCC-N RDCC-T RDCC-MEP 

Violation Ratio 2.9709 1.1890 1.3985 2.7837 1.1600 1.3808 

UC 7.9182 

(0.000) 

1.3389 

(0.870) 

2.9831 

(0.554) 

15.6790 

(0.010) 

1.8791 

(0.806) 

2.9934 

(0.630) 

IND 8.7651 

(0.001) 

2.7630 

(0.642) 

3.4872 

(0.299) 

14.9873 

(0.002) 

1.1845 

(0.909) 

1.7865 

(0.665) 

CC 16.6833 

(0.000) 

4.1019 

(0.572) 

6.4703 

(0.177) 

27.6663 

(0.008) 

3.0636 

(0.579) 

4.7799 

(0.455) 

DQ 15.5622 

(0.008) 

1.8547 

(0.716) 

7.9112 

(0.007) 

13.7689 

(0.029) 

2.9982 

(0.881) 

3.2140 

(0.237) 

Note: P-values in parenthesis. 
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For 1% VaR the violation ratio for RDCC-T was 

found to be most accurate and lowest 1.0582 followed by 

Historical simulation, RDCC-MEP, and RDCC-N, the 

violation ratio for unconditional parametric methods 

exceed 2. To check the accuracy of these models UC test 

is applied, except for the RDCC-T model all other 

models contradict the null hypothesis which reveals what 

proportion of exception is less than 1% which indicates 

that these models overestimate the risk. The IND test is 

non-significant for RDCC-T and RDCC-MEP which 

indicates that the probability of exceptions occurring is 

equal, regardless of an exception that has occurred the 

day before. The CC test is found to be non-significant for 

RDCC-T and RDCC-MEP which reveals that the 

frequency of exceedance has consisted of forecasted 

VaR. The DQ test for higher-order dependence is 

rejected for all the models except RDCC-T. Hence at 1% 

VaR RDCC-T outdoes other competing models. 

The out-of-sample results acquired from classical 

methods, RDCC-N, RDCC-T, and RDCC-MEP expose 

that violation ratio attained from RDCC-T at 5% was 

1.0114, which was the lowest and most accurate among 

all the methods. The violation ratio for 5% found to be 

more accurate and less as compared to 1% VaR. In 

forecasting 5% VaR, RDCC-T computes best results for 

evaluation tests and we accept UC, IND, CC and DQ 

tests for this model. Again RDCC-N and Unconditional 

show poor performances, all evaluation tests for these 

methods are rejected at 5% VaR. Therefore, the overall 

VaR out-of-sample evaluation results reveal that the 

RDCC-GARCH model with Student’s-t distribution 

provided the best VaR results at both confidence levels. 

 

6. Conclusion 

In this paper, we investigate the performance of 

RDCC-GARCH in forecasting one-day-ahead VaR 

using daily stock data of KSE100, BSE Ltd., KLSE and 

SGX from 2008 to 2017. We used Normal, Student’s-t 

and Multivariate Exponential Power distribution of error 

for the estimation of VaR and the results were compared 

with Historical simulation and Unconditional VaR 

methods. We estimate one-day ahead VaR at 1% and 5% 

confidence levels. Of the set of specifications considered 

in this study, the classical methods and RDCC-GARCH 

with the normal distribution of error presented the worst 

performance, RDCC-MEP stood positively among the 

others for the in-sample period but the results were 

opposite for out- of sample forecast. Hence the overall 

study reveals that the RDCC-GARCH model with 

Student’s-t errors is found superior in forecasting one-

day-ahead VaR of four Asian stock markets. The 

findings of this study may help in providing accurate and 

reliable forecasts for high dimension asset returns. 

 

 

 

Table 6: Out-of-sample evaluation of RDCC-N, RDCC-

T, and RDCC-MEP 

1% VaR 

 RDCC-N RDCC-T RDCC-MEP 

Violation 

Ratio 

1.4509 1.0582 1.28142 

UC 14.8834 

(0.000) 

1.9980 

(0.092) 

4.5432 

(0.009) 

IND 8.9092 

(0.008) 

2.8881 

(0.034) 

3.9876 

(0.050) 

CC 23.7926 

(0.000) 

4.8861 

(0.014) 

8.5308 

(0.0013) 

DQ 24.0914 

(0.000) 

2.7892 

(0.084) 

13.7623 

(0.008) 

5% VaR 

 RDCC-N RDCC-T RDCC-MEP 

Violation 

Ratio 

2.9142 1.0114 1.8000 

UC 2.9000 

(0.062) 

2.6291 

(0.890) 

6.9081 

(0.031) 

IND 10.8790 

(0.007) 

3.0953 

(0.054) 

7.0478 

(0.014) 

CC 20.779 

(0.000) 

5.7244 

(0.343) 

13.9559 

(0.003) 

DQ 19.7357 

(0.000) 

4.3823 

(0.459) 

6.3480 

(0.239) 

Note: P-values in parenthesis. 
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