
Microbial communities have seemingly limitless capabili-
ties, driving Earth’s biogeochemical cycles and occupying 
every environmental niche1,2. Engineers and scientists 
have tapped into this power for a long time; for exam-
ple, by manipulating soil microbiomes to increase crop 
productivity3, by stimulating naturally occurring or 
introduced microbiomes to remediate contaminated 
groundwater4 or by building reactor microbiomes to 
recover valuable resources from wastewater5. Although 
these accomplishments highlight the valuable functions 
of microbiomes, the vast majority of the microbial world’s 
transformative capabilities have yet to be unlocked and 
harnessed. Recent insights driven by DNA sequencing 
have shed light on the high genetic diversity of not-​yet- 
cultured microorganisms and their crucial roles in diverse 
ecosystems6,7, providing a window on potentially novel 
biotechnology applications.

In recognition of this unlocked potential, funding  
agencies and the international science community 
have called for a global effort to advance microbiome 
research8,9. These initiatives have recognized the need 
for microbiome science to move beyond descriptive stud-
ies and embrace a systems approach that generates the 
mechanistic, predictive and actionable understanding 
that makes possible rational microbiome engineering8. 

However, achieving this transition is hindered by the  
lack of tractable experimental systems that permit  
the detailed functional investigation of microbiomes, the  
large pool of microbiome gene and metabolite func-
tions that remain unknown10, the many uncharacterized 
interactions (for example, syntrophy) between micro
organisms11, inadequate tools to accurately measure and 
simulate microbiome functions across time and space, 
and the limited availability of approaches to precisely 
manipulate microbiome structure and function.

Integrating basic scientific discovery with engineer
ing can overcome these challenges and develop innova-
tive solutions that support sustainable natural resources 
management and human and animal health. In parti
cular, engineering approaches can be used to create 
experimental systems that permit the testing of con-
ceptual knowledge and extraction of new knowledge 
that advances microbiome research. To accelerate both 
scientific discovery and translation into innovative solu-
tions, we propose that microbiome engineering adopt 
an iterative design–build–test–learn (DBTL) cycle to 
structure research and the technology development 
process. This cycle involves developing an initial micro-
biome design or preliminary model system to achieve 
a defined engineering goal, building the microbiome, 
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Abstract | Despite broad scientific interest in harnessing the power of Earth’s microbiomes, 
knowledge gaps hinder their efficient use for addressing urgent societal and environmental 
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testing its function against a set of specified metrics to 
determine whether the design–build solution(s) pro-
duced the design objective (that is, establish causation), 
learning what worked and what did not work (and why) 
and incorporating new knowledge into the decision-​
making process of subsequent DBTL cycles (Fig. 1). This 
approach has been used successfully in manufacturing12, 
metabolic engineering13 and entrepreneurship (‘build, 
measure, learn’)14, and could rapidly advance our ability 
to develop much needed tools and design concepts for 
harnessing microbiomes, delivering innovative solutions 
and advancing scientific knowledge.

In this Review, we present key elements of an iterative 
DBTL approach that can be implemented to advance the 
rational engineering of microbiomes for functions that 
benefit society. We review diverse approaches to harness 
microbiomes in medical, agricultural, energy and envi-
ronmental applications, and identify current challenges 
and opportunities associated with implementing each 
DBTL phase. Finally, we discuss how the DBTL cycle can 
be applied to build model systems to establish basic prin-
ciples of microbial ecosystems and provide an outlook 
on the frontiers of microbiome engineering.

Designing microbiomes
Because of the high complexity and limited understand-
ing of molecular-​scale microbiome processes, micro
biome design has conventionally followed a top-​down 
approach. This approach tries to predict how ecosystem-​
level controls can create a microbiome with desired func-
tions. However, recent advances in multi-​omics have 
provided opportunities to design microbiomes from the 
bottom up by predicting how the control of metabolic 
networks and their interactions can create a microbiome 

with desired functions. Combined, these approaches 
offer complementary strategies to design microbiomes 
for specific engineering goals, ranging from sustainable 
wastewater treatment to curing microbiome-​associated 
human diseases.

Top-​down design. Rather than deciding which orga
nisms and detailed metabolic pathways to use a priori, 
the top-​down approach uses carefully selected environ
mental variables (such as certain substrate loading 
rates, mean cell retention times and redox conditions) 
that force an existing microbiome (naturally occurring 
or inoculated) through ecological selection to perform 
the desired biological processes (or ‘metaphenotypes’)15 
(Fig. 2). Here, ‘top’ refers to the ecosystem in which the 
desired biological process occurs and ‘top-​down design’ 
denotes the methods used to predict how manipulation 
of the ecosystem’s physical, chemical and biological pro-
cesses (that is, ecosystem processes) obtains the desired 
function. Predicting how to manipulate an ecosystem 
is informed by principles of ecological engineering16 (also 
known as microbial resource management17 or micro-
bial community engineering18). This requires engineers 
to conceptualize the system as an ecosystem model that 
captures system inputs and outputs, physicochemical 
conditions (pH, temperature, redox potential and so on), 
known abiotic and biotic processes, and environmental 
variables, and how their manipulation may promote or 
inhibit the biological process(es) being optimized19,20. 
Subsequently, mathematical modelling is used to per-
form mass balance analysis of chemicals and relevant 
microorganisms in the system and simulate chemical and 
biochemical transformation rates. These process-​based 
models capture microbiome functions by representing 
key physiological or functional guilds of microorganisms 
(such as methanogens, fermenters, nitrifiers or photo
trophs) with specific stoichiometric parameters (growth 
and product yields) and kinetic parameters (maxi-
mum specific growth rate, substrate uptake rate and 
substrate affinity)21–23. The models can also integrate 
equations describing the three-​dimensional physical 
transport processes (diffusion, advection and disper-
sion) acting on chemicals and microorganisms, which 
are especially important in spatially structured systems 
such as biofilms24,25.

Bottom-​up design. Although the conventional top-​
down design approach for microbiome engineering 
offers a framework for macro-​scale processes and has 
been widely successful for wastewater treatment21 and 
bioremediation4, it often neglects the complex in situ 
metabolic networks driving microbial and linked 
chemical transformations26 and ignores processes that 
depend on intricate interactions between community 
members; for example, syntrophic interactions through 
direct interspecies electron transfer27. As a consequence, 
molecular-​scale microbiome processes are often ignored 
during design, limiting system optimization through 
molecular-​scale mechanistic insight. Recent advances 
in multi-​omics and automation technology (for exam-
ple, in metagenomics and microfluidics) have enabled 
researchers to develop bottom-​up approaches and 
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Metaphenotypes
Sets of emergent functions  
of a microbiome resulting  
from the interactions between 
individual microbial genomes 
(metagenome) and their 
interaction with the 
environment.

Ecological engineering
The process of designing  
and operating bioreactors and 
other engineered systems  
to foster the development of 
specific microbial communities 
that can perform desired 
functions.

Functional guilds
Groups of organisms that use 
similar resources (for example, 
electron donors, electron 
acceptors or carbon source) 
and occupy a similar  
ecological niche.
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focus on engineering the microbiome’s metabolic net-
work and microbial interactions. Here, ‘bottom’ refers 
to the metabolic networks of individual organisms in 
the microbiome (expressed from their genomes) and 
‘bottom-​up design’ denotes the methods used to predict 
how metabolic flux through these interacting networks 
generates the desired output. The general design pro-
cess is to obtain the genomes of individual members of 
the microbiome28 (especially keystone species29, when 
known30), reconstruct their metabolic networks31,32 and 
use modelling33 and/or network analysis tools34 to guide 
design (Fig. 2). Existing constraint-​based methods such 
as flux balance analysis provide a suitable framework for 
exploring which combinations of chemical transforma-
tions are possible using quantitative models, in which 
individual populations’ reactions and metabolites can 
be compartmentalized and metabolic fluxes within and 
between populations can be simulated using optimality 
principles35. These models can also simulate steady-​state 
flux distributions over time and space36,37 and can be 
integrated into process-​based and/or individual-​based 
models38 to predict metaphenotypes, self-​organizing 
spatial patterns and other emergent behaviours. 
Such bottom-​up tools provide the engineer with a com-
putational framework to systematically evaluate the 
metabolic networks driving biological processes and 
ecological interactions, and a platform for rationally 
designing microbiomes with specific properties, such 

as distributed pathways39,40, modular species inter-
actions41, community resistance and resilience42 and 
spatiotemporal organization43 that optimize ecosystem 
function and stability. However, most of these bottom-​
up design examples are based on simple communities 
with model organisms (such as Escherichia coli and 
Saccharomyces cerevisiae) that have engineered depend-
encies. Therefore, extending these designs to systems 
with non-​model organisms of tens to hundreds of differ-
ent species will require deeper insights into their meta
bolism and the principles governing their interactions 
and higher-​order behaviour.

There are major challenges to implementing bottom-​ 
up design, including inaccurate and/or incomplete meta
bolic network reconstructions, unknown functions of  
many genes, proteins and metabolites, poorly under-
stood evolutionary pressures driving individual and 
community-​level phenotypes and limited understanding 
of gene, metabolic and ecosystem regulatory schemes 
(for example, quorum sensing signal–response sys-
tems)44. These limitations lead to high model uncertainty 
because key constraints on pathway stoichiometry and 
enzyme kinetics are either inappropriate or missing, 
and objective functions fail to capture the true evolu-
tionary drivers of cell behaviour45, ultimately leading 
to poor predictions of in situ metaphenotypes. As a 
starting point for bottom-​up design, core metabolic 
models that capture central carbon and energy meta
bolism can be reconstructed from genome annotations 
and known physiological information. The predictive 
power of these models may be limited initially, as they 
ignore regulatory information, pathway kinetics, sec-
ondary metabolism and evolution. However, when this 
knowledge is acquired and becomes incorporated into 
metabolic models through multiple cycles of testing 
and learning, accurate predictions of system function 
(for example, metabolic fluxes and metabolite exchange) 
may emerge. As a complementary approach, data-​
driven modelling techniques such as ensemble modelling 
and machine learning may offer more rapid methods 
to predict microbiome metabolic processes or obtain 
constraints and parameters required for microbiome 
modelling, without the need for detailed mechanistic 
understanding of metabolic regulation46,47. Such model
ling frameworks have been used to predict pathway  
fluxes from proteomic and metabolomic data48, to 
improve metabolite cross-​feeding predictions through 
ensemble modelling-​based flux balance analysis49 and to 
obtain key catalytic turnover numbers needed for meta
bolic models50. Although these approaches are flexible 
and generalizable enough to be applied to microbial 
communities, they require substantial amounts of exper-
imental data on the metabolism of individual strains 
and interacting communities. This information could 
be leveraged from prior test phases (for example, from 
high-​throughput phenotypic screens and multi-​omics) 
to allow data-​driven design.

Integrated design. Moving forward, we envision that a 
judiciously balanced blend of top-​down and bottom-​up 
approaches will be needed for successful microbiome 
design, especially when one is working with complex 
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Keystone species
An organism that has a 
disproportionately large  
effect on maintaining the 
microbiome’s function 
and microbial interactions 
(both between microorganisms 
and with the environment).

Flux balance analysis
A constraint-​based 
mathematical modelling 
technique for simulating 
metabolic fluxes through  
a metabolic network 
reconstructed from genomic 
information.

Ensemble modelling
Use of multiple models  
to address uncertainty by 
simulating a set of possibilities 
and selecting those consistent 
with measured data.

Machine learning
A technique used to build 
predictive models through 
patterns and inferences 
obtained from sample  
data rather than explicit or 
mechanistic relationships.
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microbiomes, such as human microbiota or activated 
sludge (Fig.  2). A blended approach could involve 
selecting both undefined mixtures and defined con-
sortia to achieve desired microbiome functions, merg-
ing process-​based models with bottom-​up metabolic 
models reconstructed from meta-​omic information to 
simulate ecosystem processes, mass balances and meta
bolite fluxes, and using genome-​derived information 
to develop community selection strategies. Capturing 
higher-​order properties in design, such as functional 
stability and dynamics, will likely also require top-​down 
and bottom-​up approaches to converge. In particular, 
new mathematical modelling approaches that quantify 
mechanisms of functional degeneracy, niche comple-
mentarity and network buffering51 using a metabolic 
framework may allow microbiome diversity to be opti-
mized to sustain desired functions in situ. The need for 
a more comprehensive representation of microbiome 
metabolism will depend on the specific engineering 
objective and the degree of ecosystem tractability. For 
example, a more detailed representation of anaerobic 

microbiome metabolism is likely required to convert 
biomass into a specific commodity chemical instead of 
methane because finer control over metabolism would 
be needed. In either case, the design phase encompasses 
defining the engineering problem, developing concep-
tual and quantitative models, identifying key biological 
processes to be manipulated and evaluating multiple 
candidate design alternatives.

Practical design steps. There are five key steps when one 
is designing microbiomes, in particular complex micro-
biomes: defining the engineering problem, developing 
a conceptual ecosystem model, creating an quantitative 
model, identifying the microbiome process(es) to be 
engineered and developing and evaluating candidate 
design strategies.

To drive the DBTL cycle, a clear definition of the 
problem with measurable design objectives must be 
established. These objectives could specify desired 
outcomes such as product titre, rates and yields, pollut-
ant removal efficiency, crop productivity, or degree of 
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functional stability and robustness. Design objectives 
should be complemented by technoeconomic assessments 
and/or life cycle analysis to ensure that solutions are 
economically feasible and have positive environmental 
and societal impacts52,53.

Conceptual ecosystem models can be used to contex-
tualize the problem. Such models capture system bound-
aries, inputs and outputs, major pathways of carbon and 
nutrient flows, key organisms and interspecies inter
actions responsible for those transformations and factors 
influencing their activity (for example, pH, temperature, 
redox potential and residence times)19. They provide a 
concept map that describes current understanding of 
interactions between the microbiome and physical, 
chemical and biological components of the ecosystem, 
helping to identify important gaps in system understand-
ing and needs for data collection. At this stage, all rele-
vant information should be collected from the literature, 
existing data (for example, from the Human Microbiome 
Project)54 and online databases (for example, MiDAS 
(microbial database for activated sludge))55 for ecosystem 
characterization. This includes reference genomes and 
physiological information for keystone organisms, pre-
vious multi-​omic datasets, ecosystem physicochemical 
properties (such as pH, temperature and chemical con-
centrations) and processes (such as photochemical reac-
tions and hydrogeological processes), site characteristics 
(such as nutrient loadings and dynamics, soil profiles 
and gut anatomy) and all other information needed to 
characterize the ecosystem. Missing information, such 
as unknown biochemical pathways and organisms that 
mediate them, can be targeted during the build, test and 
learn phases. This conceptual ecosystem model can be 
used by the scientific community for proposing and 
testing theories and serves as a road map for developing 
quantitative simulation tools.

Construction of quantitative modelling tools that 
allow the calculation and simulation of metabolic fluxes, 
microorganism abundances, mass balances and eco-
system physicochemical parameters is critical for the 
systematic design of microbiomes. Several approaches 
could be used to create such models, including mecha-
nistic metabolic modelling33, process-​based modelling21, 
data-​driven modelling (for example, machine learning)48 
and individual-​based modelling38 or their combination. 
Regardless of the approach, the simulation of complex 
microbiomes will likely require simplification based on 
experimentally valid assumptions. Simplification could 
include reducing the model to a set of core or keystone 
organisms that represent important functional guilds and 
control major carbon and energy flows, or reducing the 
metabolic network size of organisms to central carbon 
and energy metabolism. Moving forward, it will be impor-
tant to ensure that models undergo rigorous experimental 
validation and iteration during build–test–learn cycles to 
increase their utility and widespread use in microbiome 
engineering and to identify when modelling efforts fail, 
revealing gaps in conceptual understanding that can  
further facilitate model redesign and improvement.

Quantitative microbiome modelling (such as dyna
mic flux balance analysis) helps to identify the core 
and peripheral biochemical pathways that need to be 

directly manipulated, added or removed to achieve the 
desired engineering objective. Objectives could include 
increasing butyrate production and non-​digestible 
carbohydrate degradation by fermenting bacteria in 
the human gut, preventing toxin biosynthesis by cyano
bacteria in freshwater ecosystems or stimulating the 
degradation of toxic chloroorganics by bioaugmentation 
with organohalide-​respiring bacteria.

Microbiome modelling can predict how environmental 
(such as substrate loading, pH and solids retention time) 
or genetic manipulation (such as gene knockouts, path-
way additions and forced dependencies) could optimize 
microbiome functions towards the engineering objec-
tive. If necessary, synthetic microorganisms could be 
designed to improve microbiome function. Such synthetic 
microorganisms will need to be evaluated for their abil-
ity to cooperate and compete with existing microbiome 
members under relevant environmental conditions.

Building microbiomes
The build phase consists of physically assembling the 
designed microbiome by either top-​down manipu
lation of a natural community (that is, a self-​assembled  
microbiome) or bottom-​up assembly using axenic or 
enrichment cultures of naturally occurring or engi-
neered microorganisms (that is, a synthetic microbiome). 
The build phase aims to bring the design specifications 
and predictions into reality.

Building by self-​assembly. Self-​assembled microbiomes 
may include those built as open mixed cultures using 
reactor engineering (for example, wastewater treatment 
bioreactor) or biostimulation (for example, additions 
to soils, sediments or groundwater aquifers), in which 
construction creates an environment that promotes 
the growth and desirable activity of resident micro
organisms. Examples include manipulating reactor 
hydrodynamics to immobilize slow-​growing micro
organisms into compact granules that allow their reten-
tion and proliferation56,57, use of non-​human-digestible 
carbohydrates to stimulate fermentative production 
of short-​chain fatty acids in the gut58 or adding elec-
tron donors to drive the metabolism of organohalide-​
respiring bacteria during bioremediation of toxic 
chlorinated contaminants4. This approach is powerful 
when differences in physiological and physicochemical 
properties between functional guilds can be exploited 
for assembly through environmental manipulation (for 
example, differences in growth rates59, main electron 
donors and acceptors4,60, substrate affinities, cell and/or 
biofilm densities61 and redox gradients). However, it can 
be limited when more fine-​scale control over microbial 
metabolism and interactions is necessary (for example, 
controlling complex competitive interactions62, produc-
ing valuable bioproducts at high yields and purity63 or 
controlling organisms with versatile lifestyles64).

In addition, new strategies for evolutionary engi-
neering have emerged as promising tools to build self-​
assembled microbiomes. Controlled exposure of an initial 
microbiome to multiple selection cycles and/or regimes 
results in the microbiome gaining or optimizing specific 
functions through adaptation or evolution. For example,  

Technoeconomic 
assessment
A tool used to evaluate the 
technical and economic 
viability of an integrated 
process through a combination 
of process design, modelling 
and economic evaluation.

Life cycle analysis
A tool used to evaluate the 
environmental impacts 
associated with all stages of 
a product’s life, such as energy 
and water consumption, and 
air pollutant and greenhouse 
gas emissions.

Self-​assembled microbiome
A microbiome built through 
environmental manipulation 
that selects for desired 
functions.

Synthetic microbiome
A microbiome built by 
combining predefined axenic 
or enrichment cultures to 
achieve a desired function.
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successively transferring the microbiomes that maxi
mize plant traits has generated microbiomes that 
increase plant biomass65 and flowering time66. Response 
to community-​level selection will often be driven by 
enrichment or adaptation of single species67,68; however, 
selection for production of community biomass has also 
been shown to enhance desired species interactions in 
defined two-​species and three-​species co-​cultures37,69. 
Re-​examining selection experiments to understand 
when and how mutations and/or adaptations altered 
microbiome phenotypes could elucidate the mecha-
nisms underlying microbiome fitness optimization and 
inform design, as has been shown for E. coli in labora-
tory evolution experiments70,71. As similar evolutionary 
approaches (for example, adaptive laboratory evolution) 
have also been successfully applied to optimize strains 
for metabolic engineering72, extension of experimental 
and computational protocols already developed for indi-
vidual microorganisms to microbiomes could stream-
line the design phase and reduce the time required to 
complete evolution experiments.

Building synthetic microbiomes. Direct construction of 
microbiomes using axenic or enrichment cultures is also 
promising because of reduced complexity and the use 
of microorganisms that are genetically tractable and/or 
well characterized. This bottom-​up approach makes the 
growing suite of synthetic biology tools accessible for 
microbiome construction and optimization. An early 
approach for building microbiomes directly from cul-
tured microorganisms was bioaugmentation. Here, 
defined laboratory consortia are added back to the 
environment to enhance the degradation rates of specific 
contaminants. A successful example was the addition of 
consortia containing organohalide-​respiring bacteria  
of the class Dehalococcoidia to contaminated ground
water aquifers and sediments to speed up the degradation 
of toxic chlorinated pollutants. Crucial for the success of 
this approach was detailed knowledge of the physiology, 
nutritional requirements and potential ecological inter-
actions of the keystone dechlorinators with other micro-
organisms and the geochemical environment4. However, 
in contrast to the success for chlorinated contaminants, 
bioaugmentation approaches have largely failed for oil 
spills. Unlike organohalide-​respiring Dehalococcoidia 
members, which fill a unique ecological niche and can-
not grow without the chlorinated contaminants, orga
nisms capable of degrading oil hydrocarbons (especially 
aerobic bacteria) are ubiquitous, metabolically versatile 
and do not depend on a specific substrate or redox cou-
ple for growth64. This metabolic versatility limits their 
utility for bioaugmentation given their unpredictable 
in situ activity. Other reasons why bioaugmentation 
can fail are that unrecognized mutualistic interactions 
and microorganisms performing critical functions are 
missing (for example, production of polysaccharide 
surfactants to increase hydrocarbon bioavailability)73 
or that consortia selected under laboratory conditions 
are no longer competitive enough under harsh and/or 
variable field conditions74–76. These examples highlight 
the need to better understand the interaction networks 
of synthetic consortia, especially the roles of supporting 

interactions (secondary functions), and the competitive 
landscape in situ, which are often difficult to predict in 
complex ecosystems.

Despite the appeal of building microbiomes from 
the bottom up and the growing collection of cultured 
microorganisms from specific habitats77,78, most micro-
organisms relevant for human health, agriculture and 
environmental applications remain uncultured, poorly 
characterized, genetically intractable and difficult to 
maintain, making the construction of synthetic micro-
biomes challenging. To capture this uncharacterized 
metabolic diversity, innovative isolation and controlled 
microbiome assembly techniques are needed, such 
as single-​cell sorting79 coupled with high-​throughput 
culturing (culturomics)80,81 and phenotyping82,83 across 
multiple conditions in parallel. Microfluidics84,85 (that is, 
creation and manipulation of microlitre droplets) can 
facilitate this approach. Microfluidic chips can allow 
automated assembly and analysis of microbial com-
munities from axenic or enrichment cultures through 
droplet combination86, elimination of specific species87, 
sequencing, and multi-​omics phenotyping of individual 
cells88,89. Combined with new gene editing techniques, 
such as CRISPR-​based genomic tools90 that increase the 
efficiency of homologous recombination-​based gene 
editing91,92, microfluidics could also automate synthetic 
biology techniques for the engineering of cells and 
microbiomes with novel capabilities93.

Another challenge with synthetic microbiomes is 
maintaining their functional stability in the laboratory 
or in open systems (for example, human gut, soil and 
wastewater treatment plants), which are susceptible to 
invasion by naturally occurring microorganisms and 
dynamic heterogeneous environments. As mentioned 
earlier, the major reason for the success of bioaugmen-
tation with organohalide-​respiring Dehalococcoidia 
members is their highly specialized lifestyle that ena-
bles them to occupy an open ecological niche using 
chlorinated electron acceptors. However, the func-
tional stability of organisms with versatile lifestyles in 
open systems is much less predictable. Few studies have 
examined the functional stability of synthetic consortia 
in open systems, and the knowledge required to ration-
ally engineer stable ecological interactions is limited. 
However, engineered bacteria have been successfully 
deployed as diagnostic sensors in the mammalian gut 
for up to 200 days maintaining robust function94,95. 
This feat, together with the bioaugmentation example 
of Dehalococcoidia4, demonstrates that synthetic con-
sortia can form stable microbiomes with previously 
established community members, provided key players 
can compete with resident microorganisms.

Observations from self-​assembled microbiomes 
suggest that building communities with spatiotemporal 
organization will be important for achieving stable and 
multifunctional synthetic microbiomes. Highly diverse 
microbial communities, such as human microbiota or 
those used for wastewater treatment, self-​assemble as 
biofilms, flocs or granules comprising multiple single-​
species microcolonies attached together via species-​
specific extracellular polymeric substances (including 
polysaccharides, proteins and DNA) and other poorly 
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defined macromolecules (such as humics)96,97. These 
self-​organizing microbial assemblages create diverse 
microenvironments and ecological niches that support 
the combination of seemingly incompatible functions 
(for example, both aerobic and anaerobic processes)98,99 
and functionally diverse population structures that 
can compensate for disturbances, such as changes in 
nutrients, changes in physicochemical conditions or 
predation100,101. Although building such fine-​scale and 
sophisticated architectures into synthetic microbiomes  
is nascent, microfluidic-​based systems have been used 
to assemble simple communities with improved func-
tional stability by controlling spatial structure and chem-
ical communication102. Additionally, three-​dimensional 
bioprinting platforms could allow the construction of 
spatially organized systems, in which populations can 
be physically separated while remaining chemically 
interactive103,104. How to scale these spatially defined 
structures from experimental laboratory systems to 
real-​world applications remains to be resolved, although 
knowledge gained from test and learn phases with 
model systems (such as synthetic polysaccharide par-
ticles)105,106 should provide more insights. Until then, 
existing approaches based on top-​down assembly and/or 
engineered biofilm carrier media107 could be used to 
build self-​organized synthetic microbiomes with greater 
stability and functionality.

Designing synthetic genetic circuits in engineered 
hosts that can robustly perform sense–compute–respond 
programmes in complex environments also remains 
a major challenge108. Therefore, it will be important to 
examine the molecular mechanisms that determine 
microbiome stability and adaptation to environmental 
perturbation in natural and engineered ecosystems to 
extract design principles that can be used for ration-
ally engineering robust functions. Given the potential 
utility of genetically engineered microorganisms and 
microbiomes in diverse open environments, safeguards 
such as biocontainment systems (such as two-​layered 
gene circuits and essential synthetic auxotrophies)109 
will also require further development and will be 
needed as integral components of constructed synthetic 
microbiomes that use genetically modified organisms  
in the future.

Integrating approaches. The ultimate goal for rational 
microbiome design is to develop tools that enable engi-
neers to directly add, remove or modify specific func-
tions and phenotypes in situ over a range of desirable  
operational conditions. One emerging technique with 
promise to achieve such flexibility is in situ meta
genomic engineering110,111, which involves delivery of  
engineered mobile genetic elements to resident 
microorganisms. For example, donor strains engi-
neered with integrative and conjugative elements have 
transferred DNA carrying a reporter and antibiotic 
resistance genes or multigene pathways (for example, 
nitrogen fixation gene (nif) cluster)112 to bacteria in 
highly heterogeneous and diverse environments, such 
as soil112 and the mammalian gut111. Further deve
lopment of such tools in combination with existing 
CRISPR–Cas gene editing techniques would allow the 

precise manipulation of the microbiome’s metabolic 
network in situ, effectively combining self-​assembled 
and synthetic microbiomes (Box 1; Fig. 3).

Testing microbiome function
The test phase involves measuring microbiome-​
associated phenotypes and properties to determine the 
efficacy of the design–build solution. The measurements 
should determine whether the design outcomes were 
achieved (for example, measuring the titre, rate and yield 
of a bioproduct, pollutant removal efficiency or crop 
productivity) and whether the design–build solution was 
responsible for the observed outcome (establishing cause 
and effect). This typically requires readouts of ecosystem 
physicochemical properties (such as pH, temperature 
and chemical concentrations), as well as the stoichio
metry and kinetics of key ecosystem processes and micro
biome functions (such as biomass growth, chemical  
transformations, nutrient assimilation and metabolic 
fluxes). For example, acetate degradation rates and path-
ways to methane in an anaerobic digester microbiome 
could be tested using 13C-​labelled acetate and online bio-
gas analysis that measures the flux through acetoclastic 
methanogenesis versus syntrophic acetate oxidation 
coupled to hydrogenotrophic methanogenesis113. While 
the level of microbiome granularity measured during 
testing will depend on the specific design objectives 
and ecosystem complexity, the ability to quantify mole
cular microbial processes (for example, metabolic path-
way rates and routes, enzyme activities and individual 
organism growth rates) goes beyond bulk activity meas-
urements and allows testing of the specific mechanisms 
responsible for the observed microbiome functions. 
The challenge will be to develop tools that have high-​
throughput and are quantitative, affordable and easy to 
use, such that routine analyses of the microbiome over 
time and space and under dynamic conditions can be 
accomplished.

Towards this goal, we envision a test phase compris-
ing high-​throughput phenotypic screening of micro-
biome design–build solutions, followed by deeper 
investigation of promising solutions using multi-​omic 
and metabolic flux analyses to obtain greater insights 
into underlying mechanisms (Fig. 4). High-​throughput 
phenotypic testing of constructed microbiomes could be 
achieved using droplet microfluidics, as recently demon-
strated for screening ~100,000 synthetic communities114. 
Fully automated microbioreactor platforms that combine 
liquid handling and advanced sensing with microtitre 
plates or scaled-​down bioreactor cultivation could also 
be used82,83. Combined with emerging methods to meas-
ure metabolic network activity and metabolic processes 
in heterogeneous environments (Box 2), rich information 
will be obtained to facilitate learning.

Microbiome metabolic network activity. To test predic-
tions of microbiome function at a systems level, meas-
urement of the microbiome’s in situ metabolic network 
structure and activity is critical. Multi-​omic approaches 
(metagenomics, metatranscriptomics, metaproteo
mics and metabolomics) combined with bioinformatic 
tools have allowed the genome-​centric analysis of 

Integrative and conjugative 
elements
Mobile genetic elements able 
to integrate into DNA sites via 
site-​specific recombination 
that carry genes encoding  
the machinery necessary  
for conjugation.
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individual  species (or even strains)115 within microbiomes  
and global measurement of sequences, proteins and 
metabolites116–118. These tools measure the micro
biome’s components on a spectrum from functional 
potential (for example, gene abundance) to expressed 
products (for example, protein and metabolite abun-
dance) and through their combined activity produce 
microbiome metaphenotypes that drive system func-
tion. Currently, multi-​omic approaches used to infer 
microbiome function have focused on correlating 
gene abundances or gene expression data across time 
and space with ecosystem geochemical data or process 
rates. This has included measurements of key func-
tional genes and transcripts using quantitative PCR 
assays (for example, ammonia monooxygenase)119, 
microarrays (for example, GeoChip)120 or untargeted 
high-​throughput approaches (metatranscriptome 
and/or metaproteome). Although useful for overall sys-
tem characterization and discovery, these approaches 

focus on measuring the components or ‘parts list’ of the 
system, which are often limited predictors of emergent 
phenotypes due to metabolic network complexity, inter-
actions and regulation121,122. Therefore, new approaches 
and tools are needed to measure the in situ stoichiom-
etry and fluxes of microbiome metabolic networks to 
permit the direct testing of design predictions and offer 
mechanistic insights into metabolic regulation.

Metabolic flux analysis is the most authoritative 
method for measuring in vivo fluxes. This method cal-
culates fluxes from metabolite stable isotope measure-
ments obtained during isotopic labelling experiments 
using metabolic network modelling123. Although meta
bolic flux analysis has been used to measure fluxes in  
co-​cultures124, flux analysis in communities is challeng-
ing because metabolite pools cannot be easily assigned 
to individual cells, and the number of possible reactions 
in a microbiome greatly exceed those of an individual 
organism. Nonetheless, isotopic tracers combined with 

Box 1 | A design–build–test–learn cycle to create synthetic microbiomes with desired functions

we present a generalized design–build–test–learn cycle for creating synthetic microbiomes with desired functions, 
integrating both top-​down and bottom-​up approaches. we briefly describe two iterations of the cycle and identify 
opportunities for incorporating high-​throughput approaches and automation to increase speed and reproducibility.

Top-down approach
Design: identify biological process(es). an example of a process to harness or replicate is anaerobic conversion of complex 
lignocellulosic biomass into valuable commodity chemicals. the initial design step includes selection of different 
innocula that may contain microorganisms with desired functions (for example, acid phase anaerobic digester sludge, 
herbivore rumen microbiome or others). Conceptual ecosystem models that include environmental parameters  
(pH, temperature, nutrients and so on) and expected functional guilds (hydrolytic bacteria, fermenting bacteria, 
methanogens and so on) are used to select enrichment variables.

Build: enrich microbiomes from multiple sources. source innocula are cultivated under different environmental 
conditions to select for the desired function using real (for example, lignocellulosic hydrolysate or rumen fluid) and 
synthetic media. Modulation of environmental conditions and medium composition is done to improve the desired 
function. For complex environments (such as soil), model laboratory ecosystems could be ideal platforms for 
microbiome enrichment146.

Test: evaluate performance. the performance of enriched microbiomes is tested on real and synthetic media using  
high-​throughput phenotypic screens. High-​throughput screens could be developed using microfluidic or automated 
microbioreactor experiments. Deeper multi-​omic measurements (such as metagenomics, metatranscriptomics and 
metaproteomics) are collected from high-​performing microbiomes.

Learn: identify key functional roles of microbiome members. Besides key functions, bottlenecks for the desired function are 
identified using metabolic reconstruction and multi-​omic analysis. this understanding helps to refine conceptual models 
of microbiome function and create quantitative models.

bottom-​up approach
Design: identify new potential microbial partners. in silico metabolic modelling is used to screen high-​performing 
microbiome enrichments for interacting microorganisms. Metagenome-​assembled genomes can be used to reconstruct 
metabolic models of key microbiome members. automated computational workflows (together with manual curation) 
will accelerate model building. Flux balance analysis is used to predict each microorganism’s requirements for optimal 
growth and activity, and unify individual metabolic models into a microbiome model to identify new potential partners 
that improve the design objective (for example, higher titres, rates or yields of valuable product).

Build: recombine key microorganisms into new synthetic consortia. Following their isolation or enrichment, key 
microorganisms are assembled into new synthetic consortia on the basis of in silico predictions at various ratios (for 
example, 1:1, 1:10). Microfluidic devices and/or liquid-​handling robots could be used for high-​throughput isolation  
and recombination.

Test: test function and stability of consortia. High-​throughput phenotypic screening coupled with multi-​omic 
measurements can be used for testing. this step should also include validation of predicted metabolisms of individual 
isolates or enrichments.

Learn: identify microbial interactions that control function. analysing the metabolism of microorganisms growing in 
consortia versus in isolation using metabolic flux analysis can identify important mechanisms and interactions. this 
understanding can be used to propose how microbiome function and stability could be optimized by environmental 
manipulation and/or in situ genome engineering.
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exometabolomics and/or off-​gas analysis have been used 
to determine process fluxes driving important micro-
biome functions, such as syntrophic acetate oxidation 
and methanogenesis during anaerobic digestion116.  
To circumvent the challenges with metabolite measure-
ments, a method analysing labelling patterns from short 
peptides instead of amino acids for metabolic flux ana
lysis was proposed125. Peptides can be assigned to indi-
vidual species in a microbiome using high-​throughput 
metaproteomic approaches, which opens the door to 
determining fluxes in microbial communities (that is, 
to ‘metafluxomics’). Given that fluxes represent the final 
outcome of cellular regulation across all levels126, further 
development and demonstration of metafluxomics will 
be essential for advancing microbiome engineering 
efforts and our understanding of metabolic regulation in 
microbiomes. This will also require new software pack-
ages for associated computational analyses, similar to 
existing 13C metabolic flux analysis software127. Such data 
may also allow metabolic modelers to infer, rather than 
assume, community-​level and individual-​level objective 
functions and to identify new constraints, allowing the 

accurate prediction and measurement of reaction rates 
driving microbiome function.

Measuring function in spatially heterogeneous environ-
ments. Most natural microbiomes, such as those associ-
ated with plants (for example, rhizosphere), humans (for  
example, oral microbiome) and industrial processes  
(for example, acid mine drainage), display highly organ-
ized spatial organization across micro-​scale physicochemi-
cal gradients that directly influences microbiome function. 
For example, the spatial proximity of microorganisms 
can control whether they interact through diffusible sub-
strates or direct transfer128, whereas variations in colony 
size can dramatically influence apparent substrate affi
nity constants and substrate competition between biofilm  
microorganisms129. Therefore, one of the biggest chal-
lenges will be to create tools that measure and report on 
microbiome spatial structure and function across all rele
vant scales (from micrometres to kilometres). Current 
methods to measure structure–function relationships have 
focused on the micrometre to millimetre scale using 
approaches such as fluorescence in situ hybridization 
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to quantify extracellular  
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hydrogen, methane) produced 
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combined with stable isotope labelling130, chemical 
fingerprinting131, mass spectrometry imaging132 and/or 
fluorescence-​based bio-​orthogonal non-​canonical amino 
acid tagging133 (Box 2). Although these techniques have 
successfully identified the substrate use and activity pat-
terns of spatially distributed microorganisms in micro-
biomes, they are limited by throughput and can examine 
and/or differentiate only a limited number of organisms. 
The integrated application of labelling techniques (for 
example, stable isotope labelling and bio-​orthogonal 
non-​canonical amino acid tagging) with metaproteomics 
and cell sorting (for example, fluorescence-​activated cell 
sorting)133 could be used to measure the metabolic acti
vity of microorganisms with high-​throughput and with 
spatial resolution. Combined with microsensor devices 
that profile microenvironmental chemical properties 
(for example, through microelectrodes134 or engineered 
biosensors95), microbiome structure, microbiome 

function and ecosystem physicochemical parameters 
could be monitored in real time.

Learning microbiome design principles. Progressing 
through the design, build and test phases of microbiome 
engineering presents a unique opportunity to learn from 
previous failures and successes, and to incorporate new 
knowledge into subsequent cycles. Indeed, the learn 
phase of the DBTL cycle is critical for success and for 
increasing microbiome engineering efficiency. To date 
there are no general strategies, techniques or approaches 
that guarantee success in translating information 
obtained from the test phase into new knowledge that 
informs the next design phase. Therefore, we stress the 
importance of devoting enough emphasis and resources 
to the learn phase early on so as to avoid, for example, 
the difficulties encountered in metabolic engineering 
due to a relative lack of investment in the learn step13.  
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Further development of computational methods to 
formalize the learn phase will be needed, including  
machine learning algorithms48,135,136, metabolic flux analy
sis and constraint-​based analysis36,124,125,137, ecosystem  
modelling approaches138 and regulatory network ana
lysis139. Together, these analyses could isolate the prin-
cipal drivers of microbiome interactions and function 
from large datasets to inform microbiome design. For 
example, generalized Lotka–Volterra equations could infer 

interacting species from temporal population dyna
mics data that become the starting point for bottom-​up 
design140 or constraint-​based analysis could be applied 
to identify key metabolite exchange reactions from  
13C metabolomic data that increase flux simulation  
accuracy and improve design of anaerobic consortia137.

More broadly, we envision the learn phase to focus on 
translating data into generalizable principles for micro-
biome engineering through the continuous refinement 

Box 2 | A toolbox for measuring microbiome function

Multi-​omics integration
the ability to assemble genomes from metagenomic data28 has enabled the 
genome-​resolved analysis of individual transcriptomes63 and proteomes118 
within diverse communities and greatly increased the interpretive power 
of multi-​omic datasets. a key challenge moving forward will be the 
integration of metabolomic information163, both intracellular and 
extracellular, which cannot be readily assigned to individual members of 
the microbiome such as DNa, rNa and proteins can be. the large amount 
of unknown or poorly characterized genes, enzymes and metabolites 
currently limits the interpretive power of multi-​omic information. it does, 
however, create novel targets for further biochemical studies. advances 
in bioinformatic tools, such as data-​driven approaches (for example, 
statistical or machine learning methods) and knowledge-​based 
approaches (for example, interaction networks or genome-​scale metabolic 
modelling)164,165, will be key to the success of systematic measurements  
of microbiome function through coherent multi-​omics data integration.

isotopic tracers
isotopic tracers have a long history in functional analysis in both pure 
cultures and communities, and have been combined with DNa166, rNa167 
and protein116 measurements to link individual populations to specific 
in situ functions. Moving forward, more efforts to incorporate isotopic 
tracers with multi-​omics (especially metaproteomics and metabolomics) 
are needed to illuminate the complex metabolic networks within 
microbiomes. the combination of these techniques should also pave  
the way for measurement of intracellular and extracellular reaction rates 
(‘metafluxomics’)124,125, which has been one of the most powerful tools  
for elucidating in vivo phenotypes, pathway constraints and metabolic 
regulation in pure cultures used for engineering purposes.

Mass spectrometry imaging
Mass spectrometry imaging (Msi) techniques visualize the distribution  
of elements and their isotopes as well as biomolecules within complex 
samples. Msi is well suited for the analysis of spatially structured 
microbiomes and for the investigation of cellular interactions. when 
combined with fluorescence in situ hybridization, MSI also allows the 
linking of microbiome structure with function168,169. the chemical coverage, 
spatial resolution and sample preparation that can be obtained with 
different Msi techniques depend on the ionization method used132. 
although nanoscale secondary ion mass spectrometry (nanosiMs)  
has superior lateral resolution compared with matrix-​assisted laser 
desorption/ionization (MaLDi) or desorption electrospray ionization (Desi; 
50 nm, 3–50 mm and 100 mm, respectively), its relative chemical versatility 
is very low (elements and isotopes versus peptides, lipids, metabolites  
and other molecules). therefore, nanosiMs has generally been applied  
to study substrate use of single cells, whereas MaLDi–Msi has been used to 
visualize chemical interactions between populations132. although MaLDi–
Msi and Desi–Msi are more accessible than nanosiMs170 and could be well 
positioned to visualize the broad range of chemical interactions within 
microbiomes, they have very low throughput and their lateral resolution 
and sensitivity currently prohibit single-​cell metabolic profiling132.  
a technique that combines the best of these two methods is nanostructure- 
​initiator mass spectrometry (NiMs). NiMs is a matrix-​free desorption/
ionization technique that depends on initiator molecules trapped in 30-nm 
pores to achieve the ionization of small molecules adsorbed to the pore 

surface. NiMs offers a lateral resolution of ~150 nm and is particularly 
well suited for the analyses of peptides and metabolites171. so far, NiMs 
has seen only limited application in microbiology172,173. we expect 
advances that resolve these issues will soon make Msi a useful and  
more widely applied tool for functional analysis of microbiomes174.

bio-​orthogonal chemistry
Metabolic labelling techniques, such as bio-​orthogonal non-​canonical 
amino acid tagging (BONCat), offer additional approaches to measure 
microbiome anabolic activity in situ. BONCAT is based on the in vivo 
translational incorporation of a non-​canonical amino acid (for example,  
l-​azidohomoalanine, an l-​methionine surrogate) followed by fluorescent 
labelling of tagged cellular proteins by azide–alkyne click chemistry175. 
the technique can be used together with ribosomal rNa-​targeted 
fluorescence in situ hybridization to directly link taxonomy with in situ 
activity175. BONCat has also been combined with fluorescence-​activated 
cell sorting to separate active cells from complex samples and further 
characterize them by DNa sequencing133. in addition, tagged proteins  
can be selectively enriched through bead capture and subjected to 
proteomic analysis176. the combined application of these methods could 
allow the high-​throughput tracking of newly synthesized proteins from 
uncultivated microorganisms under different physicochemical conditions. 
although BONCat can be limited due to differences in cellular amino  
acid uptake and metabolic perturbation, the technique offers a flexible 
tool for the comparatively simple, inexpensive and high-​throughput 
analysis of in situ activity on a single-​cell level.

Microfluidics
Devices that allow the high-​throughput analyses of microorganisms  
at single-​cell resolution will be important for the rapid cultivation and 
functional analysis of microbiomes. Microfabricated devices such as 
microfluidic ‘lab-​on-chip’ technology could offer multiple applications, 
including isolation of individual cells and populations from complex 
microbiomes177, the creation of in vitro cell-​based models that facilitate 
assembly of synthetic microbiomes and experimentation under 
heterogenous microenvironmental conditions178, and online diagnostics 
for rapid monitoring and detection of desired phenotypes. these 
applications are still in early stages of development, and several 
challenges remain, including reliable detection of microorganisms in 
droplets, precise control of gas concentrations, cross-​contamination 
and technology accessibility177,179.

Automation
to increase the reproducibility, throughput, efficiency, and standardization 
of microbiome engineering, advances in automation will be necessary.  
this includes incorporating liquid-​handling robots, microfluidic devices, 
automated cultivation systems, online physicochemical measurement 
sensors and software into data generation and analysis workflows. 
emerging examples include the use of liquid-​handling robots coupled 
to automated microfermentation platforms for high-​throughput 
cultivation82, or microfluidics to automate the analysis of thousands of 
droplet experiments that probe microbial community interactions114,180. 
such automated platforms could also integrate several functional tools 
(for example, single-​cell analyses and multi-​omics), resulting in rich 
reproducible datasets that could be leveraged for machine learning  
and other big data analytics.

Generalized Lotka–Volterra 
equations
A set of ordinary differential 
equations used to represent 
population dynamics based on 
experimentally inferred species 
interaction parameters.
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of conceptual knowledge and proposed theory (for 
example, from traditional macroecology)51,141–144 with 
each DBTL cycle. We propose that model laboratory 
ecosystems should be used to drive microbiome engi-
neering inquiry and learning. Model laboratory ecosys-
tems are experimental platforms that can replicate the 
physicochemical conditions of a complex environment 
(natural or engineered) in a simplified and controlled 
manner and contain model microbial communities (for 
example, the model rhizosphere microbiome THOR)145 
that can be used as testing grounds for learning how 
to design, construct and optimize engineered micro
biomes. These ecosystems have reduced complexity, are 
accessible for experimentation and can be established 
in a reproducible manner, which is often not possible  
when one is working in natural environments.

Recently, model laboratory ecosystems have been 
developed to study plant–soil microbiome interactions146. 
These fabricated ecosystems use three-​dimensional 
printing, sensing and analytical and imagining techno
logies to create an experimental device that replicates the 

native soil ecosystem, in which microorganism and host 
phenotypes can be monitored in response to changing 
variables, allowing the systematic dissection of micro-
bial interactions and metabolite exchanges influencing 
plant health146,147. Fabricated ecosystems offer a middle 
ground between model organisms and complex natu-
ral microbiomes, and can be established collaboratively 
between expert investigators to create standardized and 
reproducible devices and protocols for dissemination to 
the broader research community. Such model systems 
offer the ability to experimentally develop engineered 
microbiomes with desired functions in a tractable 
manner, and permit results to be compared with results 
from natural settings. This cross-​examination between 
model and natural ecosystems will be a valuable and 
necessary approach for learning engineering principles 
and practices that are relevant to real-​world systems (not 
laboratory artefacts), and for acquiring knowledge on 
scaling up laboratory-​based engineering strategies to 
full-​scale applications (Fig. 5). For example, microfluidic-​
based in vitro models of the human gut microbiome 
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Fig. 5 | learning fundamental principles for microbiome engineering. Model laboratory ecosystems can be used for 
controlled experiments with simplified microbiomes and environmental properties, representing a system in between 
pure laboratory conditions (such as test tubes or flasks) and complex natural environments (such as soil or the ocean). 
Continuous cross-​examination between laboratory-​scale models and natural complex ecosystems will be needed for 
development of engineering principles and practices that are robust in real systems while also tractable in the laboratory. 
This will require close collaboration between multiple stakeholders, including researchers and end users (such as hospitals 
or treatment plants) that have expertise and experience with issues specific to each scale (part a). Key principles that  
need to be learned to make possible systematic microbiome engineering include microbial interaction mechanisms  
(part b), mechanisms governing functional stability and degeneracy (part c), and frameworks for quantitatively mapping 
and simulating ecological niches in complex ecosystems (part d). MS, mass spectrometry; SIP, stable isotope labelling.
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that contain co-​cultures of human cells with different 
bacterial consortia are already producing physiologi-
cal (including epithelial cell monolayer formation, cell 
growth and viability, cytokine levels and metabolomic 
profiles) and environmental (including oxygen gradi-
ents and laminar flow) variables that are comparable to 
in vivo variables148.

The combination of model ecosystems with the DBTL 
cycle may be particularly fruitful for understanding 
the mechanisms governing microbial interactions and 
functional stability. Substantial knowledge is available 
on specific microorganisms that undergo co-​aggregation 
and exchange metabolites, such as bacteria involved 
in nitrogen cycling2, consortia of methane-​oxidizing 
archaea and sulfate-​reducing bacteria128,149,150, and syn-
trophic bacteria partnered with hydrogenotrophic 
methanogens151,152. However, we are only beginning to 
understand the complex mechanisms (such as quorum 
sensing and secondary metabolites) involved in regulat-
ing the behaviour, interactions and kin discrimination 
of microorganisms in communities153. Although studies 
have established links between microbiome functional 
redundancy, diversity and stability154, a framework to 
predict or engineer functionally stable microbiomes has 

not been attained. Through the use of model laboratory 
ecosystems together with existing knowledge of micro-
bial ecology and engineering design, it may be possible to 
decipher the chemical language of microbiomes and dis-
cover mechanisms of other important processes (includ-
ing evolution, selection, dispersal limitation and neutral 
processes)155 that enable robust and stable microbiome 
function. Translating this theory into engineering design 
practice will require a quantitative framework that links 
these mechanisms to metabolic interaction networks 
and new approaches that allow ecological properties to 
emerge from metabolic models (Box 3).

Outlook
True advancement in microbiome engineering will need 
multiple DBTL rounds to capture the necessary ecologi
cal principles to manipulate microbiomes in a precise 
manner with predictable outcomes (Fig. 1). For exam-
ple, incorporating direct interspecies electron transfer 
discovered during previous DBTL cycles into metabolic 
models and bioreactor construction (for example, by 
adding conductive materials) could optimize the effi-
ciency of biogas production from waste27, or design-
ing engineered E. coli to control levels of previously 

Fundamental niche
The entire set of environmental 
conditions in which an 
organism can survive and 
reproduce (that is, an 
organism’s niche in the 
absence of interspecific 
competition).

Realized niche
The set of environmental 
conditions used by a species 
after consideration of 
interspecific competition 
(competition, predation  
and other factors).

Box 3 | Emerging principles for microbiome engineering: a case for niche modelling

ecological niche modelling could be used to systematically design higher-​order properties such as functional stability 
and robustness into engineered microbiomes. However, to develop such a framework, mechanistic understanding  
of how diversity is maintained within microbiomes and how it imparts properties such as functional stability is needed. 
Here, we propose that this understanding could come from applying the design–build–test–learn cycle to answer  
key questions:

Does functional degeneracy lead to productivity and functional stability?
Diversity has been correlated with productivity and functional stability in communities of macroorganisms143,181,  
yet the role that diversity has in improving microbiome function and functional stability remains open. For microbiome 
engineering, we propose that diversity be viewed, discussed and defined through the lens of functional redundancy  
(as described previously154), or more specifically, functional degeneracy. this is the degree to which a set of organisms 
perform an identical role in ecosystem functionality (for example, methane oxidation, nitrogen fixation or polymer 
hydrolysis) but exhibit degeneracy with respect to other physiological traits (for example, pH optima or biofilm 
formation), which enables them to achieve realized niche space and coexistence51. the design–build–test–learn cycle 
offers an excellent opportunity to understand the molecular basis of functional degeneracy and to examine how 
emergent community-​level properties, such as resilience to perturbation or susceptibility to invasion by another  
species, are predictable from quantifying the fundamental and realized niche space in microbiomes. we propose that 
ecological niche modelling could be a particularly useful framework to achieve this goal.

How is diversity maintained in microbial ecosystems?
to create a framework for ecological niche modelling, it will be important to understand how diversity is maintained. 
Competitive exclusion suggests that two species with identical resource requirements cannot coexist in the same 
ecological niche144. therefore, we need to understand the mechanisms that create niche space and allow diversity to 
develop and be maintained. For example, what role do the processes of spatiotemporal variability, dormancy, predation, 
nutrient loading, secondary metabolite production and resistance, cell motility and biofilm formation have in niche 
differentiation? and how can these processes be manipulated to achieve and maintain a desired level of functional 
degeneracy in a microbiome? answers to these questions will offer microbiome engineering mechanisms to design  
and control ecological niche space for desired microbiome properties.

How does ecological niche modelling underlie microbiome engineering?
to allow the systematic engineering of desirable higher-​order microbiome properties, we propose that microbiome 
engineering develops a framework for ecological niche modelling. the goal of this framework would be to quantify 
community and individual fundamental niche and realized niche space by integrating multi-​omic data, physiological 
information, nutrient availability and environmental parameters, and use them to develop strategies for controlling 
cooperation and competition in microbiomes. to achieve this goal, new mathematical representations of the fundamental 
niche and the realized niche of an organism or guild will need to be defined, together with fitness functions that describe 
responses to environmental variables. when incorporated into microbiome modelling, this framework will allow the 
ecological forecasting of higher-​order properties, as well as quantification of cooperative and competitive microbiome 
landscapes. Moreover, such frameworks will help guide important unresolved microbiome design questions, such as the 
trade-​off between functional redundancy and minimal diversity.
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discovered autoinducers could tailor gut microbiota 
under conditions of dysbiosis towards a healthier state156. 
However, developing new knowledge and tools with fast 
turnaround will require next-​generation infrastructure 
for data collection, data sharing and knowledge inte-
gration. To accelerate progress, developing the predic-
tive capabilities needed for the learn phase is a priority. 
Model laboratory ecosystems combined with advances 
in automation, such as liquid-​handling robots, microflu-
idics and data analysis pipelines157,158, will offer a starting 
point for the testing of multiple designs in a rigorous 
and reproducible manner. Capturing new knowledge 
from this process and integrating information into 
subsequent DBTL cycles will accelerate microbiome 
engineering developments, creating innovative biotech-
nologies and practices for the management of micro
biomes across medicine, agriculture, manufacturing and  
environmental stewardship. Examples that show par-
ticular promise for advancing microbiome engineering 
across these fields include illuminating the roles that 
phages and metabolite cross-​feeding have in controlling 
ruminal carbon turnover159, harnessing untapped anaer-
obic fungal–bacterial consortia to increase biomass 

conversion to valuable bioproducts160,161, creating micro
fluidic cell sorting techniques to automatically sort sta-
ble isotope-​labelled cells from high-​diversity samples 
for subsequent multi-​omic analysis or cultivation162 
and developing in situ metagenomic engineering tools 
to introduce new functions into microbiomes in their 
native environment111.

To move the DBTL approach forward, interdiscipli-
nary research teams with expertise in experimentation 
(for example, in culturing, molecular genetics or bio-
chemistry), computation (for example, metabolic model
ling, machine learning or bioinformatics), automation  
(for example, robotics or microfluidics), and practice (for 
example, professional engineers or medical doctors) are 
essential. The road ahead for microbiome engineering 
seems long, given our nascent understanding of microbial 
ecology; however, structuring research and technology 
developments around the DBTL cycle offers a promising 
approach for advancing microbiome engineering and 
providing innovative solutions for addressing pressing 
societal and environmental problems.
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