

Recent advances in Surgery of the Thoracic Aorta

Ajit K. Tharakan, MD Cardiothoracic Surgery

No conflict of interest

Recent advances

- Surgery of the aortic root
- Surgery of the aortic arch
- Surgery for aortic dissections
- Cerebral protection during arch surgery
- Genetic aortopathies

SURGERY OF THE AORTIC ROOT

Components of the aortic root

Aortic valve annulus Valve leaflets Sinuses of Valsalva Sinotubular junction

AI Class	Normal cusp	Tyן motion with FAA	Type II Cusp	Type III Cusp		
	la	lb	lc	ld	Prolapse	Restriction
Mechanism	E p	•				
Repair Techniques (Primary)	STJ remodeling Ascending aortic graft	Aortic Valve sparing: Reimplantation or Remodeling with SCA	SCA	Patch Repair Autologous or bovine pericardium	Prolapse Repair Plication Triangular resection Free margin Resuspension Patch	Leaflet Repair Shaving Decalcification Patch
(Secondary)	SCA		STJ Annuloplasty	SCA	SCA	SCA

Pathology

- Degenerative aortic root aneurysm Connective tissue disorders Marfans/ Loeys Dietz/ Ehlers Danlos IV Arteritis
- Type A aortic dissection

Thorax (1968), 23, 338.

A technique for complete replacement of the ascending aorta

HUGH BENTALL AND ANTONY DE BONO

From the Royal Postgraduate Medical School, London, and Hammersmith Hospital

A technique for complete replacement of the aortic valve and ascending aorta in cases of aneurysm of the ascending aorta with aortic valve ectasia is described. The proximal aortic root was too attenuated to afford anchorage to the aortic prosthesis, so this was sutured to the ring of a Starr valve and the prostheses were inserted *en bloc*. The ostia of the coronary arteries were anastomosed to the side of the aortic prosthesis.

FIG. 2. Starr valve has been sutured to aortic prosthesis: sutures have been placed in aortic ring before fixing the combined prostheses.

FIG. 3. Combined prostheses in situ. Insets 1 to 4 show details of holes fashioned in the side wall of the Teflon tube to reincorporate the coronary ostia within the lumen of the new ascending aorta. Inset 5 shows the vertical slit in the prosthesis.

Cardiovascular Surgery

Surgery for Aneurysms of the Aortic Root A 30-Year Experience

Kenton J. Zehr, MD; Thomas A. Orszulak, MD; Charles J. Mullany, MD; Alireza Matloobi, MD; Richard C. Daly, MD; Joseph A. Dearani, MD; Thoralf M. Sundt III, MD; Francisco J. Puga, MD; Gordon K. Danielson, MD; Hartzell V. Schaff, MD

- Background—This study evaluated long-term results of aortic root replacement and valve-preserving aortic root reconstruction for patients with aneurysms involving the aortic root.
- *Methods and Results*—Two-hundred three patients aged 53 ± 16 years (mean±SD; 153 male, 50 female) underwent elective or urgent aortic root surgery from 1971 to 2000 for an aortic root aneurysm: 149 patients underwent a composite valve conduit reconstruction, and 54 patients underwent valve-preserving aortic root reconstruction. Fifty patients had Marfan syndrome. In-hospital and 30-day mortality was 4.0% (8/203) overall: for a composite valve conduit procedure, the corresponding value was 4.0% (6/149) and for valve-preserving procedure, 3.7% (2/54) (*P*=NS). Morbidity included 3 strokes (1%), 10 perioperative myocardial infarctions (5%), and 8 reoperations for bleeding (4%). Actuarial survival at 5, 10, 15, and 20 years was 93% (95% CII = 36% to 69%), respectively. Freedom from reoperation was 72% (95% CI = 57% to 79%), and 52% (95% CI = 36% to 69%), respectively. Freedom from reoperation was 72% (95% CI = 54% to 86%) at 20 years. Complications with anticoagulation occurred in 29 patients; with valve thrombosis, in 2; and with hemorrhage, in 27 (4 life threatening and 23 minor). Freedom from thromboembolism was 91% (95% CI = 77% to 98%) at 20 years. Freedom from endocarditis was 99% (95% CI = 92% to 100%) at 20 years. Multivariate analysis revealed preoperative mitral valve regurgitation (+3 to 4) and older age to be significant predictors of late death (*P*≤0.005), and Marfan syndrome, initial valve-preserving aortic root reconstruction, and need for a concomitant procedure at initial operation to be significant predictors of the need for reoperation (*P*≤0.01).
- Conclusions—Aortic root replacement for aortic root aneurysms can be done with low morbidity and mortality. Composite valve conduit reconstruction resulted in a durable result. There were few serious complications related to the need for long-term anticoagulation or a prosthetic valve. Reoperation was most commonly required because of failure of the aortic valve when a valve-preserving aortic root reconstruction was performed or for other cardiac or aortic disease elsewhere. (Circulation. 2004;110:1364-1371.)

Key Words: surgery ■ aneurysm ■ aorta

Why valve sparing operation Mechanical valve have need for lifelong anticoagulation with anticoagulation related complication 0.5-1%/ year

Tissue valve replacement in young patients have an early failure rate

Indications

Aortic root aneurysms without valve pathology Aortic root aneurysms

- With trileaflet valve: > 55 mm
- Marfan's / Bicuspid valve: > 45 mm
- Loeys-Dietz's syndrome: > 40 mm

Growth of > 0.5 cm/ year

Valve sparing aortic root replacement

FIGURE 31–8 (A) A tubular Dacron graft is tailored to create three neo-aortic sinuses. (B) The complete repair. (Reproduced from David TE: Remodeling of the aortic root with preservation of the native aortic valve. Op Tech Cardiac Thorac Surg 1996; 1:44, with permission from WB Saunders.)

FIGURE 31–13 Reimplantation of the aortic valve. The three commissures are resuspended inside the graft and the remnants of the aortic sinuses are secured to the Dacron graft. The coronary arteries are reimplanted.

Figure 2 A. Freedom from reoperation on the aortic valve after aortic valve sparing operations; B. Freedom from reoperation after reimplantation and remodeling procedures

Table 3 Freedom from moderate or severe aortic insufficiency										
	All	All		Reimplantation		Remodeling				
	N	Freedom	N	Freedom	N	Freedom				
1 year	334	100.0%	265	100.0%	69	100.0%				
5 years	206	98.2%	161	98.3%	45	98.0%				
10 years	97	93.0%	59	92.9%	38	93.2%				
15 years	28	78.1%	12	89.4%	16	70.7%				
20 years	6	74.4%	5	89.4%	1	63.6%				
Abbreviation: N – number of patients at risk										

Annals of Cardiothoracic Surgery : Tirone David, January 2013

Figure 1 A. Patients' survival after aortic valve sparing operations; B. Survival after reimplantation and remodeling procedures

- 30 yr old female
- Strong family history of aortic complications from Marfan's syndrome
- Serial CT scan showed enlargement to 5 cm at the aortic root
- Active, no symptoms
- One child with no peripartum complications

SURGERY OF THE AORTIC ARCH

Aortic arch aneurysm

- 65 yr old male with upper chest discomfort
- No history of aortic syndromes
- 6.5 cm aortic arch at the level of left carotid
- Active

Patient 2

- 51 yr old
- Severe chest pain while moving furniture
- BP 170/90

Patient 3

- 82 yr old gentleman
- Active
- Syncopal spell
- Stable hemodynamics

Options for Arch replacement

Evolution of Simplified Frozen Elephant Trunk Repair for Acute DeBakey Type I Dissection: Midterm Outcomes

Eric E. Roselli, MD, Jay J. Idrees, MD, MPH, Faisal G. Bakaeen, MD, Michael Z. Tong, MD, MBA, Edward G. Soltesz, MD, MPH, Stephanie Mick, MD, Douglas R. Johnston, MD, Mathew J. Eagleton, MD, Venu Menon, MD, and Lars G. Svensson, MD, PhD

Department of Thoracic and Cardiovascular Surgery, Aorta Center, Heart and Vascular Institute, Cleveland Clinic, Cleveland, Ohio; Department of Vascular Surgery, Aorta Center, Heart and Vascular Institute, Cleveland Clinic, Cleveland, Ohio; Department of Cardiovascular Medicine, Aorta Center, Heart and Vascular Institute, Cleveland Clinic, Cleveland, Ohio

Background. A modified technique for frozen elephant trunk (FET) repair of acute DeBakey type I dissection has evolved. Procedural modifications are described and midterm outcomes evaluated.

Methods. From 2009 to 2016, 72 patients with DeBakey type I dissection underwent emergency simplified FET. Mean age was 59 ± 15 years. Presentation included malperfusion (n = 22, 31%), rupture (n = 12, 16%), and aortic insufficiency (n = 42, 58%). Concomitant procedures included valve replacement (n = 9), root replacement (n = 11; valve sparing n = 6), cusp repair (n = 11), and valve resuspension (n = 21). The first 39 were treated by modifying an early generation stent graft. The next 16 received newer modified stent grafts, and the latest 17 underwent branched single anastomosis technique with left subclavian stent grafting.

Results. Operative mortality was 4.2% (n = 3 of 72). Two presented comatose without recovering, the other died from coagulopathy complications. Morbidity included stroke (n = 3, 4.2%), spinal injury (n = 3, 4.2%;

1 permanent), tracheostomy (n = 7, 9.7%), and renal failure (n = 2, 2.8%). Median follow-up was 28 ± 25 months. Survival was 92% at 6 months, 92% at 1 year, 89% at 3 years, and 80% at 5 years. Among 69 survivors, follow-up imaging was available in 63 (91%). Of these, 58 (92%) patients thrombosed the treated false lumen, with shrinkage in 37(54%) patients from 42 ± 8 mm to 37 ± 7 mm. Ten patients underwent 14 late reinterventions for growth and incomplete thrombosis (7 endo extension, 4 left subclavian embolization, 1 bypass, 2 false lumen embolization). Freedom from reintervention was 93% at 6 months, 87% at 1 year, 77% at 3 years, and 72% at 5 years.

Conclusions. Simplified FET for treating acute DeBakey type I dissection has evolved and remained safe. It promotes aortic remodeling, and simplifies management of chronic aortic complications.

> (Ann Thorac Surg 2018;105:749–56) © 2018 by The Society of Thoracic Surgeons

Fig 1. Evolution of the simplified frozen elephant trunk technique. (A) Intraoperative creation of fenestration by resection of a portion of proximal stent graft (2009). (B) Fenestration below the left subclavian artery (2012). (C) Direct branch vessel stent grafting (2015).

Fig 3. Survival was 92% at 6 months, 92% at 1 year, 89% at 3 years, and 80% at 5 years.

Fig 4. Freedom from reintervention was 93% at 6 months, 87% at 1 year, 77% at 3 years, and 72% at 5 years.

Total endograft replacement of aortic arch

Simon Neequaye, Cherrie Z. Abraham

Jewish General Hospital and McGill University, Montreal, Quebec, Canada

Corresponding to: Cherrie Z. Abraham. Division of Vascular Surgery, Jewish General Hospital, E-110, 3755 Cote-Ste-Catherine, Montreal, Quebec H3T 1E2, Canada. Email: cabraham@jgh.mcgill.ca.

Total endovascular replacement of the aortic arch is a complex procedure that is often favoured when the pathology anatomy precludes a standard median sternotomy. Here we present the case of endograft repair in a 79 year old male with 6.5 cm arch aneurysm and 5.4 cm descending thoracoabdominal aneurysm. Following bilateral carotid-subclavian bypasses, a long 7 Fr sheath was advanced into the descending aorta through the common iliac artery purse string. A double curved long Lunderquist wire was guided to deep within the left ventricle, and the endograft carefully advanced over the wire. The graft was radiologically orientated, and deployed under asystolic conditions. Retrograde cannulation of the branches were accomplished, with carotid sheath placed into the branches followed by bridging stents. The graft delivery system was then removed. This approach obviates the need for a sternotomy, cumbersome extra-anatomic debranching, and hypothermic circulatory arrest.

Keywords: TEVAR; total arch replacement; endograft; case report

Submitted Jan 20, 2013. Accepted for publication Feb 25, 2013. doi: 10.3978/j.issn.2225-319X.2013.02.06 Scan to your mobile device or view this article at: http://www.annalscts.com/article/view/2010/2740

Surgical Background

- In 1992, Dr Crawford projecting trends from 1975, that we could achieve a 3% mortality for uncomplicated ascending aortic replacement
 - Crawford et al, JTCVS 1992
- IRAD data from 12 specialized
 aortic centers, note a 26 ±
 3 % acute mortality
 - Hagan et al, JAMA 2000

Acute Aortic Dissection

Priorities of Surgical management

- Live Patient !
- Stable aortic root
- Competent aortic valve
- Normal coronary perfusion
- Resection of arch tear
- Single lumen descending thoracic aorta

Cannulation Techniques

Femoral artery Rt subclavian artery Innominate artery Lt carotid artery Direct aortic cannulation (Seldinger technique) Transapical LV

Management of the Proximal anastomosis

Assess:

- Condition of the patient
- Proximal extent
- Size of the aortic sinuses
- Integrity of the aortic valve
- Location and integrity of the coronary ostia

Options for proximal reconstruction

- Reconstruct the proximal root (felt/ glue the affected layers)
- Resuspend or replace aortic valve
- Composite valve graft
 - *Yacoub* aortic reconstruction
 - *David* aortic reconstruction

Surgical M	ethods		rationto	WIGH AADA	Incatou	with t	Jinerent	
		SCR		Comp	AVS	Over	all	Р

Data for Patients With AADA Treated With Different

	SCR	Comp	AVS	Overall	Ρ
Operation time, min	242±68	301±121	305 ± 75	267 ± 90	< 0.001
ECC time, min	141 ± 54	189 ± 100	209 ± 57	166 ± 74	< 0.001
X-clamp time, min	74 ± 29	108 ± 35	156 ± 39	98±45	< 0.001
Circulatory arrest, min	24±14	24±16	29±18	25±15	0.20
Aortic cannulation (%)	31 (22)	11 (19)	28 (58)	28	< 0.001
Proximal arch replacement (%)	74 (51)	32 (50)	22 (46)	128 (50)	0.18
Sub/total arch replacement (%)	28 (19)	12 (19)	18 (38)	58 (23)	0.023
Elephant trunk (%)	5 (3)	2 (3)	7 (15)	14 (5)	0.008
CABG (%)	13 (9)	8 (13)	3 (6)	24 (9)	0.52
Fenestration (%)	4 (3)	1 (2)	2 (4)	7 (3)	0.70

Supracommisural tube placement

Root reconstruction w/ felt/ pericardium sandwich ± bioglue

Valve replacement with supracommisural tube Composite valve graft

Composite valve graft

Valve sparing root replacement

Does a more distal radical reconstruction improve survival?

- Distal clamp
- Open distal
- Open hemiarch
- Total arch
- Total arch with elephant trunk

Hemiarch versus total aortic arch replacement in acute type A dissection: a systematic review and meta-analysis

Shi Sum Poon, Thomas Theologou, Deborah Harrington, Manoj Kuduvalli, Aung Oo, Mark Field

Thoracic Aortic Aneurysm Service, Department of Cardiac Surgery, Liverpool Heart and Chest Hospital, Liverpool, UK *Correspondence to:* Mark Field. Thoracic Aortic Aneurysm Service, Department of Cardiac Surgery, Liverpool Heart and Chest Hospital, Thomas Drive, Liverpool, L14 3PE, UK. Email: mark.field@lhch.nhs.uk.

Background: Despite recent advances in aortic surgery, acute type A aortic dissection remains a surgical emergency associated with high mortality and morbidity. Appropriate management is crucial to achieve satisfactory outcomes but the optimal surgical approach is controversial. The present systematic review and meta-analysis sought to access cumulative data from comparative studies between hemiarch and total aortic arch replacement in patients with acute type A aortic dissection.

Methods: A systematic review of the literature using six databases. Eligible studies include comparative studies on hemiarch versus total arch replacement reporting short, medium and long term outcomes. A meta-analysis was performed on eligible studies reporting outcome of interest to quantify the effects of hemiarch replacement on mortality and morbidity risk compared to total arch replacement.

Result: Fourteen retrospective studies met the inclusion criteria and 2,221 patients were included in the final analysis. Pooled analysis showed that hemiarch replacement was associated with a lower risk of post-operative renal dialysis [risk ratio (RR) =0.72; 95% confidence interval (CI): 0.56–0.94; P=0.02; I^2 =0%]. There was no significant difference in terms of in-hospital mortality between the two groups (RR =0.84; 95% CI: 0.65–1.09; P=0.20; I^2 =0%). Cardiopulmonary bypass, aortic cross clamp and circulatory arrest times were significantly longer in total arch replacement. During follow up, no significant difference was reported from current studies between the two operative approaches in terms of aortic re-intervention and freedom from aortic reoperation.

Conclusions: Within the context of publication bias by high volume aortic centres and non-randomized data sets, there was no difference in mortality outcomes between the two groups. This analysis serves to demonstrate that for those centers doing sufficient total aortic arch activity to allow for publication, excellent and equivalent outcomes are achievable. Conclusions on differences in longer term outcome data are required. We do not, however, advocate total arch as a primary approach by all centers and surgeons irrespective of patient characteristics, but rather, a tailored approach based on surgeon and center experience and patient presentation.

Keywords: Hemiarch replacement; total arch replacement; acute type A dissection; meta-analysis

Table 1 An overview of publication from selected studies										
First author	Year	Study period	Centers	No. of hemiarch	No. of total arch	Total sample size, n	Mean follow up time	Newcastle Ottawa Score		
Shi (10)	2014	2006–2011	Shenyang, China	71	84	155	42.7±17.8 months (3.6 years)	8		
Ohtsubo (11)	2002	1989–2001	Saga, Japan	23	24	47	42.0±36 months (0– 147 months) (3.5 years)	7		
Tan (12)	2003	1986–2001	Nieuwegein, The Netherlands	53	17	70	2.6 years (0-14.5 years)	8		
Uchida (13)	2009	1997–2008	Hiroshima, Japan	55	65	120	67 months (3– 124 months) (5.6 years)	7		
Rylski (14)	2014	2001–2013	Freiburg, Germany	37	14	51	4.9 years 45% >5 years	9		
Kim (15)	2010	1999–2009	Seoul, South Korea	144	44	188	47.5 months (0– 130.4 months) (4.0 years)	9		
Shiono (16)	2006	1995–2005	Tokyo, Japan	105	29	134	FU up to 10 years	8		
Zhang (17)	2014	2002–2010	Shanghai, China	74	88	162	55.7±33.1 months (4.6 years)	7		
Sun (4)	2014	2003–2008	Beijing, China	66	148	214	42–49 months (3.5–4.1 years)	8		
Di Eusanio (18)	2015	1997–2012	Bologna, Italy	187	53	240	4.8±3.9 years (0.1–15.5 years)	8		
Rice (19)	2015	NS	Texas, USA	440	49	489	49 months	9		
Omura (20)	2016	1999–2014	Kobe, Japan	109	88	197	60±48 months	9		
Vallabhajosyula (21)	2015	2006–2013	Philadelphia, USA	30	31	61	60±41 months	7		
Dai (22)	2015	2008-2010	Fujian, China	41	52	93	64±5.3 months	7		

Study I	Degree of hypothermia, HA/TA	Temperature measurement/ temperature range,	Use of cerebral ac (antegrade or retro	ljunct ograde)	Duration of antegrade/ retrograde cerebral perfusion (min)		Comments
		HA/TA	HA	TA	HA	TA	
Shi	MHCA with SACP	Hemiarch: rectal, lowest, 23.3±1.60 °C; total arch: rectal, lowest, 23.7±1.10 °C	SACP	SACP	30.6±4.9	55.2±6.2	Longer duration of antegrade perfusion in total arch group; P<0.001
Ohstubo	PHCA, 3 arch vessels perfusion	NS	SACP in 21.7% of cases	SACP in 100% of cases	29.0±12.7	106.0±6.0	SACP is more commonly used in total arch replacement
Tan	MHCA with bilateral SACP	NP, 250 °C	Bilateral SACP	Bilateral SACP	NS	NS	NS
Uchida	MHCA with SACP	NS	NS	NS	21.0±12.0	70.0±18.0	Longer duration of cerebral perfusion in total arch replacement
Rylski	MHCA with SACP	NS	SACP	SACP	32.0±9.0	71.0±25.0	Longer duration of cerebral perfusion in total arch replacement; P<0.001
Kim	Hemiarch: DHCA (11.0– 19.90 C) in 76.4%; MHCA (20.0–26.50 C) in 23.6%. Total arch: DHCA (11.0– 19.90 C) in 70.5%; MHCA (20.0–26.50 C) in 29.5%	Hemiarch: OP, lowest, 16.3±40 °C; total arch: OP, lowest, 17.2±4.50 °C	SACP in 29.2%, RCP in 68.8%	SACP in 61.4%, RCP in 38.6%	NS	NS	SACP is more commonly utilised in total arch replacement, retrograde is preferred in hemiarch group. Moderate hypothermia is more likely to be used in SACP
Shiono	DHCA with SACP	Below 200 °C	NS	NS	NS	NS	NS
Zhang	MHCA with SACP	Core temperature 26.0–28.00 °C	SACP in 89.2%; RCP in 10.8%	SACP in 92%; RCP in 8.0%	NS	NS	Moderate hypothermia is more commonly used in recent practices. Similar use of antegrade and retrograde in both groups. P=0.53
Sun	MHCA with unilateral SACP	NP, 18.0-22.00 °C	SACP	SACP	18.0±7.0	24.0±9.0	Similar use and duration of hypothermia and cerebral adjunct in both groups. P=0.097
Di Eusanio	MHCA with SACP	NP, 260 °C	SACP	SACP	45.1±13.7	86.9±33.3	Significantly longer duration of SACP in total arch replacement; P<0.001
Omura	MHCA with SACP	Tympanic <23.00 °C, rectal <30.00 °C	SACP in 56.0% of cases	SACP in 97.7% of cases	48.1±26.6	124.0±42.5	SACP is more commonly utilized in total arch replacement; the duration of perfusion if significantly longer; P≤0.01
Valiabhajosyula	MHCA with SACP/RCP	NS	RCP only in 80%, SACP only 0%; both methods in 20%	RCP only 0%, SACP only 32%; both methods in 68%	NS	NS	RCP is used more frequently in hemiarch replacement
Dai	DHCA with SACP	NP, <20.00 °C	NS	NS	NS	NS	NS
Pooled mean (range)	NA	NA	NA	NA	Mean differen cerebral time (95% CI: 21. P<0.00001	nce of pooled (min): 22.71; 50–23.92),	The duration of cerebral perfusion time is significantly longer in total arch replacement

SACP, selective antegrade cerebral perfusion; RCP, retrograde cerebral perfusion; MHCA, moderate hypothermic circulatory arrest; DHCA, deep hypothermic circulatory arrest; PHCA, profound hypothermic circulatory arrest; NP, nasopharyngeal; OP, oropharyngeal; NS, not specified; RR, risk ratio; CI, confidence interval; HA, hemiarch; TA, total arch.

	Hemiarch Total arch		rch		Risk Ratio	Risk Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Fixed, 95% Cl	IV, Fixed, 95% CI	
A Omura 2016	16	109	9	88	11.4%	1.44 [0.67, 3.09]		
B Rylski 2014	8	37	4	14	6.3%	0.76 [0.27, 2.12]		
D Eusanio 2015	45	187	12	53	21.5%	1.06 [0.61, 1.86]	-+-	
Enyi Shi 2014	3	71	5	84	3.4%	0.71 [0.18, 2.87]		
H Zhang 2014	4	74	5	88	4.1%	0.95 [0.27, 3.41]		
JB Kim 2011	14	144	6	44	8.4%	0.71 [0.29, 1.74]		
LZ Sun 2014	4	66	7	148	4.7%	1.28 [0.39, 4.23]		
M Shiono 2006	7	105	2	29	2.9%	0.97 [0.21, 4.41]		
MH Tan 2003	9	53	4	17	6.2%	0.72 [0.25, 2.05]		
N Uchida 2009	2	55	3	65	2.2%	0.79 [0.14, 4.55]		
P Vallabhajosyula 2015	4	30	8	31	5.6%	0.52 [0.17, 1.54]	+	
R Rice 2015	57	440	10	49	18.4%	0.63 [0.35, 1.16]		
S Ohtsubo 2002	2	23	6	24	3.0%	0.35 [0.08, 1.55]		
XF Dai 2015	2	41	2	52	1.8%	1.27 [0.19, 8.62]		
Total (95% CI)		1435		786	100.0%	0.84 [0.65, 1.09]	•	
Total events	177		83					
Heterogeneity: Chi ² = 6.52	2, df = 13 ((P = 0.9	93); l² = 0	%				
Test for overall effect: Z = 1.27 (P = 0.20)							Favours Hemiarch Favours Total arch	

Conclusions: Within the context of publication bias by high volume aortic centres and non-randomized data sets, there was no difference in mortality outcomes between the two groups. This analysis serves to demonstrate that for those centers doing sufficient total aortic arch activity to allow for publication, excellent and equivalent outcomes are achievable. Conclusions on differences in longer term outcome data are required. We do not, however, advocate total arch as a primary approach by all centers and surgeons irrespective of patient characteristics, but rather, a tailored approach based on surgeon and center experience and patient presentation.

Brain

- 1400g (5 % body weight)
- 20% total body oxygen consumption »40% Cellular
 »60% Transmission Nerve Impulses

Neuro-cognitive Events

- Focal Cerebral Vascular Events (Stroke)
- Embolic Events

Global cerebral necrosis

- Minimum O2 vs Cerebral Metabolic Requirements
- Ischemia depletes ATP
 - Failure basic cellular Ionic pumps
 - Influx Na Cl
 - Calcium accumulation

Excessive neuronal stimulation (excitotoxicity)

• Excitatory amino acids (glutamate) – Accelerates neuronal death

Selective vulnerability

- Hippocampus
- Cerebellum
- Striatum
- Amygdala
- Lateral Thalamic Nucleus
- 3rd-5th Layer Neocortex
- Clinically Improve, but Neuronal Death Continues Up to 1 Week.

Mechanisms of Cerebral Protection

- Deep Hypothermic Circulatory Arrest (DHCA)
- Retrograde Cerebral Perfusion (RCP)
- Selective Antegrade Cerebral Perfusion (SACP)

Antegrade selective cerebral perfusion: historical notes

Year	Surgeons	Techniques	Outcome
1957	De Bakey	Normothermic CPB and bilateral perfusion of subclavian and carotid arteries by means of several pumps.	Hospital mortality: 75%
1968	Dubost and Pearce	Single pump with a Y-connection of the arterial line.	
1986	Frist	Moderate hypothermia (26°–28 °C) and Y-connection on arterial line to perfuse femoral and brachiocephalic arteries.	Hospital mortality: 20% No stroke
1999	Bachet	Cold cerebroplegia: innominate and left carotid arteries perfusion with blood between 6° and 12 °C through separate pumps and heat exchangers.	Hospital mortality: 13% One stroke
1992	Kazui	Moderate hypothermia (25 °C) and separate arterial pump heads for cerebral and systemic circulations. Endoluminal cannulation of the brachiocephalic and left common carotid arteries and occlusion of the left subclavian artery.	Hospital mortality: 4.3% No stroke

CPB, cardiopulmonary bypass.

Roberto Di Bartolomeo et al. MMCTS 2011;2011:mmcts.2010.004457

Define – hypothermia

• Mild - 30° - 34° C

• Moderate - 23° - 29° C

• Deep - 13° - 22° C

PH Management

ALPHA -STAT

(Normal PH and PaCO2)
PH of 7.4 and PaCO2 of 40 mm Hg in 37°
blood alkaline and hypocapnic

PH -STAT

Maintain a PH of 7.40 and PaCO2 of 40 mm Hg under hypothermic conditions

when warmed, blood becomes acidotic and hypercapnic

Glycemic control

- Hyperglycemia results in anaerobic conversion glucose to lactate resulting in acidosis
- Hyperglycemia releases excitatory amino acids with negative neurologic effects

Hematocrit monitoring

• Hemodilution decreases the oxygen carrying capacity of the perfusate

• Optimal Hematocrit level of 30%

Pharmacologic adjustments

- Barbituates
 - Thiopentone Studies
 - Thiopental 15- 30 mg/kg
 - Negative Inotropes
 - Benefit Unknown

Volatile anesthetics

Halothane – Isoflurane

- Provide protection via inhibition of excitotoxicity
- Depression of metabolism
- Improvement of cerebral oxygenation
- Inhibits glutamate release
- Can provide an isoelectric EEG

Corticosteroids

- High dose reduce cytokines and TNF alpha and seems beneficial to
- Improve cerebral oxygen metabolism ?
- Recovery of cerebral blood flow after DHCA

Patient Monitoring

- EEG Electroencephalographic
- BIS Bispectral Index Monitor 0 (flat line) to 100 awake
- SSEP Somatosensory evoked potentials Median Nerve
 - Not significantly Influenced by Anesthetics
 - Can be nearly 100% in determining early neurological events
- Jugular Venous bulb Saturation
 - SvO2 > 95%
 - Associated with lower central temperature but not with better outcome

Rewarming

- Begin slowly
- "Cold blood, low -pressure reperfusion"
- Vulnerable period 6-8 hours after initiation of rewarming

Advantages of DHCA

- Dry and motionless field
- Avoidance of clamping and manipulation of the aorta
- Simplicity and no need for additional perfusion equipment

Disadvantages of DHCA

- Limited time of circulatory arrest
- Prolonged CPB time to cool down and rewarm increases pulmonary renal cardiac and endothelial dysfunction
- Reperfusion Injury
- Coagulopathy

Retrograde cerebral perfusion (RCP) • Once circulatory arrest initiated then retrograde

- Once circulatory arrest initiated then retrograde cold, oxygenated blood into superior vena cave
- above or below azygous?
- Flow 100-500 ml/min
- Adjust to keep central venous pressure 15-25 mm/Hg

RCP Neuro-protective mechanisms

• Maintain cerebral hypothermia

• Washout of embolic air and debris

• Cerebral Perfusion and Metabolic Support?

However....

• Provides only 20-60 % of overall intracranial flow as compared to hypothermic bypass

• Relationship of use of RCP and neurologic outcome is unclear

Selective cerebral perfusion (SCP)

- Kazui 1989 described perfusion through both innominate and left carotid arteries
- Has become popular for cerebral protection for complex arch reconstructions
- Most often the right axillary artery is directly cannulated or 8 mm graft
- Intraclavicular or deltopectoral groove incision

SACP

- Right axillary flow 10-20 ml kg/min
- Pressure adjusted to 40 50 mm/Hg
- Temperature perfusate, 18°C
- To cannulate left carotid artery or not ?

Advantages of SACP

- Circulatory arrest times can extend to 90 minutes ?
- Moderate (nasopharyngeal 25° C) temperatures with reduced coagulopathy and systems complications (renal failure)

Disadvantages of SACP

- Technical Complexity
- Reduced Surgical Visibility
- Increased manipulation of the aortic and arch vessels

What to do...

- Lots of experimental data but few prospective , randomized trials
- Very difficult to compare trials because of variations of techniques between and within various trials

There are known, knowns.

These are things that we know. There are known unknowns.

That is to say, there are things we know we don't know.

But there are also unknown unknowns.

There are things we don't know we don't know.

Donald Rumsfeld

Genetic aortic syndromes

- Marfan syndrome(MFS)
- Loeys Dietz syndrome (LDS)
- Shprintzen Goldberg syndrome (SGS)
- Aneurysms-osteoarthritis syndrome (AOS)
- Syndromic TAA (sTAA)

Marfan Syndrome(MFS)

- Marfan syndrome
 - relatively common connective tissue
 - involves eyes, cardiovascular and musculoskeletal systems
- Mutations in fibrillin-1
- Autosomal dominant
- Professor Antoine Bernard-Jean Marfan
 - described a 5 year old girl with disproportionately long limbs and digits

Marfan syndrome

- Cardinal manifestations
 - aortic root diameter Z-score >2
 - ectopia lentis
 - inherited Fbn1 mutation

MFS – aortic aneurysm

Dormand and Mohiaddin Journal of Cardiovascular Magnetic Resonance 200klabomattpeart institute

Marfan diagnosis

Know the signs. Fight for victory.

MARFAN & RELATED DISORDERS

WHAT TO EXPECT RESO

RESOURCES & ANSWERS

GET INVOLVED ABOUT US

S DONATE

DX HOME MARFAN DX

CRITERIA

Z-SCORE

A Diagnostic Tool for Healthcare Professionals

SYSTEMIC CALCULATOR We compiled the 2010 Revised Ghent Nosology for Marfan Syndrome into a simple diagnostic tool to put the updated criteria right in your hands in an easy-to-use format for your Android or iPhone smartphone, certain desktop internet browsers (Firefox and Safari), and NOOK Color. It is designed for all healthcare professionals involved in the diagnosis of Marfan syndrome, including general practitioners and specialists such as pediatricians, cardiologists, orthopedists, ophthalmologists, and geneticists.

TESTING INFO

Diagnosis or Marfan syndrome requires a coordinated effort by various specialists. Marfan DX is not meant to replace careful and comprehensive consultation among physicians and their patients, but to facilitate accurate consideration of the important elements of a correct diagnosis.

DIFFERENTIAL DIAGNOSIS

The site features:

- RELATED DISORDERS
- Seven simple to follow formulae to determine if the cardinal features and lesser features, combined with family history
 and genetic testing, "add up" to a diagnosis of Marfan syndrome. Expandable text makes the formulae easy to follow.
- Interactive Systemic Score Calculator used to consider the lesser characteristics of Marfan syndrome throughout the body that can be key in making the diagnosis. This too has expandable text and graphics, as well as a function for emailing results for the patient file.

RESOURCES

- Interactive Z-score calculator used to determine the size of the aorta compared to body surface area. This can also be emailed for the patient file.
- · Key points about the role of genetic testing and family history.
- Important information on differential diagnosis and related disorders.
- Helpful links and resources.

Z score

- "z score"
 - the number of standard deviations from the mean of "aortic" measurement when compared with normal individuals with the same body surface area,

Marfan diagnosis

CALCULATION OF SYSTEMIC SCORE

Clinical manifestations of MFS in other organ systems were critically evaluated for their specificity and diagnostic utility based on expert opinion and the available literature. Several of the "minor" criteria from the old Ghent nosology were eliminated, but the most selective systemic features were included in the "systemic score".

Feature		Value	Click to include
Wrist AND thumb sign	+	3	
Wrist OR thumb sign	+	1	
Pectus Carinatum Deformity	+	2	
Pectus Excavatum or Chest Asymmetry	+	1	
Hindfoot Deformity	+	2	
Plain Flat Foot	+	1	
Spontaneous Pneumothorax	+	2	
Dural Ectasia	+	2	
Protucio Acetabulae	+	2	
Scoliosis or Thoracolumbar Kyphosis	+	1	
Reduced Elbow Extension	+	1	
3 of 5 Facial Features	+	1	
Skin Striae	+	1	
Severe Myopia	+	1	
Mitral Valve Prolapse	+	1	
Reduced Upper Segment / Lower Segment & Increased Arm span / Height	+	0	Open to calculate

*A score of ≥ 7 is considered a positive systemic score.

Cardiovascular system in Marfan syndrome

- Mitral valve prolapse and regurgitation
- Left ventricular dilatation and CHF
- Pulmonary artery dilatation
- Aortic root dilatation
 - the most common cause of morbidity and mortality

Aorta in Marfan syndrome

- Aortic aneurysm
- Aortic dissection
- Aortic regurgitation is secondary to above

Aorta in Marfan syndrome

- Risk of aortic dissection
 - diameter at the sinus of Valsalva exceeds 5 cm
 - rate of dilatation exceeds 0.5 mm per year
 - family history of aortic dissection.

Natural history of Marfan

- Mortality from aortic complications has decreased
 - 70% in 1972, 48% in 1995
- Life expectancy has increased

 mean age at death 32 years in 1972 versus 45 years in 1998

Natural history of Marfan

N Engl J Med 1999; 340:1307-1313April 29, 1999

Medical management

- If the aorta is dilated
 - Beta-Blocker therapy
- Prophylactic treatment is recommended
 in those with an aortic diameter of less than 4 cm.

Surveillance

- Annual evaluation
 - clinical history, examination
 - echocardiography

Imaging in Marfan

- Echocardiography at diagnosis to assess the aortic root and ascending aorta
- Follow-up echocardiogram after 6 months.
- If aortic root diameter is stable,
 - annual imaging until the diameter reaches 4.5 cm or
 - changes significantly, when more frequent imaging is advised (Class I, Level of Evidence: C).

Surgical management

- Prophylactic aortic root surgery
 - when the aortic diameter at the Sinus of Valsalva exceeds 5 cm.

N Engl J Med 1999; 340:1307-1313April 29, 1999

Prophylactic surgery vs emergent

Performing prophylactic surgery

– <2% mortality rate</p>

- Performing emergent repair during acute dissection
 - >10% mortality

Post surgical followup

- Repair site is protected from further dilation
- However, continued risk to the arch and descending aorta
 - development of aneurysm formation and dissection later in life
- Careful monitoring is still required proximal and distal to the repair site (1,3,6,12 months and yearly)
- Routine lifelong imaging of the entire aorta is recommended(every 5 years)

MFS and Exercise

- Avoid high intensity static exercise
 - (most competitive athletics, heavy weight lifting)
- Encouraged to participate in lower intensity dynamic exercise (such as golf and bowling)
- Contact sports are not advised

Marfan syndrome and pregnancy

- Increased risk of aortic complications
 - hormonal and hemodynamic alterations during pregnancy
 - pregnancy is a hypervolemic and hyperdynamic state.

Loeys-Dietz syndrome (LDS)

- Autosomal dominant disorder
 - connective tissue with widespread systemic involvement
- Mutations in the genes encoding transforming growth factor beta receptor
 1 or 2

Loeys-Dietz syndrome (LDS)

In contrast to other aortopathies

- catastrophic in children

- Aortic rupture and dissection
 - Can occur at very young ages (6 months of age) and at very small (nearly normal) aortic diameters.

Loeys-Dietz syndrome (LDS)

- Cardinal triad
 - hypertelorism
 - cleft palate or bifid uvula
 - arterial/aortic aneurysms and arterial tortuosity

LDS – Aortic pathology

- Progressive dilatation of the aorta
 - maximal at the level of the sinuses of Valsalva
- Risk of aortic dissection and rupture
 - major source of early mortality
 - mean age at death 26.1 years in the initially reported series

LDS – natural history

- At the time of diagnosis,
 - about two-thirds already have an aneurysm of the aortic root
 - one-fifth already have an aortic dissection
 - all LDS patients will eventually develop dilatation of the aortic root

LDS – arterial pathology

- Arterial involvement is widespread
- Arterial tortuosity, specifically of the head and neck vessels

LDS – other cardiac manifestations

- Associated anomalies
 - bicuspid aortic valve
 - atrial septal defect (ASD)
 - patent ductus arteriosus (PDA)
 - mitral valve prolapse

LDS - diagnosis

- Diagnosis is considered if typical clinical characteristics are present in the patient
- Family history is important
 - although only 25% of the newly diagnosed patients have an affected parent

LDS-natural history

- In the largest study of Loeys-Dietz patients (n=90)
 - 98% had aortic root aneurysms
 - The mean age at death was 26 years (range 0.5 to 47 years)
 - thoracic aortic dissection (67%),
 - abdominal aortic dissection (22%)
 - intracerebral bleeding (7%)

LDS- medical management

- Patients should be treated to control hypertension to the lowest tolerated blood pressure
- β-blocker (atenolol, nadolol or propranolol)
 - Reduces hypertension and pulsatile wall stress.
 - Studied in patients with Marfan syndrome
- Angiotensin-II receptor blockers (ARBs) (losartan or irbesartan)
 - inhibits levels of TGF- β .
 - Selective blockade of AT1.
 - Studied in patients with Marfan syndrome

LDS - surgical management

LDS- exercise

- Circumstances to be avoided
 - Contact sports, isometric exercises, competitive sports or activities

EDS

When to operate?

- Marfan syndrome
 - ≥5.0 cm unless family history of dissection at <
 5.0 cm, or growth >0.5 cm/ year
 - ≥4.0 cm if contemplating pregnancy
- Loeys-Dietz
 - ≥4.2 cm for dissection (family history of aortic dissection or growth >0.5 cm/ year),
- Ehlers Danlos, vascular form

- Surgery is high risk because of tissue fragility

Conclusions

- The aortic valve should be preserved whenever possible
- The David operation has long term freedom from aortic reoperations
- Endovascular operations of the aortic arch are largely evolving and open proximal aortic surgery is still the gold standard.
- Need for a team who are familiar with complex aortic pathology including surgical team, perfusion, CV anesthesia, blood bank, access to imaging- hybrid room, postop ICU care

Thank you

