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Abstract
This paper explores two useful modifications
of the recent variational autoencoder (VAE),
a popular deep generative modeling frame-
work that dresses traditional autoencoders
with probabilistic attire. The first involves a
specially-tailored form of conditioning that al-
lows us to simplify the VAE decoder struc-
ture while simultaneously introducing robust-
ness to outliers. In a related vein, a second,
complementary alteration is proposed to fur-
ther build invariance to contaminated or dirty
samples via a data augmentation process that
amounts to recycling. In brief, to the extent
that the VAE is legitimately a representative
generative model, then each output from the
decoder should closely resemble an authentic
sample, which can then be resubmitted as a
novel input ad infinitum. Moreover, this can
be accomplished via special recurrent connec-
tions without the need for additional parame-
ters to be trained. We evaluate these proposals
on multiple practical outlier-removal and gen-
erative modeling tasks, demonstrating consid-
erable improvements over existing algorithms.

1 INTRODUCTION
Autoencoders can be viewed as nonlinear generalizations
of PCA, capable of producing low-dimensional repre-
sentations of data lying on or near a manifold (Bengio,
2009). The model consists of two parts: an encoder
which computes a low-dimensional representation, and
a decoder that uses the latent representation to predict
the original input. While enjoying a lengthy tenure as
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one of the most widely-used unsupervised learning ap-
proaches, autoencoders are not probabilistic generative
models, and hence cannot be directly used to estimate
new samples from some target distribution. To address
this limitation (among other things), the recently popular
variational autoencoder (VAE) replaces the deterministic
encoder and decoder with parameterized distributions,
and fits them to the data using a principled variational
bound that can be optimized using stochastic gradient de-
scent (Kingma and Welling, 2014; Rezende et al., 2014).
For both model components, when applied to continuous
data it is typical to assume Gaussian distributions with
means and covariances computed by individual deep net-
works.

In addition to its role as a tractable deep generative
model, we have argued in a companion work (Dai et al.,
2017) that the basic VAE model is sometimes capable
of handling large but relatively sparse outliers, at least
provided that the decoder covariance is sufficiently com-
plex/deep. This observation represents our launching
point herein, where the goal is to explore several mod-
ifications of the canonical VAE pipeline that refine its
natural ability to digest dirty, or highly corrupted data
and produce a viable low-dimensional representation as
though the data had been clean to begin with. To this end,
we first present detailed background information regard-
ing the basic VAE model in Section 2. We then proceed
to our contributions as follows.

In Section 3 we describe a particular form of conditional
autoencoder that jettisons the need for explicitly learn-
ing a complex decoder covariance model to handle in-
puts with gross corruptions. In brief, by conditioning on
the sample indices themselves in a precise way, we are
able to analytically solve for these covariances in terms
of other model parameters (without the need for actu-
ally training them) leading to a significantly condensed
decoder with many nice attributes related to scale invari-
ance and local minima smoothing when removing sparse
outliers.



Nevertheless, any estimation task involving contami-
nated samples will require a large training set to com-
pensate, the collection and management of which may
be untenable. In Section 4 we describe a novel prescrip-
tion for extracting maximum utility from available data
by recycling each sample after its pilgrimage through the
VAE pipeline. The premise here is that, to the extent that
the VAE is a truly representative generative model, then
each output from the decoder should closely resemble
an authentic sample, which can then be resubmitted as
a novel input ad infinitum as a form of data augmenta-
tion. Training is accomplished by adding special recur-
rent connections to the conditional VAE described above,
but no additional parameters are required.

Finally, we empirically examine the above two VAE
modifications via a battery of tests in Section 5. High-
lights include the ability to remove large outliers from
handwritten digits and face data with far greater success
than traditional VAE networks. Moreover, generated
samples do not display the blurry artifacts commonly
associated with the Gaussian decoder model of existing
VAE models, a common criticism of this approach. In
fact, even when clean training data is applied, our modi-
fied decoder model produces crisper samples for reasons
we will describe later.

2 VAE BACKGROUND DETAILS
The VAE assumes that there exists a distribution
pθ(x) =

∫
pθ(x|z)p(z)dz over some random variable

x ∈ Rd of interest, where θ are unknown parameters
that must be estimated from samples X = {x(i)}ni=1

collected for this purpose.1 The latent variables z ∈ Rκ
with agnostic prior p(z) = N (z;0, I) are assumed to
reflect a low-dimensional (i.e., κ � d) representation of
x that characterize its elemental structure.

For non-trivial models with sufficiently rich param-
eterizations, the marginalization over z will be in-
tractable and there is no closed-form solution for∏
i pθ(x

(i)), which could otherwise simply be optimized
via maximum likelihood. To circumvent this problem,
the VAE introduces the upper bound L(θ,φ;X) ≥
−
∑
i log pθ(x

(i)) on the negative log-likelihood, where

L(θ,φ;X) , (1)

−
∑
i

{
log pθ(x

(i)) +KL
[
qφ

(
z|x(i)

)
||pθ

(
z|x(i)

)]}
,

qφ
(
z|x(i)

)
defines some arbitrary approximating dis-

tribution parameterized by φ, and KL [·||·] denotes the
KL divergence between two distributions. The latter is
always a non-negative quantity, which ensures that the

1We will use a superscript (i) to reference all quantities as-
sociated with the i-th sample.

bound is strict. In this expression, qφ (z|x) can be inter-
preted as an encoder surrogate that defines a conditional
distribution over the latent ‘code’ z, while pθ (x|z)
serves as the complementary decoder model since, given
a code z it quantifies the distribution over x. Addition-
ally, if we first draw random samples from p(z), then the
decoder can also be used to generate new samples of x
for an application-specific purpose.

By far the most common distributional assumptions for
continuous data are

qφ (z|x) = N (z;µz,Σz), pθ (x|z) = N (x;µx,Σx),
(2)

where the moments µz and Σz are functions of x,
parameterized by φ, while µx and Σx are functions
of z, parameterized by θ. Technically speaking then
µz ≡ µz(x;φ), Σz ≡ Σz(x;φ), µx ≡ µx(z;θ), and
Σx ≡ Σx(z;θ); however, for simplicity we will often
omit one or both of these arguments when the intended
meaning is clear from context. Additionally, the high-
dimensional covariance matrix Σx (as well as sometimes
Σz) is typically assumed to be diagonal.

Finally, the conditional VAE (Sohn et al., 2015; Walker
et al., 2016) represents one relevant alteration of the ba-
sic framework from above. Here we assume that our at-
tention is shifted to the conditional distribution pθ(x|y),
where y reflects some salient observable quantity, such
as a category label or state variable. Using analogous
reasoning as before, given Y = {y(i)}ni=1 the encoder
and decoder distributions from the VAE upper bound
are then revised via conditioning to qφ

(
z|x(i),y(i)

)
and

pθ
(
x(i)|z,y(i)

)
respectively, and all posterior moments

include an additional dependency on y(i).

3 THE iCONDITIONAL VAE AND
OUTLIER ARBITRATION

Assuming the decoder covariance Σx is sufficiently
complex, then its diagonal elements can potentially mir-
ror the outlier profile in X , with corrupted samples of
x producing large values in the corresponding diagonal
elements [Σx]jj , and vice versa, clean samples driving
[Σx]jj towards zero, sometimes provably so (Dai et al.,
2017). To the extent that we believe our data emerge
from such a contaminated source, the VAE represents a
viable choice for nonlinear, outlier-robust dimensionality
reduction or generative modeling. Of course this comes
with a significant cost, namely, in practice we must ac-
tually train a complex decoder covariance model capable
of detecting dirty samples. In this section we describe a
convenient workaround based on the conditional VAE.

More specifically, we assume a conditional VAE where
the observed latent variables are simply scalars satisfy-
ing y(i) = i, the sample index itself, a model we re-



fer to as the iConditional VAE or iC-VAE. In a broad
sense, this conditioning should interject additional rep-
resentational flexibility into the model since it allows
each of the moment functions µx, Σx, µz , and Σz to
vary in form across each sample. As it turns out how-
ever, without loss of generality we may assume that
µz(x, y;φ) = µz(x;φ), and Σz(x, y;φ) = Σz(x;φ),
since given a specific sample x(i), the index parame-
ter y(i) = i actually provides no additional information
of value, i.e., all subsequent results will ultimately hold
with or without this dependency. So this particular con-
ditioning has no impact on the effective encoder, and the
KL regularization term is unaffected. We also constrain
that µx(z, y;θ) = µx(z;θ), leaving the decoder mean
unchanged (as discussed later in Section 3.2, this con-
straint may be invoked w.l.o.g. in certain settings any-
way).

In contrast, the proposed conditioning opens a conve-
nient entry point for side-stepping the responsibility of
training a huge Σx via the following downstream effects.
First, it is convenient to re-express the conditional VAE
upper bound as
L(θ,φ;X) ≡

∑
i

(
KL

[
qφ

(
z|x(i), y(i)

)
||p(z)

]
− Eqφ(z|x(i),y(i))

[
log pθ

(
x(i)|z, y(i)

)])
, (3)

where given the Gaussian assumptions,

2KL [qφ (z|x, y) ||p(z)] ≡ tr [Σz] + ‖µz‖22 − log |Σz| .
(4)

Then for a single sample, and given the independence of
both µx as well as the encoder from y(i), we have

−2Eqφ(z|x(i),y(i))

[
log pθ

(
x(i)|z, y(i)

)]
(5)

=

∫ [(
x(i) − µx

)> (
Σ(i)
x

)−1 (
x(i) − µx

)
+ log

∣∣∣Σ(i)
x

∣∣∣] qφ (z|x(i)
)
dz,

where we adopt the notation Σ(i)
x , Σx(z, y

(i);θ) =
Σx(z, i;θ). If for each i we can minimize(
x(i) − µx

)> (
Σ(i)
x

)−1 (
x(i) − µx

)
+log

∣∣∣Σ(i)
x

∣∣∣ (6)

over Σ(i)
x independently for all values of z, then we will

necessarily also minimize (5). Fortunately this is pos-
sible if we grant Σ(i)

x unlimited capacity to represent
any function and knowledge of i as allowed by condi-
tioning. Hence taking derivatives of (6) with respect to
Σ(i)
x , equating to zero and solving, we find that the opti-

mal covariance, when forced to be diagonal (the default
assumption used with VAE models as mentioned previ-
ously) is given by

diag [Σx(z, i;θ)] =
(
x(i) − µx

)2
, (7)

where the squaring operator is understood to apply
element-wise, and diag[·] converts vector-valued inputs
to a diagonal matrix, and square matrix-valued inputs to
a vector formed from the diagonal (e.g., as defined in
the Matlab computing environment). Plugging this value
back into (5) and ignoring constants we find that the over-
all VAE objective reduces to

L(θ,φ;X) ≡
∑
i

{
tr
[
Σ(i)
z

]
− log

∣∣∣Σ(i)
z

∣∣∣+ ‖µ(i)
z ‖22

+ 2
∑
j

Eqφ(z|x(i))

[
log
∣∣∣x(i)j − µxj

∣∣∣]
 , (8)

where µ(i)
z , µz(x

(i);φ) and Σ(i)
z , Σz(x

(i);φ).
Therefore, although a potentially high capacity Σx in the
original VAE model is needed to arrive at something even
approximating (8), the net effect of this assumption can
lead to a dramatic overall simplification.

Furthermore, from this expression we observe that what
was once effectively a quadratic penalty on the errors
x
(i)
j − µxj

is now replaced with a log(·)2 term, which as
a concave non-decreasing function (Palmer et al., 2006),
heavily favors x(i)j − µxj → 0, while at the same time
applying only soft penalization for large values. Such
a regularization effect is the cornerstone of sparse esti-
mation algorithms, and hence we may expect that this
construction will ultimately be useful for the removal of
large yet sparse outliers. Additionally, this regularizer
can be viewed as the negative logarithm of the Jeffreys
prior on the squared errors, with a number of notable ad-
vantages described next.

3.1 CHARACTERISTICS OF THE JEFFREYS
DISTRIBUTION

As a non-informative prior for quantities such as error
variances (Berger, 1985), the Jeffreys distribution p(e) ∝
1
e (which as an improper prior does not integrate to one)
displays a unique form of scale invariance. In particular,
the probability that an error e = (x − µx)2 is between
1 and 10, equals the probability that it is within 10 and
102, or equivalently, between 10−2 and 10−1. More gen-
erally, the probability that e is within any scaling window
is given by P

(
e ∈

[
ηk, ηk+1

])
∝ log η for any scale fac-

tor η ≥ 1 and any integer k (positive or negative). There-
fore outlier arbitration is carried out equally regardless of
how any particular data set or network output is scaled.

In contrast, other selections would require special tun-
ing to align with a scale-appropriate range of the dis-
tribution. For example, although robust `p-norm-based
penalties

∑
j e
p/2
j , p ≤ 1 (which can be derived from

a generalized Gaussian distribution) also discount large
errors/outliers (Rao et al., 2003), their behavior will be



highly dependent on the scale at which outliers are dif-
ferentiated from inliers, meaning that data in the [10, 102]
range will be treated very differently than data in the
[10−2, 10−1] range.

But there is a dark side to the aggregate log (·)2 penalty
arising from the Jeffreys distribution if applied in the
context of a traditional autoencoder, the latter of which
emerges if we fix Σz = 0 in the VAE framework and
remove the now undefined KL term. Simply put, this
penalty will introduce a combinatorial constellation of
locally minimizing solutions owing to the infinite regress

as any
(
x
(i)
j − µxj

)2
meanders towards zero. In fact,

just a single site with
(
x
(i)
j − µxj

)2
≈ 0 can drive the

objective towards minus infinity, regardless of the qual-
ity of the overall reconstruction at other locations. Hence
the energy landscape will be plagued with a combinato-
rial number of degenerate, infinitely deep extrema.

Fortunately, within the iC-VAE framework, the Jeffreys-
based penalty occurs inside of an expectation operator,
which smooths over these degenerate pits.2 However
there exists an important exception: if the covariance
Σ(i)
z becomes degenerate, e.g., Σ(i)

z → εI with ε ap-
proaching zero, then qφ

(
z|x(i)

)
≈ δ

(
µ

(i)
z

)
and

Eqφ(z|x(i))

[
log
∣∣∣x(i)j − µxj

∣∣∣] ≈ log
∣∣∣x(i)j − µ(i)

xj

∣∣∣ ,
(9)

where µ(i)
xj , µxj

(
µ

(i)
z ;θ

)
. But the− log

∣∣∣Σ(i)
z

∣∣∣ term in
(8) will normally prevent this from happening since any
Σ(i)
z → εI would have a large, counteracting positive

contribution. Roughly speaking then, within the VAE
framework, the only way we can ever encounter degen-
eracies introduced by the Jeffreys distribution is if

d∑
j=1

I
[(
x
(i)
j − µ

(i)
xj

)2
< ε

]
>

κ∑
k=1

I
[
sk

(
Σ(i)
z

)
< ε
]

(10)
where I[·] is and indicator function and sk(·) returns
the k-th singular value of a matrix.3 In this situation,
the higher dimensionality of the data fit term could out-
weigh the KL regularizer leading to the collapsed situ-
ation under review. But the KL regularization from the
VAE framework still provides a valuable service by con-
fining these degeneracies to special cases, and these spe-

2Note that
∫∞
0+

log u2 · p(u)du is finite and well-behaved
when p(u) is a Gaussian distribution, analogous to the last term
in (8).

3It is also possible to have trivial degeneracies when other
subtle technical conditions occur (e.g., a constant decoder mean
function fit to a single sample), but such situations are unlikely
to substantially influence practical problems and we will defer
such considerations to a longer journal version.

cial cases may be desirable solution points to begin with
since they often represent a configuration whereby most
data are fit snugly, except for a few exceptions that likely
correspond with outlier locations. We will discuss this
further in the next section with a more concrete exam-
ple. Additionally, further details about how the VAE (and
the iC-VAE by inheritance) smooths away bad degener-
ate solutions, favoring data fit errors exactly aligned with
true outlier locations, can be found in (Dai et al., 2017).

3.2 iCONDITIONAL VAE WITH AFFINE
DECODER MEAN

After optimizing Σx away as described previously, for
analysis purposes in this section we consider the case
whereµx is restricted to be affine, while the encoder mo-
ments can have potentially infinite capacity. Although
the affine-constrained µx with full conditional plumage
would be given by µx(z, y;θ) =Wz + hy + b, where
{W ,h, b} ⊂ θ represent parameters to learn, it can be
shown that in fact the optimal value for h is typically
zero. We therefore choose to omit this extra factor con-
sistent with earlier assumptions and ease of presentation.

Even with the affine assumption however, the expecta-
tion in (8) remains intractable, compromising further di-
rect analysis. Fortunately though we can construct a
more transparent upper bound that both retains impor-
tant properties of (8) while simultaneously lending itself
to more detailed inquiry.

Proposition 1 Assume that µx(z, y;θ) = µx(z;θ) =
Wz + b, while µz(x, y;φ) = µz(x;φ) and
Σz(x, y;φ) = Σz(x;φ) are capable via some inter-
nal parameter arrangement of representing any function
(infinite capacity). Then given y(i) = i, a strict upper-
bound on the conditional VAE objective from (8) is given
by ∑

i

h(i)(W , b) ≥ L(θ,φ;X), (11)

where h(i)(W , b) ,

inf
Λ(i)�0

(
x(i) − b

)> (
Ψ(i)

)−1 (
x(i) − b

)
+log

∣∣∣Ψ(i)
∣∣∣ ,

(12)
Ψ(i) , Λ(i) +WW>, Λ(i) = diag[λ(i)], and λ(i) ∈
Rd+ represents a vector of non-negative variational pa-
rameters for each i.

There are several important consequences of this result.
First, it is not actually required that µz and Σz have infi-
nite capacity for Proposition 1 to hold. In reality, we only
require that much more lenient stationarity conditions
are satisfied (these emerge from the proof construction;
see supplementary). Secondly, assuming centered data
or b = 0, then the upper bound from (11) corresponds



with a robust PCA model from (Wipf, 2012) derived us-
ing completely different principles tied to convex analy-
sis and Fenchel duality theory (Boyd and Vandenberghe,
2004). This model is designed to decompose a data ma-
trix X via X = L + S, where L is a low-rank term,
reflecting principal subspaces, and S represents sparse
errors or outliers, i.e., a matrix with many zero-valued
elements and some possibly large corruptions. So we
have tied an established probabilistic robust PCA algo-
rithm directly to a specific conditional VAE model, with
the latter inheriting any useful properties of the former,
which is decidedly more transparent and devoid of in-
tractable integrals. Thirdly, if both

x(i) − b ∈ span
[
Ψ(i)

]
and rank

[
Ψ(i)

]
< d, (13)

then h(i)(W , b) will be unbounded from below, since
the quadratic term can be held fixed at a finite value
while the log-det term is driven to minus infinity. More-
over, because

∑
i h

(i)(W , b) is an upper bound on both
the conditional VAE objective, as well as ultimately
− log pθ(x|y) by design, this result then implies that in-
finite negative peaks exist in the original conditional dis-
tribution at data points x(i) that can be well-represented
by fewer than d degrees of freedom. Note that any
x ∈ Rd can be trivially represented using d degrees of
freedom. However, degeneracies in the iC-VAE only oc-
cur when the degrees of freedom κ from the implicit in-
lier model, combined with the number of sparse errors,
i.e., ‖λ(i)‖0 ≡ rank

[
Ψ(i)

]
−κ, is less than d.4 This will

be a desirable degeneracy to the extent that we seek par-
simonious data representations, and is unlikely to occur
with samples that do not conform to a robust PCA-like
model. Please see (Dai et al., 2017) for more compre-
hensive analysis of general VAE models and their con-
nection with robust PCA and outlier removal.

4 RECYCLING DIRTY DATA BY
ADDING RECURRENCIES

Although the iC-VAE model on its own has merits in
dealing with contaminated data, there is no substitute
for a rich set of training samples if any clean low-
dimensional representation is ultimately to be found. In
this section we describe a simple, practical procedure
for creating additional, virtual samples by recycling the
VAE output via recurrent connections. The initial intu-
ition here is straightforward: if the VAE has accurately
captured the true generative process, then output sam-
ples should be indistinguishable from input samples, or
at least a subset of input samples correlated with the ini-
tial seed sample. And if this is indeed the case, then out-

4Here ‖ · ‖0 refers to the `0 norm, or a count of the number
of nonzero elements.

puts repeatedly fed back through the VAE encoder and
decoder networks should produce a sequence of valid
samples. In contrast, divergence of this sequence would
suggest the accumulation of significant deviations from
the true generative process.

Overall, this recurrent structure serves as a form of auto-
matic data augmentation. The network has technically
“seen” a wider range of training data, since each par-
tially corrected sample, or perturbed inlier sample, can
be viewed as a new input containing attributes not found
in the original training data. This includes samples where
only a portion of the outliers have been removed, imply-
ing that the network will be forced to deal with a much
larger breadth of corrupted support patterns. And cru-
cially, the iC-VAE objective is applied to each recurrent
loop, leading to an overall process we refer to as a recur-
rent iC-VAE or RiC-VAE.

4.1 BASIC MODEL DETAILS
To begin, although the integrals embedded in the iC-VAE
cost L(θ,φ;X) cannot be computed in closed form, the
simple stochastic approximation

Eqφ(z|x(i))

[
log
∣∣∣x(i)j − µxj

∣∣∣] ≈ log
∣∣∣x(i)j − µxj

(
z(i)
)∣∣∣

(14)
has been shown to be a suitable substitute (Kingma and
Welling, 2014; Rezende et al., 2014) for the original
VAE, where z(i) is a sample drawn from qφ

(
z|x(i)

)
.

Using a reparameterization trick, every z(i) can be con-
structed such that gradients with respect to µz and Σz

can be propagated through the righthand side of (14).
This involves drawing a sample ε(i) from N (ε;0, I)

and then computing z(i) = µ
(i)
z +

(
Σ(i)
z

) 1
2
ε(i). See

(Kingma and Welling, 2014; Rezende et al., 2014) for
more details.

To avoid later confusion, we now redefine our original

data asX1 =
{
x
(i)
1

}n
i=1
≡X , where the context of the

new subscript ‘1’ will soon become apparent. Likewise
we adopt z(i)1 ≡ z(i) for the latent samples described
above. Given a specific x(i)

1 , the basic iC-VAE model

will compute the posterior mean µ(i)
x1 = µx

(
z
(i)
1

)
via

one pass through the network structure. Moreover, by
applying (7) we can extract the companion covariance

diag
[
Σ(i)
x1

]
=
(
x
(i)
1 − µ

(i)
x1

)2
at this same point. From

these two moments, we may then draw a new sample x(i)
2

from N
(
x;µ

(i)
x1 ,Σ

(i)
x1

)
. Continuing this process across

all i = 1, . . . , n, we obtain a new datasetX2.

This operation can be repeated N times, effectively pro-
ducing a set X̃ , {Xk}Nk=1 of separate datasets, withN
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(a) Pipeline of Recurrent Variational Autoencoder

(b) Details of iC-VAE (c) Details of Sample Block

Figure 1: Structure flow of the RiC-VAE network (sample indices (i) are omitted for simplicity). Solid lines indicate
paths in which gradients are backpropagated during training, and Lk indicates the penalty L(θ,φ;Xk). Initial data
sample x1 passes through the iC-VAE and produces µx1

. Using (7) the attendant diagonal covariance Σx1 is also
computed. A new x2 is then drawn fromN

(
x;µx1

,Σx1

)
and the process repeats. More details in the supplementary.

times the total number of samples eventually being seen
by the network, albeit N −1 of these are recycled virtual
samples. Nonetheless, these datasets can be used simul-
taneously during training via the process defined in Fig-
ure 1. Importantly, after each pass we include the same
iC-VAE objective function applied to the respective recy-
cled data Xk, which acts as a form of deep supervision
(Lee et al., 2015), giving the overall RiC-VAE cost

LN (θ,φ; X̃) ,
N∑
k=1

L(θ,φ;Xk). (15)

By penalizing (15), all the iC-VAE units in Figure 1 are
effectively forced to shared the same θ,φ, and hence the
overall number of parameters remains unaltered.

4.2 CONNECTIONS WITH ITERATIVE
REWEIGHTED COMPRESSIVE SENSING
ALGORITHMS

In the spirit of learning-to-learn (Andrychowicz et al.,
2016), learning-to-optimize (Li and Malik, 2016), and
other recent attempts to replace or augment conven-
tional iterative algorithms with deep networks estimated
from training data (Sprechmann et al., 2015; Hershey
et al., 2014; Xin et al., 2016), the proposed RiC-VAE
framework can be viewed as an unfolded iterative algo-
rithm with many trainable parameters. As an illustra-
tive example, consider the family of iterative reweighted
`1 norm minimization algorithms (IR-`1) recently de-
veloped for sparse estimation and compressive sensing
(Candès et al., 2008). Here the objective is to minimize
some function f(x) that reflects a structured regression
task. We now provide a reinterpretation of this approach
in the context of the RiC-VAE.

Provided some initial guess x0, the IR-`1 algorithm pro-
ceeds to iteration t+ 1 via two steps:

zt+1 ← g
(
xt;A

)
, (16)

xt+1 ← argmin
x
‖u−Ax‖22 +

∑
j

zt+1
j |xj |,

where A is a matrix of feature vectors and u is a sig-
nal we would like to represent. Here g plays the role

of an arbitrary encoder model, sometimes parameterized
by A (Wipf and Nagarajan, 2010), that computes a set
of weights (or latent variables) z. However, given that
g is handcrafted in an application-specific manner, often
based on gradients of some heuristically chosen sparsity
penalty with no clear guidelines on the optimal choice,
we might expect that a learned replacement would af-
ford some benefit. Either way, once computed zt+1 is
used to create a weighted `1 norm penalty term that is
later optimized by a decoder-like step to update xt+1. It
has been shown that related tasks can be implemented
via a DNN-like structure (He et al., 2017), and therefore
again, it is reasonable to consider replacing this inner-
loop optimization step, which could be computationally
expensive, with a trainable decoder module.

Additionally, when we interpret {A,u} ≡ y as addi-
tional observable latent variables, then a single iteration
of (16) accurately maps to a form of handcrafted con-
ditional VAE, strengthening the overall analogy further.
And of course in both cases, the incentive to iterate this
process is significant. As we will later observe in Section
5, the empirical behavior of our RiC-VAE model subject
to multiple recurrent loops mirrors the improvement seen
by IR-`1 algorithms. In both cases, initial iterations focus
on localizing the support pattern of the largest compo-
nents/outliers, and later iterations refine these solutions.
So there is no longer any need for a first pass through the
VAE to provide a perfect screening.

5 EXPERIMENTAL RESULTS
Training data are not always perfect. Instead of select-
ing clean images manually, our RiC-VAE is able to re-
cycle dirty data into useful samples. In this section, we
demonstrate the advantage brought about by this ability
applied to generative tasks and outlier removal problems.
Throughout we use N to refer to the number of RiC-
VAE passes/recurrencies used during training, as distin-
guished fromM , the number of RiC-VAE passes applied
at test time, or when generating new samples. These
need not always be the same given that a learned model
can be iterated for any number of passes. We use RiC-
VAE(N ,M ) to describe the generic case, which implies



Figure 2: Visualization of recovery results on Frey face
data. 1179 of the 1965 images (60% ) were corrupted by
a randomly positioned dark circle mark with random ra-
dius. Each column corresponds to a different database
image. Row 1: Original contaminated samples. Row
2: Reconstructed images using RPCA. Row 3: Recon-
structed images using an iC-VAE (no recycling). Row
4: Reconstructed image from an RiC-VAE(N=2,M=2).
Row 5: Clean ground truth data without contamination.

that iC-VAE equals RiC-VAE(N=1,M=1).

5.1 EVALUATION OF AFFINE iC-VAE
BASELINE

The Google-30 data (Liu et al., 2014) includes images
returned from 30 different search queries, with roughly
500 images collected per concept. Human labelers then
determine which of these are relevant, and which are
considered as outliers or irrelevant. This data has been
recently used to assess various unsupervised outlier de-
tection algorithms, where the labels themselves are only
used for evaluation purposes (Liu et al., 2014; Xia et al.,
2015). We adopt a similar experimental design; how-
ever, because the number of samples per query is rela-
tively small, we restrict ourselves to a simple affine iC-
VAE model. Regardless, the Google-30 data still pro-
vides a useful benchmark for evaluating such a baseline
upon which the RiC-VAE ultimately depends.

We learn a affine iC-VAE-based model for each search
query, and then predict outliers using the threshold-
ing heuristic from applied to residuals from (Xia et al.,
2015). We also assume that d = κ, meaning that
the iC-VAE must automatically learn any latent low-
dimensional structure via its natural regularization pro-
cess (no tuning of the latent dimension is required). F1
scores from this procedure averaged across all 30 search
queries are shown in Table 1 along side results from two
state-of-the-art approaches: a kernel-based max-margin
algorithm called UOCL from (Liu et al., 2014), and
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Figure 3: Evaluation of reconstruction MSE

a autoencoder-based pipeline DRAE from (Xia et al.,
2015). Although admittedly these results do not high-
light the full flexibility of the RiC-VAE, they nonetheless
support the iC-VAE as a viable building block or starting
point.
Table 1: Outlier detection accuracy on Google-30 data.

Method UOCL DRAE iC-VAE
Average F1 scores 0.826 0.849 0.874

5.2 RiC-VAE OUTLIER REMOVAL
PERFORMANCE

Recovery of clean training data: The Frey face dataset
(Rezende et al., 2014) includes 1965 images, each of
size 28 × 20. We selectively contaminate these images
to varying degree using a randomly positioned dark cir-
cle mark with random radius. We vary the percentage
of training images corrupted in this way, and compare
the ability of 8 different models to recover the original,
clean face images given only the contaminated source.
These include: (a) a convex robust PCA (RPCA) ap-
proach from (Candès et al., 2011) often applied to this
problem (Elhamifar and Vidal, 2013), (b) a conventional



(a) (b) (c) (d) (e)

Figure 4: Samples generated from VAE models trained on MNIST data (please zoom for better viewing). Top Row:
Results using clean training data. Bottom Row: Results using noisy training data. Columns: Samples generated from
(a) `2-VAE, (b) iC-VAE, (c) RiC-VAE(N=1,M=20), (d) RiC-VAE(N=5,M=1), and (e) RiC-VAE(N=5,M=20).

autoencoder (AE), (c) an `2-VAE, meaning a standard
VAE with fixed decoder covariance Σx = I as is most
commonly assumed (Doersch, 2016), (d) a recurrent `2-
VAE denoted R`2-VAE(N=2,M=2), i.e., analogous to
RiC-VAE(N=2,M=2) but with fixed decoder covariance,
(e) a standard VAE with the a learned decoder covari-
ance called LC-VAE, (f) a recurrent LC-VAE version
denoted RLC-VAE(N=2,M=2), (g) an iC-VAE, (h) a
RiC-VAE(N=2,M=2). For all VAE models, we use
κ = 10 and a common 3-layer encoder/decoder network
structure, with details deferred to the supplementary file.
Additionally, all VAE and AE networks share common
DNN structures with the exception of different loss lay-
ers as stated, and only the VAE has encoder/decoder co-
variance functions and KL terms.

Figure 2 qualitatively illustrates the advantage of the
multiple data passes/recycling leveraged by the RiC-
VAE at an image corruption level of 60%. In fact, even
with huge contaminations (e.g., 4th and 7th columns),
the RiC-VAE is still able to reconstruct salient facial de-
tails. Moreover, the initial iC-VAE estimate only par-
tially removes the corrupted region, analogous to how
initial iterations of IR-`1 algorithms only partially re-
covery outlier support patterns as discussed in Section
4.2. Complementary quantitative results are presented
in Figure 3(a) for all algorithms. Here we observe that
traditional methods (i.e., RPCA, AE, `2-VAE, LC-VAE)
do not produce competitive results, and RLC-VAE ex-
hibits no advantage over LC-VAE since, not surprisingly,
learning decoder covariances destabilizes the recycling
process. The iC-VAE is adequate at low corruption lev-
els but starts to breaks down above 30%. In contrast,
while the R`2-VAE(N=2,M=2) exploits our proposed

recycling strategy, without the iC-VAE base network its
performance cannot match the RiC-VAE.

Recovery of a new test set: We also generated a new test
dataset by changing the dirty pattern added to the faces.
Specifically, instead of using circle-shaped outliers as ap-
plied above, we generate new ‘rectangle’ dirty patterns
having random width, length and location. The 1965
clean Frey face images were corrupted by these new rect-
angle marks, allowing us to examine the resilience of the
previously-trained models to outlier distributions distinct
from the original data. Figure 3(b) displays the overall
reconstruction errors, where the superiority of the RiC-
VAE (with N,M > 1) is preserved. See the supplemen-
tary file for visualization of candidate reconstructions, as
well as results on an independent medical imaging appli-
cation related to anomaly detection.

5.3 RiC-VAE GENERATIVE MODELING
PERFORMANCE

Moving beyond outlier removal, arguably the most com-
mon application of VAE models is to the task of gen-
erating new samples of x (Doersch, 2016). This sec-
tion explores RiC-VAE capabilities in this revised con-
text using MNIST handwritten digit data (LeCun et al.,
1998), which contains 60000 training images of digits,
each of size 28 × 28. We first train different models
using this data, both clean and dirty versions, and then
compare performance on subsequent generative tasks.
Models considered include: (a) a standard `2-VAE, (b)
an iC-VAE, (c) an RiC-VAE(N=1,M=20), (d) an RiC-
VAE(N=5,M=1), and (e) an RiC-VAE(N=5,M=20). In
all cases κ = 30, and both encoder and decoder have
3 layers (the supplementary file contains full network
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Figure 5: 2D samples from 1
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∑
i qφ

(
z|x(i)

)
when us-

ing (a) iC-VAE, and (b) RiC-VAE with N=5. (c) Ideal
samples from N (z;0, I).

structure and training details). By varying M , we can
examine the quality of generated samples after different
passes through the networks at test time.

Results using clean training data: Here we first use the
original MNIST data for training (no corruptions added)
and compare the quality of new generated samples ob-
tained by first drawing a latent z from N (z;0, I) and
then passing the resulting value through the decoder to
produce a sample of x (Doersch, 2016). Results from
100 random draws are shown for each method in Fig-
ure 4(top row). In (a) we observe that the `2-VAE pro-
duces overly blurry samples, a common criticism, and al-
though the iC-VAE removes this blur in (b), realistic digit
shapes are compromised. Next, (c) reveals that cycling
through a learned iC-VAE network (i.e.,N=1) when gen-
erating samples introduces new artifacts, since recycling
was not used during training, and conversely, in (d) we
see that the use of recycling during training has limited
value without the attendant recycling at test time gener-
ating new samples. Finally, we see that the full RiC-VAE
structure produces more authentic digit samples, and that
this can be achieved even though the number of training
and test passes are not equivalent. Please see the sup-
plementary for original MNIST data examples to com-
pare against, as well as further experiments with different
numbers of training and testing passes.

Dirty training dataset: We next repeat the above experi-
ment using corrupted training samples. Specifically, 40%
of pixels are replaced with random values drawn from
a uniform distribution over [0, 255], i.e., salt-and-pepper
noise. In this more challenging situation, the value of
recycling dirty training samples is readily apparent as
shown in Figure 4(bottom row).

Statistical validation of generated samples: If an es-
timated VAE model truly reflects the underlying la-
tent distributions well, then

∫
qφ (z|x) pθ(x)dx ≈

1
n

∑
i qφ

(
z|x(i)

)
≈ p(z) = N (z;0, I). To

test this hypothesis, we generate samples of z from
1
n

∑
i qφ

(
z|x(i)

)
and make scatter-plots of two ran-

domly selected dimensions. Figure 5 shows results for
both the iC-VAE and a RiC-VAE with N=5 trained on
MNIST data; clearly the latter is able to remove some of
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Figure 6: Evaluation of sample diversity. Left: His-
togram of nearest neighbor distances in original MNIST
data. Middle: Histogram of distances between 60000
RiC-VAE(N=5,M=1) samples and their nearest neigh-
bors in MNIST data. Right: Same for a RiC-
VAE(N=5,M=5).

the heteroscedastic variance of the former. For more de-
tailed analysis of means and variances in higher dimen-
sions, see the supplementary file.

A second important validation issue pertains to sample
diversity. In brief, we would like to generate novel sam-
ples that are not trivially plagiarized versions of the orig-
inal training set. To examine this issue, we plot the the
mean Euclidean distance between each sample generated
by a RiC-VAE and its nearest neighbor in the MNIST
data. These distances should be as large or larger than the
mean distance between each authentic MNIST sample
and its nearest neighbor if no copying has occurred. Fig-
ure 6 shows histograms of these distances for the original
MNIST data (left), a RiC-VAE(N=5,M=1) (middle), and
a RiC-VAE(N=5,M=5) (right). Clearly the RiC-VAE is
not copying samples from the original data, and more-
over, the additional testing passes used to generate sam-
ples for the M=5 case maintain these distances, while
nonetheless improving the overall digit visual quality as
observed previously.

6 CONCLUSION
Although the VAE has secured itself as a powerful gener-
ative modeling paradigm, there remain limitations to its
effectiveness in practice. In this work, we have provided
targeted enhancements that both reduce the sensitivity to
outliers, as well as crystalize new, generated samples de-
void of excessive blur. This is possible in large part due
to our proposal for leveraging outputs of the generative
process as virtual inputs that can be applied during train-
ing as a form of data augmentation, and during testing as
a source for iterative refinements. The resulting recurrent
structure itself resembles the iterative steps of certain in-
fluential compressive sensing algorithms that are also ca-
pable of incrementally removing sparse outliers. How-
ever, while the latter essentially rely on ‘hand-crafted’
updates derived from potentially heuristic energy func-
tion gradients or related, our pipeline is entirely learned
from data.
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