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Abstract—This article studies the problem of computing
a minimum zero forcing set (ZFS) in undirected graphs
and presents new approaches to reducing the size of the
minimum ZFS via edge augmentation. The minimum ZFS
problem has numerous applications; for instance, it re-
lates to the minimum leader selection problem for the
strong structural controllability of networks defined over
graphs. Computing a minimum ZFS is an NP-hard problem
in general. We show that the greedy heuristic for the ZFS
computation, though it typically performs well, could give
arbitrarily bad solutions for some graphs. We provide a
linear-time algorithm to compute a minimum ZFS in trees
and a complete characterization of the minimum ZFS in the
clique chain graphs. We also present a game-theoretic so-
lution for general graphs by formalizing the minimum ZFS
problem as a potential game. In addition, we consider the
effect of edge augmentation on the size of the ZFS. Adding
edges could improve network robustness; however, it could
increase the size of the ZFS. We show that adding a set of
carefully selected missing edges to a graph may actually
reduce the size of the minimum ZFS. Finally, we numerically
evaluate our results on random graphs.
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I. INTRODUCTION

DYNAMIC coloring of vertices in graphs has recently
gained significant attention in network science and

dynamical systems due to their broad applicability. Such col-
orings are frequently used to model and analyze various real-
world phenomena, including infection propagation, information
spread, and control of networked systems. In dynamic coloring,
vertices change their colors at discrete time intervals based
on predefined rules. Zero forcing (ZF) is a popular coloring
process with numerous applications, for instance, in the control
of quantum systems, logic circuit design, sensor allocation,
network controllability, and information spread through social
networks [2], [3], [4], [5]. The main idea of zero forcing in
graphs is that each vertex is initially colored black or white.
Then, a black vertex with exactly one white neighbor forces its
only white neighbor to change the color to black. This process
continues until no more color changes are possible. A set of
initial black vertices that forces the entire vertex set to become
black is called a zero forcing set (ZFS) (explained in Section III).

ZF in graphs offers remarkable insights into the controllability
of multiagent systems, which is related to controlling a network
of agents as desired by injecting external input signals through a
subset of agents called leaders. Network controllability has been
a central theme in network control systems and network science.
Several critical issues related to network controllability have
been explored in the literature, including capturing the influence
of network topology on controllability, fundamental limits, and
practical implications of controlling networks [6], [7], [8], [9],
[10], [11]. Another crucial aspect of network controllability is
the computation of the minimum set of leader agents to control
the network, also referred to as the minimum leader selection
problem [12], [13], [14]. The notion of ZFS in graphs adequately
characterizes the leader selection problem and provides condi-
tions to select optimal leader agents to control the network [5],
[15], [16], [17].

As a result, the problem of computing a minimum ZFS in
graphs is crucial. It is well known that computing a minimum
ZFS is NP-hard [18]. The ZFS problem has been an active
research topic in graph theory. However, most of the research
in ZFS revolves around finding upper and lower bounds on the
size of the minimum ZFS, called the zero forcing number, and
refining bounds for specific graph families (e.g., [19], [20], [21]).
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In the literature, there are algorithms to compute a minimum
ZFS, for instance, the wavefront algorithm [22], [23], and inte-
ger programming formulations [24], [25], [26]; however, they
are not suitable for large graphs due to their exponential time
complexities. Thus, one has to rely on efficient heuristics, such
as greedy, to obtain small-sized ZFS. This article studies the
ZFS problem, including its computation and the effects of edge
augmentation on ZFS. In particular, we compute minimum ZFS
in trees and other graph families, and also provide heuristics to
compute small ZFS in general graphs using game-theory ideas.
We also examine how to add edges in a graph to reduce the size
of the minimum ZFS.

1) We show that a greedy solution, which typically performs
well, could give a ZFS, whose size is arbitrarily large
compared to the minimum ZFS (Proposition 3.1).

2) We provide a linear-time algorithm to compute minimum
ZFS in trees (Theorem 4.7). We also compute minimum
ZFS in a class of robust graphs called clique chains
(Proposition 4.8).

3) We present heuristics based on game-theoretic ideas for
computing a small-sized ZFS in graphs. For this, we
formulate the problem as a potential game and then use
a learning solution in games (Lemma 5.1, Theorem 5.2).
We also numerically evaluate our results, illustrating the
usefulness of the approach.

4) We provide conditions in general and for k-connected
graphs, in particular, to strategically add missing edges
to reduce the size of their minimum ZFS (Theorem 6.2,
Proposition 6.3). Edge augmentation to reduce the zero
forcing number of graphs is studied here for the first time
to the best of our knowledge.

The rest of this article is organized as follows. Section II
presents the notation and preliminaries. Section III reviews the
connection between graph controllability and minimum ZFS,
and discusses a greedy solution to the ZFS problem. Section IV
discusses the minimum ZFS in trees and clique chains. Section V
provides a game-theoretic formulation of the minimum ZFS
problem. Section VI studies the edge augmentation in graphs
to reduce the size of the minimum ZFS. Finally, Section VII
concludes this article.

II. PRELIMINARIES

A. Notations and System Model

We consider a multiagent network modeled by an undirected
graph G = (V,E), where V is the set of nodes representing
agents and E ⊆ V × V is the edge set representing intercon-
nections between agents. The cardinality of the given set V
is denoted by |V |. The edge between u and v is denoted
by an unordered pair (u, v). The neighborhood of node u is
the set Nu = {v ∈ V |(u, v) ∈ E}. The degree of a node u is
defined as the size of its neighborhood, i.e., deg(u) = |Nu|.
A path of length k in a graph G is a sequence of nodes,
Pk =< v0, v1, v2, . . . , vk >, where (vi, vi+1) is an edge in G
for all 0 ≤ i ≤ k − 1. The distance d(u, v) between nodes u
and v is the number of edges in the shortest path between them.
The diameter of G is the maximum distance between any two

nodes in the graph. A node v in a graph G with deg(v) = 1 is
called a leaf node. We define a family of symmetric matrices
associated with graph G = (V,E), where |V | = n, as follows:

M(G) =
{
M ∈ Rn×n | M = M�, and for i �= j

Mij �= 0 ⇔ (i, j) ∈ E(G)} . (1)

Next, we define a finite dimensional leader–follower system on
G = (V,E) as follows:

ẋ(t) = Mx(t) +Bu(t). (2)

Here, x(t) ∈ Rn is the system state, u(t) ∈ Rm is the input,
M ∈ M(G) (as in (1)), and B ∈ Rn×m is the input vector
describing which nodes are leaders (i.e., input nodes). For B,
let V ′ = {�1, �2, . . . , �m} ⊆ V = {v1, v2, . . . , vn} be the set of
leader nodes, then

[B]ij =

{
1, if vi = �j
0, otherwise.

(3)

For a graph G, matrices in M(G) capture a broad class of sys-
tem matrices defined on undirected graphs and encountered in
several applications. For example, the adjacency and Laplacian
matrices ofG also belong toM(G). We are interested in finding
a minimum set of leader nodes that make such systems strong
structurally controllable.

B. Controllable Graphs and Minimum Leaders Problem

An LTI system in (2) is controllable if there exists an input
driving the system from any initial state x(t0) to any final
state x(tf ), and we say that (M,B) is a controllable pair.
A pair (M,B) is controllable if and only if the rank of the
controllability matrix Γ(M,B) is |V | = n (i.e., full rank)

Γ(M,B) =
[
B MB M2B · · · Mn−1B

]
. (4)

Since leader nodes V ′ define the input matrix B, with a slight
abuse of notations, we sometimes use (M,V ′) is controllable to
denote that (M,B) is a controllable pair.

Definition 2.1: (Controllable graph) Given a graph G =
(V,E) and a leader set V ′ ⊆ V , we say that (G,V ′) is control-
lable if and only if (M,V ′) is controllable for all M ∈ M(G)
[as defined in (1)].

We note that the notion of controllable graphs is akin to the
strong structural controllability of undirected networks [5], [16].
Also, in Definition 2.1, if we just require the existence of some
M ∈ M for which (M,V ′) is controllable, then G is referred
to as weak structurally controllable with a leader set V ′ [10].
Clearly, strong structural controllability is a stronger notion
and implies weak structural controllability. We are interested in
computing and characterizing the minimum set of leader nodes
rendering the graph controllable (strong structurally control-
lable), which is also referred to as the minimum leader selection
problem, as stated as follows:

V ′
min = arg min

{V ′⊆V |(G,V ′) is controllable}
|V ′|. (5)

In the next section, we define ZFS and review the connections
between graph controllability and ZFS.
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Fig. 1. (a) V ′ = {v1, v4} and der(V ′) = {v1, v4, v5, v7}. Since,
der(V ′) ⊂ V , V ′ is not a ZFS. (b) Z = {v1, v4, v7} is a ZFS as
der(Z) = V .

Fig. 2. Graph G with |Zgr |
ζ = n+1

m+1 .

III. GRAPH CONTROLLABILITY AND ZERO FORCING

We begin by defining the zero forcing process in graphs.
Definition 3.1: (Zero forcing process) Given a graph G =

(V,E) whose nodes are initially colored either black or white.
Consider the following node color changing rule: if v ∈ V is
colored black and has exactly one white neighbor u, change the
color of u to black. Zero forcing process is the application of the
above rule until no further color changes are possible.

If the color of white node u is changed to black due to a black
node v, we say v forced u, and denote it by v 
→ u.

Definition 3.2: (Derived set) Consider a graph G = (V,E)
with V ′ ⊆ V be the set of initial black nodes. Then, the set of
black nodes obtained at the end of the zero forcing process is
the derived set denoted by der(G,V ′).

The set of initial black nodes V ′ is also referred to as the input
set. For a given input set, the derived set is unique [27].

Definition 3.3: (ZFS) Consider a graphG = (V,E) andV ′ ⊆
V . Then, V ′ is a ZFS if and only if der(G,V ′) = V . The size of
the minimum zero forcing set is called the zero forcing number
ζ(G).

We summarize the zero forcing related notions as follows:

V ′(G) input set/leader nodes
der (G,V ′) derived set ofV ′;
Z(G) zero forcing set of G;
ζ(G) zero forcing number of G.

When the context is clear, we drop G from the above notations.
Fig. 1 illustrates these ideas.

ZFS characterizes the leader selection for the graph control-
lability [5], [15], [16]. A direct consequence of [15, Th. IV.4,

Algorithm 1: Greedy Heuristic for ZFS.
1: given: G
2: initialization: Z = ∅.
3: while |der(Z)| < n
4: v∗ = arg maxvi∈V \Zder(Z ∪ {vi})
(ties are broken arbitrarily.)
5: Z = Z ∪ {v∗}
6: end while
--------- removing redundancies -------
7: for all vi ∈ Z
8: if |der(Z \ {vi})| = n
9: Z = Z \ {vi}

10: end if
11: end for
12: return Z

Th. IV.8, Prop. IV.9] is that a graph G = (V,E) with a leader
set V ′ ⊆ V is controllable (in the sense of Definition 2.1) if and
only ifV ′ is a ZFS ofG. Thus, among numerous applications, the
minimum ZFS problem is significant for network controllability.
The following subsection reviews the ZFS computation results
and presents graphs for which greedy heuristics can return ZFS
of very large sizes.

A. ZFS Computation and Greedy Heuristics

Computing a minimum ZFS and ζ(G) are NP-hard problems
in general [18]. One of the best-known algorithms to compute
ζ(G) (and minimum ZFS) is the wavefront algorithm [22], [23].
It is also shown in [23, Th. 5] that in the worst case, the wavefront
algorithm is the same as enumerating all possible subsets of ver-
tices. Other competitive approaches based on integer program-
ming, satisfiability (SAT)-based models, and branch-and-bound
techniques have also been presented, whose performances rely
on various graph characteristics such as the existence of certain
subgraphs, density, and other structural constraints [23], [24],
[25], [26]. Though these methods are exact, they are feasible
only for small graphs due to their significant time complexities.
Thus, there is a need to design more practical heuristics that
return small ZFS.

We can utilize a simple greedy approach to iteratively select
a ZFS [24]. The main idea is that in each iteration, change the
color of a white node to black to maximize the size of the derived
set. Continue this process until a ZFS is obtained. As a final step,
remove redundant nodes in a ZFS to achieve a minimal ZFS.

The simple greedy solution (lines 1–6) above could contain
redundant nodes, and as a result, the ZFS returned might not be
minimal. Therefore, we improve the solution by removing the
redundant nodes (lines 7–11). For computation time, we note that
for a given set of leader nodes, the derived set can be computed
in O(n+m) time, where n and m are the numbers of nodes
and edges in G, respectively [23, Prop. 1]. Also, in each (while)
iteration, the derived set is computed O(n) times. Finally, the
derived set increases by at least one in each (while) iteration.
As a result, the time complexity of the greedy heuristic is O(n2
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(n+m)). The greedy heuristic generally performs well; how-
ever, we can construct instances for which the greedy solution
performs poorly in the worst case. Proposition 3.1 presents such
instances.

Proposition 3.1: Let Zgr(G) denotes the ZFS returned
by the greedy heuristic. Then, there are graphs for which
|Zgr(G)|/ζ(G) can be arbitrarily large.

Proof: Consider G = (X ∪ Y,E), where X and Y are dis-
tinct sets ofn andm ≤ n nodes, respectively. Nodes inX induce
a path < x1, x2, . . . , xn >, and similarly, nodes in Y induce a
path < y1, y2, . . . , ym >. Moreover, each node in X is adjacent
to all the nodes in Y . Fig. 2 illustrates the graph. It is easy to
verify that Y ∪ {x1} is a ZFS; thus, ζ(G) ≤ m+ 1. Similarly,
X ∪ {y1} is a ZFS obtained by the greedy heuristic. To see this,
consider all nodes to be white initially. Making any node black
would increase the size of the derived set by one. So, select x1 to
be black. In the next iteration, changing any white node to black
will again increase the size of the derived set by one. So, include
x2 in the solution. This trend continues for the first n iterations,
thus, making all nodes in X black. In the (n+ 1)th iteration,
changing the color of y1 to black will change the colors of all
the remaining nodes to black due to the zero-forcing process.
Thus, Zgr(G) = X ∪ {y1} and |Zgr(G)| = n+ 1. Since we
can choose n to be arbitrarily large, n+1

m+1 can also be arbitrarily
large, which proves the desired claim. �

IV. OPTIMAL ZFS IN TREES AND CLIQUE CHAINS

This section studies the minimum ZFS problem on two impor-
tant graph families, trees and clique chains. Trees represent the
sparse connected graphs, while clique chains belong to a gener-
ally dense family of graphs. For both of these extreme families,
we provide algorithms to compute ZFS optimally. Here, we use
the word “optimal” to mean two things: the ZFS returned is
the smallest possible, and the algorithms are asymptotically the
most efficient in computational complexity.

A. ZFS Tree Algorithms

A tree is an acyclic-connected graph and always contains
leaf nodes. Since a leaf node has only one neighbor, it can
immediately force its only white neighbor if the leaf node is
included in a ZFS. This observation gives an easy scheme to
select a ZFS in trees: a ZFS consists of all leaf nodes in a tree.
The set of all leaf nodes is indeed a ZFS because leaf nodes can
force their only neighbors, the predecessors of the leaf nodes,
which in turn can force their predecessors until all nodes in the
tree are colored black. This is an efficient scheme since all leaf
nodes in a tree can be computed in linear time. However, if
we run this algorithm on a path graph, we will select both end
nodes of a path as a ZFS, while only one end node suffices.
Therefore, the ZFS returned is not optimal. Finally, we note that
the ZFS returned by this scheme can be significantly worse than
the optimal solution.

Remark 4.1: Let Z�(T ) be a ZFS of a tree consisting of
leaf nodes. Then, there exist trees whose zero forcing number is
almost half of |Z�(T )|. For instance, consider the tree in Fig. 3.
A root node u is adjacent to n nodes, each of which is adjacent

Fig. 3. Minimum ZFS (dark colored nodes) consists of root node u and
n leaf nodes.

to a pair of leaf nodes. There are 2n leaf nodes. A minimum ZFS
consists of node u and n leaf nodes, as shown in Fig. 3. As a
result, ζ(T ) = n+ 1 compared to |Z�(T )| = 2n.

ZFS of tree graphs is also equivalent to another well-known
graph parameter: path cover number [28]. Some previous works
report algorithms to compute the path cover number, and hence,
the zero forcing number of trees [28], [29]. However, these
algorithms are discussed primarily from an existence perspective
without the complexity analysis and implementation details.
In the following, we present a simple linear-time algorithm
to compute a minimum ZFS in trees. Though our results are
applied to tree graphs here, they may also help in improving
the performance of algorithms for general graphs by reducing
the input graph size. We first show that a path of length two
can be contracted to an edge without increasing the zero forcing
number of the graph.

Lemma 4.2: Let G = (V,E) be a graph, and let u, v be two
nonadjacent nodes with a path of length two < u,w, v >, and
deg(w) = 2. Let H = (V ′, E ′) be another graph, where

V ′ = V \ {w}, E ′ = (E \ {(u,w), (w, v)}) ∪ {(u, v)}
i.e., H is constructed from G by replacing the two length path
< u,w, v > with an edge (u, v). Then, ζ(G) ≥ ζ(H).

Proof: Let X be a ZFS of G. If w /∈ X , then we claim that X
is also a ZFS of H . During the zero forcing process in G, at least
one of u, v, is colored black when w is the only white neighbor
of that node. So, either u forces w, which in turn forces v, or v
forces w and w in turn may force u. Clearly, for the same zero
forcing process in H , instead of w, the node v will be able to
force u, or the node u will be able to force v. The remaining
zero forcing process evolves as in G. Therefore, in this case, X
is also a ZFS of H . On the other hand, if w ∈ X , then at most
one of u, v can be in the ZFS as anyone of them along with node
w can color the third node black during the zero forcing process.
If both these nodes are not in X , then during the zero forcing
process, w can not color any node black on its own until one of
them (i.e., u or v) is forced black by some other node. One of the
u, v must be colored black by one of their other neighbors, and
then w can color the remaining white neighbor black. Assume
without loss of generality that u is colored first, and w then
colors v, then (X \ {w}) ∪ {v} is a ZFS in H with coloring of
w skipped. However, if u ∈ X , then v is the only white neighbor
of w that can be colored black in the first step of the zero forcing
process. In this case, (X \ {w}) ∪ {v} is a ZFS of H and zero
forcing process of G can be replicated in H from the second
step onward as u, v are both colored black before the start of the
process. Therefore, ζ(G) ≥ ζ(H). �
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Remark 4.3: Given the conditions of Lemma 4.2, in general,
it is not true that ζ(G) = ζ(H). In other words, the degree two
vertices can not be collapsed in general without affecting the
zero forcing number. To claim that, we need slightly more strict
conditions as outlined below.

In the following, we show that in a particular case, when one
of the nodes on a path of length two is a leaf, the path can
be contracted to an edge and the zero forcing number will not
change.

Lemma 4.4 (Collapsing Lemma): Let < u,w, v > be a path
in a graph G = (V,E), with deg(w) = 2, deg(v) = 1. Let H =
(V ′, E ′) be an other graph, where

V ′ = V \ {w}, E′ = (E \ {(u,w), (w, v)}) ∪ {(u, v)}

i.e., H is constructed from G by replacing the two length path
< u,w, v > with an edge (u, v). Then, ζ(G) = ζ(H).

Proof: It follows from Lemma 4.2 that ζ(G) ≥ ζ(H), so
we only need to show that ζ(G) ≤ ζ(H). We show a slightly
stronger statement that the ZFS of H is also a ZFS of G. Let Y
be a ZFS ofH . If v ∈ Y , thenY is a ZFS ofG as well because the
coloring process in H can be started at v, which colors its only
neighbor u, and the process continues as required. The coloring
process in G can be started by v coloring its only neighbor w,
which in turn colors its only white neighbor u, and the process
continues as it does inH . If v /∈ Y , then at some point during the
zero forcing process of H , u is colored black while v is its only
white neighbor. This means that if we follow the zero forcing
process of H exactly on G, u would be colored black while w is
its only white neighbor. At that point, w would also be colored
black. Since u is already black, v is the only white neighbor of
w; thus, it can also be colored black. The rest of the coloring
process proceeds as it does in H . We conclude that any ZFS of
H is a ZFS of G. This completes the proof. �

Definition 4.1: A pendant Sk = (Vs, Es) in a graph G =
(V,E) is an induced star graph, where Vs = {a, b1, . . . , bk} and
Es = {(a, bi)| 1 ≤ i ≤ k} with the added condition that all bi’s
are leaf nodes in G.

We observe that most of the nodes of any arbitrary pendant
of a graph must be included in a ZFS.

Lemma 4.5: Let Sk be a pendant in graph G with nodes
a, b1, b2, . . . , bk, k > 1, where bi are the leaf nodes. At least
k − 1 of the leaf nodes of Sk must be in a ZFS of G.

Proof: We prove the claim through contradiction. Assume
that bi, bj are a pair of leaf nodes of Sk that are not in a ZFS
X of G. Since a is the only neighbor of these white-colored
nodes, a must be colored black during the zero forcing process,
while both of them are still white. However, there are two white
neighbors of a; therefore, a can not color either of them black,
and they will remain white at the end of the coloring process.
This contradicts the assumption that X is a ZFS. We conclude
that at least k − 1 leaf nodes of Sk are in any ZFS of G. �

Based on Lemma 4.5, we outline a scheme to reduce the size
of a graph by removing a pendant from a graph while computing
its effect on the zero forcing number.

Lemma 4.6 (Pruning Lemma): Let Sk be a pendant in
graph G with nodes a, b1, b2, . . . , bk, k > 1 where bi are the

leaf nodes. Let H be constructed from G by removing the nodes
a, b1, b2, . . . , bk of G. Then, ζ(G) = ζ(H) + k − 1

Proof: (i) ζ(H) ≤ ζ(G)− (k − 1): From Lemma 4.5, we
may assume without the loss of generality that b1, b2, . . . , bk−1

are in a ZFS, X , of G. If bk is not in X , then all nodes in N(a) \
Sk must be colored black before bk. Further, all of these nodes
are colored black due to their neighbors that are not in Sk (recall
that while amay itself be colored black at this time but it may not
force any white nodes inN(a) \ Sk because it has another white
neighbor in bk). Therefore, X \ {b1, b2, . . . , bk−1} is a ZFS of
G \ Sk, which is H . On the other hand, if bk is in X , then a
may color a node black when there is only one white node left
in N(a) \ Sk. Let bk+1 be the last node that is colored black in
N(a), then (X \ {b1, b2, . . . bk}) ∪ {bk+1} is a ZFS of H of the
required size.

(ii) ζ(H) ≥ ζ(G)− (k − 1): Let Y be the ZFS of H . We
claim that Y ∪ {b1, b2, . . . , bk−1} is a ZFS of G. Let us color
node a black in the first step of the coloring process of G. Now,
using nodes in Y , we can color all other nodes black except
bk. Once all other neighbors of a are colored black, bk can be
colored black in the last step. Thus, Y ∪ {b1, b2, . . . , bk−1} is a
ZFS of G. This concludes the proof. �

Next, using the above results, we present an optimal algorithm
to compute the minimum ZFS of a tree.

Algorithm: We begin by constructing a breadth-first search
(BFS) Tree and the corresponding Queue of nodes in the input
tree graph starting from any arbitrary root node. Then, we iterate
back from the end of the BFS Queue (recall that the last node
in this Queue represents a node at the farthest distance from
the root). Next, we check if the parent node in the BFS Tree of
the last node v has any children other than the node v. If the
parent node of v, denoted by π(v), has no other descendants,
and π(v) is not a leaf, we have a < u,w, v > path that meets the
requirements of Lemma 4.4. Therefore, we remove the last node
from Queue and repeat this step. If π(v) is also a leaf node then
π(v) can force v and we can remove the last node v from the
Queue. Otherwise, we add all descendants of π(v) except v to
our ZFS, and remove the parentπ(v) and all its descendants from
the BFS Tree and the Queue. We repeat this until the Queue is
empty or contains a single node. If the Queue has a single node,
we add this node to our ZFS; otherwise, we do not add anything.
At this point, we return a ZFS. These steps are summarized in
Algorithm 2.

Theorem 4.7: Algorithm 2 computes a minimum ZFS in Tree
graphs in (optimal) linear time.

Proof: The correctness of the algorithm follows directly from
Lemma 4.6. We construct a BFS Tree and Queue in timeO(|V |).
We iterate over the nodes in the Queue and in each iteration spend
constant time. Since the Queue contains |V | nodes, the total run
time of the algorithm is O(|V |). �

B. Optimal ZFS in Clique Chains

Next, we consider the minimum ZFS problem in a class of
graphs called clique chains, which are widely studied and are
significant due to their robust properties. For instance, for a given
number of nodes n and diameter D, graphs with the maximum
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Algorithm 2: ZFS for Tree Graph.
1: given: G
2: initialization: Z = ∅.
3: T = BFS Tree(G), Q = BFS Queue(G).
4: while |Q| > 1
5: v = last node in Q
6: π(v) = parent of v, Cπ(v) = Children of π(v)
7: Z = Z ∪ (Cπ(v) \ {v})
8: Remove Cπ(v) from Q,T
9: if Cπ(v) ⊃ {v}

10: Remove π(v) from Q,T
11: end if
12: end while
13: return Z

Fig. 4. Clique chain C(n1, n2, n3, n4), where n1 = n4 = 2, and n2 =
n3 = 3. Here, n = 10 and diameter D = 3. Nodes in an optimal ZFS are
colored gray.

robustness (measured by the algebraic connectivity or the Kirch-
hoff index of the graph) are necessarily clique chains [30], [31].
Similarly, these graphs also have other extremal properties [30],
[31], [32]. We define clique chains below.

Definition 4.2: For a given a set of positive in-
tegers {n1, n2, . . . , nD+1}, a clique chain, denoted by
C(n1, . . . , nD+1) is a graph obtained from a path graph with
D + 1 nodes as following: replace the ith node in the path graph
with a clique ofni nodes,1 i.e.,Kni

. Then, make nodes in distinct
cliques adjacent if and only if the corresponding nodes in the path
graph are adjacent.

Note that the diameter of C(n1, . . . , nD+1) is D. Fig. 4 shows
an example of a clique chain C(2, 3, 3, 2). We present the zero
forcing number and optimal ZFS in clique chains.

Proposition 4.8: Let C(n1, . . . , nD+1) be a clique chain with
n =

∑D+1
i=1 ni nodes and D diameter. Let X be a set consisting

of one node (arbitrarily chosen) from each clique Kni
, where

i ∈ {2, . . . , D + 1}. Then

ζ(C(n1, . . . , nD+1)) = n−D.

Moreover, an optimal ZFS consists of all nodes in C(n1,
. . . , nD+1) excluding the nodes in X .

Proof: (Necessity) Assume ζ < n−D, then one of the
following must be true: (1) there is some Kni

with at least two
white nodes, or (2) each Kni

has at least one white node. In (1),
since all nodes in a clique Kni

have the same neighborhood,
the two white nodes in the same clique can not be forced by
any black node. In case (2), consider a white node from each
Kni

. Note that such white nodes induce a path, say P , of length

1A clique is a subset of nodes in a graph such that every two nodes in a clique
are pairwise-adjacent.

D. Also, observe that each of the remaining nodes in the clique
chain is adjacent to at least two nodes in P . Thus, no black node
can force any of the white nodes in P . Hence, the number of
nodes in a ZFS must be at least n−D.

(Sufficiency): In the given solution set, all nodes in Kn1
are

black (included in ZFS) and there is exactly one white node
in Kni

∀i ∈ {2, . . . , D + 1}. Thus, the only white node in
Kn2

becomes black (gets infected) by some node in Kn1
, which

means all nodes in Kn2
become black. Subsequently, the only

white node in each of the Kni
becomes black due to some node

in Kni−1
(whose all nodes have already become black). Thus,

all nodes in the clique chain become black, and the given set
containing n−D nodes is indeed a ZFS. �

Note that Proposition 4.8 also provides a way to construct an
optimal ZFS in clique chains, as Fig. 4 illustrates.

V. ZFS HEURISTICS USING POTENTIAL GAMES

We present a game-theoretic approach for finding an optimal
ZFS in a distributed manner on arbitrary graphs. Given a graph
G = (V,E) with n nodes, V = {v1, . . . , vn}, let a ∈ {0, 1}n
be an indicator of the node colors. Accordingly, ai = 1 if vi is
black, and ai = 0 if vi is white. Next, we define a function,φ(a),
whose maximization is equivalent to finding an optimal ZFS as
we will show in Lemma 5.1

φ(a) =
1

n

(
|der(a)| −

n∑
i=1

ai

)
(6)

which is equal to 1/n times the size of the derived set, der(a),
minus the number of black nodes when the colors are assigned
as per a. We use der(a) to denote the derived set of black nodes
indicated by a, and the scaling term 1/n is used for keepingφ(a)
finite regardless of the network size.

Lemma 5.1: Let G = (V,E) be a connected graph and let
a ∈ {0, 1}n represent the node colors, i.e., ai = 1 if vi is black.
A vector a ∈ {0, 1}n is a maximizer of φ in (6), i.e., φ(a) ≥
φ(a′), ∀a′ ∈ {0, 1}n, if and only if a indicates an optimal ZFS.

Proof: (⇒ :) Let a ∈ {0, 1}n be a maximizer of φ in (6).
We will first show that a necessarily indicates a ZFS, i.e.,
der(a) = V . For the sake of contradiction, suppose that this
is not true and der(a) ⊂ V . Then, pick any vj /∈ der(a) and
define a new vector a′ ∈ {0, 1}n as follows: a′i = 1 if ai = 1 or
vi /∈ der(a) ∪ {vj}, and a′i = 0 otherwise. In other words, the
black nodes under a′ comprise of all the black nodes under a and
all the nodes other than vj that are not included in the derived
set der(a). Accordingly, the resulting increase in the number of
black nodes is

n∑
i=1

a′i −
n∑

i=1

ai = n− |der(a)| − 1. (7)

Since every black node under a is also black under a′, we have
der(a) ⊆ der(a′). Furthermore, since every node other than vj
that are not included in der(a) are also selected as black, then
either der(a′) = V or der(a′) = V \ {vj}. However, der(a′) =
V \ {vj} is not possible since it implies that the zero forcing
process ends with a single white node vj , which is guaranteed to
be the only white neighbor of a black node in the end since G is
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connected. Such a node vj must become infected. Accordingly,
using (6) and |der(a′)| = n, we obtain

φ(a′)− φ(a) =
1

n

(
n− |der(a)| −

n∑
i=1

a′i +
n∑

i=1

ai

)
. (8)

Note that (7) and (8) together imply φ(a′)− φ(a) = 1/n > 0,
which contradicts with a being a maximizer of φ(a). Hence, a
must indicate a ZFS.

Next, we will show that a must indicate an optimal ZFS,
i.e., a ZFS with the fewest possible number of nodes. For the
sake of contradiction, suppose that a does not correspond to
an optimal ZFS. Then, there exists a′ ∈ {0, 1}n which cor-
responds to a ZFS and has fewer black nodes compared to
a. Accordingly, |der(a)| = |der(a′)| and

∑n
i=1 a

′
i <

∑n
i=1 ai,

which imply φ(a′) > φ(a). Hence, once again, we obtain a
contradiction with a being a maximizer of φ. Consequently, any
maximizer of φ is an optimal ZFS.

(⇐:) If any two vectors, a and a′, both indicate optimal ZF
sets, thenφ(a) = φ(a′) forφ in (6) since |der(a)| = |der(a′)| =
n and, by definition, both a and a′ have the minimum number of
leaders among the ZF sets (hence

∑n
i=1 a

′
i =

∑n
i=1 ai). Since

every optimal ZFS have equal φ and we have already shown
that any maximizer of φ(a) is necessarily an optimal ZFS, we
conclude that every optimal ZFS is a maximizer of φ. �

Based on Lemma 5.1, an optimal ZFS can be obtained by
searching for a maximizer of φ(a) in (6). Such a maximization
can be achieved in a distributed manner by using a game-
theoretic formulation (e.g., [33]). More specifically, the problem
of finding an optimal ZFS can be formulated as a potential game
with the potential function φ(a) and a learning algorithm such
as log-linear learning (LLL) [34] can be used to find an optimal
a. Before presenting such a game-theoretic approach, we first
provide some preliminaries.

A. Game Theory Basics

A finite strategic game Γ = (I, A, U) has three components:
1) a set of players (agents) I = {1, 2, . . . , n}; 2) an action space
A = A1 ×A2 × ...×An, where each Ai is the action set of
player i; 3) a set of utility functions U = U1, U2, . . . , Un, where
each Ui : A → R is a mapping from the action space to real
numbers. For any action profile a ∈ A, we use a−i to denote the
actions of players other than i. Using this notation, an action
profile a can also be represented as a = (ai, a−i).

A class of games that is widely utilized in solving cooperative
multiagent problems is the potential games. A game is called
a potential game if there exists a potential function, φ : A →
R, such that the change of a player’s utility resulting from its
unilateral deviation from an action profile equals the resulting
change in φ. More precisely, for each player i, for every ai,
a′i ∈ Ai, and for all a−i ∈ A−i

Ui (a
′
i, a−i)− Ui (ai, a−i) = φ (a′i, a−i)− φ (ai, a−i) . (9)

In game-theoretic learning, the agents start with arbitrary initial
actions and follow a learning algorithm to update their actions
based on past observations during a repetitive play of the game.
For potential games, noisy best-response type algorithms such

as LLL or Metropolis learning (e.g., [34], [35], [36]) can be
used to have the agents spend most of their time at the global
maximizers of φ(a). More specifically, these algorithms induce
an irreducible and aperiodic Markov chain over the action space
A such that the limiting distribution, με, satisfies

lim
ε→0+

με(a) > 0 ⇐⇒ φ(a) ≥ φ(a′) ∀a′ ∈ A (10)

where ε > 0 is the noise parameter of the algorithm.

B. ZFS Game

We formulate the problem of finding an optimal ZFS as a
game, ΓZFS = (I, A, U), where the set of players is the set
of nodes, i.e., I = V , and the action space is A = {0, 1}n.
Accordingly, the action of each agent vi is a binary variable
indicating its initial color in the zero forcing process, i.e., black
(ai = 1) or white (ai = 0). Finally, we need to define the utility
functions Ui(a) such that ΓZFS = (I, A, U) is a potential game
whose potential function is φ(a) in (6). While there are also
other methods to design such utility functions (e.g., wonderful
life utility [37]), one choice is to set all the utilities equal to the
global objective, i.e.,

Ui(a) =
1

n

(
|der(a)| −

n∑
i=1

ai

)
∀i ∈ I. (11)

One can easily verify that the resulting game, ΓZFS , is a poten-
tial game with the potential function φ(a) in (6), i.e., the utilities
in (11) satisfy (9). Accordingly, an optimal ZFS can be found
by employing a noisy best-response algorithm such as LLL in a
repetitive play of the resulting game, ΓZFS .

Theorem 5.2: Let ΓZFS be the ZFS game on a connected
G = (V,E). Then, LLL induces a Markov chain over the action
space A = {0, 1}n whose limiting distribution, με, satisfies

lim
ε→0+

με(a) > 0 ⇐⇒ a corresponds to an optimal ZFS (12)

where ε > 0 is the noise parameter of LLL.
Proof: Since ΓZFS is a potential game with the potential

function φ(a) in (6), LLL is known to induce a Markov chain
over the action space A = {0, 1}n whose limiting distribution,
με, satisfies (10) [34]. Due to Lemma 5.1, the maximizers ofφ(a)
in (6) are the optimal ZF sets. Consequently, we conclude that
limε→0+ με(a) > 0 if and only if a corresponds to an optimal
ZFS. �

In light of Theorem 5.2, when a is updated via LLL with a
sufficiently small noise parameter ε, it indicates an optimal ZFS
with a very high probability as the number of iterations goes to
infinity. However, since there is only a finite amount of time to
search for an optimal ZFS in real-life problems, we propose an
LLL-based heuristic that has three steps: 1) following LLL to
updatea for a finite number of iterations; 2) if the resultingadoes
not indicate a ZFS, then switching all the nodes in V \ der(a)
to black (a becomes a ZFS); and 3) removing the redundant
black nodes in a. In our next result, we show that this heuristic
returns an optimal ZFS with an arbitrarily high probability for
any connected graph G when the algorithm parameters, k̄ and
ε, are selected properly. Such a performance guarantee is the
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Algorithm 3: Log-Linear Learning (LLL) Heuristic for
ZFS.

1: given: G = (V,E), #iterations k̄ (large), noise ε > 0
(small)

2: initialization: arbitrary a ∈ {0, 1}|V |

----- running LLL for k̄ iterations ----
3: for k = 1 to k̄
4: Pick a random node vi.
5: Randomize ai based on the utility function in (11):

Pr[ai = a′i] ∼ exp (
Ui(a

′
i, a−i)

ε
), ∀a′i ∈ {0, 1}.

6: end for
7: Z = {vi ∈ V | ai = 1},
-- adding leaders if Z is not a ZFS --
8: Z = Z ∪ (V \ der(Z)),
--------- removing redundancies -------
9: for all vi ∈ Z

10: if |der(Z \ {vi})| = n
11: Z = Z \ {vi}
12: end if
13: end for
14: return Z

main advantage of this heuristic when compared with the greedy
heuristic in Algorithm 1, which may produce arbitrarily poor
results for some graphs, as we have shown in Proposition 3.1.

Corollary 5.3: For any connected G = (V,E), Algorithm 3
always returns a ZFS. Furthermore, let Pr[Z is optimal; k̄, ε]
be the probability that the set of nodes Z ⊆ V returned by
Algorithm 3 is an optimal ZFS for a specific choice of the
algorithm parameters k̄ (number of iterations) and ε (noise).
Then, Pr[Z is optimal; k̄, ε] approaches 1 as ε becomes smaller
and k̄ gets larger, i.e.

lim
ε→0+,k̄→∞

Pr
[
Z is optimal; k̄, ε

]
= 1. (13)

Proof: We will first prove that Algorithm 3 always returns a
ZFS. To this end, consider any Z ⊆ V that may be obtained at
line 7 of Algorithm 3. In line 8, adding all the nodes that remain
white under the zero-forcing process when staring with Z as the
initial set of black nodes, i.e., V \ der(Z), to Z clearly results in
a ZFS. In the final recursive part of the algorithm (lines 9–13), a
node vi is removed from Z only if the the Z \ vi is also a ZFS.
Hence, the final Z returned by Algorithm 3 is guaranteed to be
a ZFS. Next, we prove that this output, Z, also satisfies (13).

Algorithm 3 starts with an arbitrary a ∈ A = {0, 1}n, which
is then updated by following LLL for k̄ iterations (lines 3–6). In
light of Theorem 5.2, this part induces induces a Markov chain
over the action space A = {0, 1}n whose limiting distribution,
με, satisfies (12). Note that, as k̄ goes to infinity, the probability
that these iterations result in a specific a ∈ A is equal to με(a).
Accordingly, for the resulting Z in line 7 of Algorithm 3, we
obtain

lim
ε→0+,k̄→∞

Pr
[
Z is optimal; k̄, ε

]
= 1. (14)

Fig. 5. Example of potential function as a function of number of itera-
tions in LLL.

When Z computed in line 7 is an optimal ZFS, the remainder
of Algorithm 3 does not make any further modifications to
Z. Hence, we conclude that the set of nodes Z returned by
Algorithm 3 satisfies (13). �

Remark 5.4: Variants of Algorithm 3 can be obtained by
replacing LLL (lines 3–6) with any other noisy best-response
type algorithm (e.g., Metropolis learning) that induces the same
limiting behavior in (10). While the resulting algorithms may
have some differences in their transient behavior (e.g., [36]), they
would all yield the same performance guarantee in Corollary 5.3.

Our potential game-based solution (Algorithm 3) is similar
to [38], in that both methods are based on inducing a Markov
chain whose limiting distribution accumulates over the set of
states corresponding to optimal ZFS as the noise/temperature
parameter diminishes. However, the two methods use different
cost/objective and transition probability functions. Furthermore,
our game theoretic approach is a distributed method that relies
on agents/nodes randomly updating their own variables (their
initial color in the zero forcing process).

C. Numerical Evaluation

In this section, we compare the LLL-based ZFS solution
with the greedy solution. First, we compute the ZFS of graphs
discussed in Proposition 3.1 using LLL. These are the graphs
for which the greedy heuristic performed poorly. In our ex-
periments, the LLL solution returned a ZFS, whose size is at
most one more than the minimum ZFS. For instance, consider
G = (X ∪ Y,E) (as in Proposition 3.1), where |X| = 40 and
|Y | = 10, the greedy heuristic returned ZFS with 41 nodes,
whereas LLL returned ZFS with 11 nodes, which is optimal.
Fig. 5 illustrates the potential function as a function of the
number of iterations in LLL for the above example. The value
of ε used is 0.004. As shown in Fig. 5, after about 250 iterations
the potential function equals 0.78 most of the time, which is the
maximum possible value of (6) for this example.

Next, we consider Erdös-Rényi (ER) random graphs with
n = 50 nodes. Fig. 6(a) plots the size of ZFS returned by greedy
and LLL solutions as functions of p, where p is the probability of
having an edge between any two nodes in the graph. Each point
on the plots is an average of 25 randomly generated instances.
In the LLL solution, ε = 0.005 and the 2000 iterations are
performed in each instance. We observe that LLL produces ZFS
of a smaller size compared to the greedy solution. Similarly, in
Fig. 6(b), the same results are plotted for the Δ-disk proximity
graphs with n = 50 nodes. In such a graph, nodes u and v are
adjacent whenever the Euclidean distance between them is at
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Fig. 6. Comparison of the greedy and LLL-based heuristics for ZFS in
(a) the ER graphs and (b) the Δ-disk graphs.

Fig. 7. ζ(G) in ER and BA random graphs of 100 nodes. (a) ER.
(b) BA.

mostΔ. In our simulation, nodes are randomly placed in a planar
region of area 15× 15 [unit length]2. Again, each point on the
plots is an average of 25 randomly generated instances. For LLL,
we used ε = 0.008 and 2000 iterations in each instance. Again,
the LLL solution outperforms the greedy solution. We note that
greedy heuristics typically provide ZFS in small sizes. However,
as illustrated in the plots, the LLL-based solution can outperform
greedy when ε is chosen properly and the algorithm runs for a
sufficient number of iterations.

VI. EDGE AUGMENTATION TO REDUCE ZFS

In this section, we study a design problem: how to add edges in
a graph to reduce the size of the zero forcing number of the graph.
To the best of our knowledge, edge augmentation to reduce the
zero forcing number of a graph has not been studied. Several
factors motivate this issue.

First, it is plausible that adding edges to a graph increases the
ZF number of the resulting graph (as in a ZF process, a colored
node can force another node if and only if there is a unique white
node in its neighborhood). In addition, it is typically observed
that the zero forcing number of dense graphs tend to be higher.
For instance, Fig. 7 plots the ZF number as a function of p in
Erdös-Rényi (ER) random graphs Gn,p, and as a function of m
in Barabási-Albert (BA) graphs, wherem is the number of edges
added to the graph with each new node addition. The considered
graphs consist of 100 nodes; each point on the plots averages 25
randomly generated instances. Thus, it is compelling to identify
the missing edges in a graph whose addition does not increase
but reduces the zero forcing number of the graph (given that
such edges exist).

Second, adding edges improves the network’s robustness to
faults and failures [31]. However, edge augmentation might
deteriorate the network controllability since adding edges might

Fig. 8. ZFS is Z = {v1, v6}. Two maximal forcing chains are
[v6, v2, v4, v5] and [v1, v3, v7]. The terminal set of Z is R(Z) = {v5, v7},
which is also a ZFS.

Fig. 9. (a) Colored nodes indicate a ZFS of G with ζ(G) = 8.
(b) Adding four (red) edges gives G′ with ζ(G′) = 4. (a) G. (b) G′.

increase the zero forcing number of the resulting graph, which
describes the minimum number of input nodes for the network
controllability. Consequently, network controllability and ro-
bustness properties could be conflicting at times [32], [39]. Thus,
identifying missing edges whose addition not only avoids in-
creasing the zero forcing number, but reducsing it is significant in
co-optimizing the network’s robustness and controllability [40],
[41], [42]. We begin edge augmentation to reduce the zero
forcing number by some useful notions below.

Definition 6.1: [43] Let Z be a ZFS of graph G = (V,E),
we define the following notions (and illustrate them in Fig. 8 ).

1) A chronological list of forces is a list of forces recorded
in the order in which they are performed to construct the
derived set.

2) A forcing chain (for a given chronological list of forces) is
a sequence of nodes [v1, v2, . . . , vk] such that vi 
→ vi+1,
for i = 1, 2, . . . , k − 1.

3) A maximal forcing chain is a forcing chain that is not a
proper subsequence of another zero forcing chain.

4) A terminal set of Z, denoted by R(Z), is the set of
last vertices of the maximal zero forcing chains of a
chronological list of forces. A terminal node, is a node in
a terminal set R(Z).

An important observation regarding R(Z) is as follows.
Theorem 6.1: [43] IfZ is a ZFS ofG, then so is any terminal

set R(Z). Moreover, |Z| = |R(Z)|.
Next, we illustrate below that it is possible to add edges to a

graph G to obtain a graph G′ such that ζ(G′) < ζ(G).
Examples: Consider G in Fig. 9(a), where black nodes consti-

tute a ZFS of G, and ζ(G) = 8. By adding four edges to G, we
obtain G′, as shown in Fig. 9(b) with ζ(G′) = 4. Thus, adding
four edges reduced the size of ZFS by four.

We can also generalize this example as follows. Let
G1, . . . , Gk be a set of graphs, and each Gi has a minimum
ZFS Zi, and ZF number ζ(Gi) = ζi. Without loss of generality,
assume ζ1 ≥ ζ2 ≥ · · · ≥ ζk. Let G be a graph obtained by
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Fig. 10. (a) Z(G) = {v1, v2, v7, v9}. (b) Consider Z ′ = {v1, v7, v9}.
(c) Colored nodes constitute the derived set H of Z ′. Here, x = v6 is
a terminal node with all black neighbors. (d) G′ is obtained by adding an
edge between x and y = v2, and has a smaller ZFS than G.

adjoining a new vertex x to each Gi through some vertex in
R(Zi), for all i. Here,R(Zi) is a reversal ofZi as defined above.
An example is illustrated in Fig. 9(a). The ZF number of G is
ζ(G) = (

∑k
i=1 ζi)− 1. Now, there exists at least (

∑k
i=2 ζi)− 2

edges (missing in G) such that each of those edges, if added to
G, will reduce the size of its ZFS by one. In other words, by
adding (

∑k
i=2 ζi)− 2 edges to G, we can obtain G′ such that

ζ(G′) is at most ζ1 + 1. In Fig. 9(a), ζ(G) = 8 (as for each Gi,
ζi = 3). By adding four missing edges, we get G′ in Fig. 9(b)
with ζ(G′) = 4.

Next, we provide a condition to identify missing edges in a
graph whose addition reduces the zero forcing number of the
resulting graph. Fig. 10 illustrates the result.

Theorem 6.2: Let G be a graph with a minimal ZFS Z. If
there exists aZ ′ ⊂ Z, with a derived setH containing a terminal
vertex with all neighbors colored black, then there is a nonempty
set of edges E ′ such that the graph G′ = (V,E ∪ E ′) has a ZFS
strictly smaller than Z.

Proof: Let G,H,Z,Z ′ be as in the statement of the theorem.
Let x ∈ H be a terminal vertex for a zero forcing process with
input nodes Z ′, and x has no white neighbors. As Z ′ is a strict
subset of Z, there must be at least one input node y ∈ Z \ Z ′.
Consider the graph G′ = (V,E ∪ E ′), where E ′ = {(x, y)}. It
is enough to show that Z \ {y} is a ZFS of G′.

We start the zero forcing process with the nodes in Z ′. At
some point in this process, all nodes in H including x will be
colored black. The edge (x, y) does not affect this zero forcing
process on G′ because node y is not in H and the node x is a
terminal node of the zero forcing process, i.e., it is not used to
force any other node in the graph G′. Due to the minimality of
ZFS Z, we know that y /∈ H and should be colored white at
this point. Since x was a terminal node with black neighbors in
the corresponding zero forcing process in G, y is the only white
neighbor of black colored node x in G′ due to the addition of
edge (x, y). According to the rules of the zero forcing process, x
can color the only white neighbor y now. At this point, the black
colored nodes, Z ′′, in G′ include H ∪ Z \ Z ′ which include all
nodes in Z. The set Z ′′ is a ZFS of G because Z ′′ ⊃ Z. Note
that for two sets A ⊆ B, the derived set of B can not be smaller
than der(A) because one can always start the zero forcing with
the smaller input set A and get the same set of black nodes that
are in the derived set der(A). Furthermore, Z ′′ is also a ZFS of
G′ because the added edge (x, y) is now between two already

Fig. 11. (a) G is 2-connected. A minimum ZFS is {v1, v6, v7, v8}.
(b) Cut set of G is {v4, v5}. The two resulting components are C1 and
C2. (c) {v6, v7, v8} is the ZFS of the graph induced by vertices in C2

and the cut set. (d) Adding edge (red) between v1 and v7 gives G′, which
has a minimum ZFS of three nodes {v6, v7, v8}.

black nodes, and the addition of edges among input nodes does
not affect the zero forcing process. Thus, Z \ {y} is a ZFS of
G′. �

Theorem 6.2 implies that we can reduce the size of a ZFS
whenever we can find a terminal node with all black neighbors
in the derived set of some subset of the ZFS (as shown in Fig. 10).
In particular, we can repeatedly apply this result to add multiple
edges and reduce the size of ZFS.

Next, we consider the family of k-connected graphs and get
the following result. Fig. 11 illustrates the result.

Proposition 6.3: Let G be a k-connected graph with a mini-
mum vertex cut C and a minimal ZFS Z. Also, let G′ = G \ C
be the disconnected graph after removing vertices in C from
G. If there exists a connected component X in G′ with more
than k vertices in (X ∩ Z) ⊂ Z, and X ∩ Z is also a ZFS of the
induced graph on X ∪ C, then there exist edges whose addition
to G will strictly decrease the size of ZFS of the resulting graph.

Proof: Let G,G′, C,X,Z be as in the proposition statement.
As (X ∩ Z) is a strict subset of Z, there is at least one y that
is in Z but not in (X ∩ Z). As (X ∩ Z) is a ZFS of the graph
on X ∪ C, y can not be one of the cut vertices as they can
already be colored black by the nodes in (X ∩ Z). Therefore,
there is at least one y ∈ Z \ (X ∪ C) due to the minimality of
ZFS Z. Also, there are exactly |X ∩ Z| terminal nodes of the
zero forcing process onX ∪ C. As |(X ∩ Z)| > |C|, at least one
of those terminal nodes, say x, is in the connected component
X . Note that all neighbors of x are in X ∪ C as C is a vertex cut
of G. We now show that Z \ {y} is ZFS of G′ = G ∪ {(x, y)},
the graph G with added edge (x, y). We start the zero forcing
process with nodes in (X ∩ Z). At some point in this process,
x will be a terminal node with no white neighbors, recall that
all neighbors of x are in X ∪ C that lies in the derived set of
(X ∩ Z). It follows that y is the only white neighbor of x and
can be colored black. Therefore all nodes inZ are colored black.
As Z is a ZFS of G, Z ∪ {x} is a ZFS of G. Further, Z ∪ {x}
is also a ZFS of G′ because the edge (x, y) between two input
nodes does not affect the coloring process. Thus, adding edge
(x, y) to G reduces the size of the ZFS by at least one. This
completes the proof. �
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We note that repeated application of Proposition 6.3 may
potentially increase the density of a graph while reducing the
size of the input nodes. As a result we get the following:

Corollary 6.4: Let G be a graph with a vertex cut C of size
k (in particular but not necessarily when G is k-connected) and
a ZFS Z. Further, let G′ = G \ C be the disconnected graph
after removing vertices in C from G. If there exists a connected
component X in G′ with k + t, t > 0 vertices of (X ∩ Z), and
X ∩ Z is also a ZFS of the induced graph on X ∪ C; then there
exist

(
m
2

)
edges whose addition to G will reduce the size of ZFS

of the resulting graph by at leastmwherem = min(t, |Z \X|).
Proof: As in the proof of Proposition 6.3, if we start the

zero forcing process with nodes in (X ∩ Z), at some point in
this process, there are at least t terminal nodes x1, x2, . . . , xt

with no white neighbors - recall that all neighbors of xi are in
X ∪ C that lies in the derived set of (X ∩ Z). Similarly, there are
|Z \X| nodes y1, y2, . . . , y|Z\X| outsideX . Therefore, there are
at leastm pairs of nodes xi, yj such that adding edges {(xi, yj) :
1 ≤ i ≤ m, 1 ≤ j ≤ i} to G will reduce the size of ZFS of the
resulting graph by at least m as Z \ {yj : 1 ≤ j ≤ m} is a ZFS
of the resulting graph. �

Theorem 6.2, Proposition 6.3, and Corollary 6.4 can be used
to design an algorithm to iteratively add edges to a graph to
reduce its ZFS. Intuitively, these results can be used whenever
heterogeneity appears in a network, i.e., there is a nonuniform
distribution of edges, which is often the case in practical net-
works. Typically, a denser part of the network requires more
input nodes for control. However, the potential of these input
nodes is somewhat underutilized, and strategically adding extra
edges within the network provides a way to utilize these input
nodes to control the rest of the network. To illustrate this point,
consider a graph consisting of two cliques on 100 nodes each
and connected by a single edge. The size of the minimum ZFS
of the graph is 197. However, we can add ε edges to the graph,

where 98 ≤ ε ≤
(
98

2

)
, such that the resulting graph has a ZFS

of size 99, which is a significant improvement compared to the
ZFS size of the original graph. While this is an extreme example,
we note that our results can exploit even a small heterogeneity
(nonuniformity) in the network density.

VII. CONCLUSION

We studied various aspects of the minimum ZFS problem
in undirected graphs. We provided a linear time algorithm to
solve the problem in trees optimally and also characterized
the minimum ZFS in clique chains. Further, we formulated the
problem as a potential game and utilized LLL to solve the game.
Adding edges could improve the graph’s robustness; however, it
could increase the size of the minimum ZFS. We characterized
missing edges in a graph whose addition would reduce the size
of ZFS. In the future, we will extend these methods to combine
graphs by edge augmentations while exploring the trade-off
between the number of augmented edges and the size of the
ZFS of the combined graph. Another interesting direction to
consider is the extension of results to adversarial settings, i.e.,
how the zero forcing process and the zero forcing number change

due to failures/attacks preventing nodes from forcing other
nodes.
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stochastically forced consensus networks,” IEEE Trans. Autom. Control,
vol. 59, no. 7, pp. 1789–1802, Jul. 2014.

[14] A. Clark and R. Poovendran, “A submodular optimization framework for
leader selection in linear multi-agent systems,” in Proc. IEEE 50th Conf.
Decis. Control Eur. Control Conf., 2011, pp. 3614–3621.

[15] N. Monshizadeh, S. Zhang, and M. K. Camlibel, “Zero forcing sets and
controllability of dynamical systems defined on graphs,” IEEE Trans.
Autom. Control, vol. 59, no. 9, pp. 2562–2567, Sep. 2014.

[16] S. S. Mousavi, M. Haeri, and M. Mesbahi, “On the structural and strong
structural controllability of undirected networks,” IEEE Trans. Autom.
Control, vol. 63, no. 7, pp. 2234–2241, Jul. 2018.
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